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Powder bed fusion (PBF) applies to various metallic materials used in the metal printing process of building a wide range of
complex parts compared to other AM technologies. PBF process has several variants such as DMLS (direct metal laser sintering),
EBM (electron beammelting), SHS (selective heat sintering), SLM (selective laser melting), and SLS (selective laser sintering). For
PBF to reach its maximum potential, machine learning (ML) algorithms are used with suitable materials to achieve goals cost-
efectively. Various applications of neural networks, including ANNs, CNNs, RNNs, and other popular techniques such as KNN,
SVM, and GP were reviewed, and future challenges were discussed. Some special-purpose algorithms were listed as follows: GAN,
SeDANN, SCNN, K-means, PCA, etc. Tis review presents the evolution, current status, challenges, and prospects of these
technologies in terms of material, features, process parameters, applications, advantages, disadvantages, etc., to explain their
signifcance and provide an in-depth understanding of the same.

1. Introduction

Powder bed fusion is an additivemanufacturing (AM) technique
widely used to create products with complex geometries and
various materials, especially those with good mechanical
properties [1]. PBF is considered the best and most used AM
process due to its ability to fabricatemetallic or nonmetallic parts
with a resolution as small as ±0.02mm and manufacture ho-
mogeneous alloy parts with high strength free-form fabrication

with other advantages. Terefore, it is applicable in diferent
sectors, including the medical, automotive, and aerospace in-
dustries, because it allows lightweight construction and freedom
of design, with fewer parts manufactured locally [2]. Also, it has
advantages such as fast prototyping, timesaving manufacturing
custom quality designs, and economic benefts such as cost-
efectiveness.

Laser powder bed fusion (LPBF) is an ever-growing type of
additivemanufacturing (AM) technology.Tis paper studies the
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diferent types of LPBF methods, namely, the direct laser sin-
tering method (DLSM), selective laser melting (SLM), selective
heat sintering (SHS), electron beam melting (EBM), and se-
lective laser sintering (SLS). Each of these AM techniques difers
fundamentally in its working principle. PBF processes are either
full melting or successive sintering processes. Powder material
coalesces into solid by heating and direct liquefaction and so-
lidifying powder by intense melting in PBF methods such as
SLM, while successive sintering of material is performed to
achieve net components in PBF processes such as DMLS. Te
heating source can be laser and electron beam for high precision
fabricated parts.

Moreover, the paper discusses the various process param-
eters common to all types of AM technology such as laser power,
laser spot size, layer thickness, scan speed, and hatch spacing.
Optimizing process parameters leads to the efcient part density
at lesser lead time. Raw materials are powders classifed into
aluminum alloys, tool steels, titanium, stainless steel, refractory,
and superalloys. Te material properties of the fabricated 3D
part desired by the end user, such as density, tensile strength,
yield strength, elongation at break, hardness value, and
roughness value, determine the type and characteristics of the
powder used. Te powder can have many characteristic aspects
that can be varied or changed, such as the grain size or
coarseness, diameter, packing density, morphology, and mi-
crostructure properties that afect the quality of the fabricated
part. Tis paper reviews process parameters and powder
characteristics to minimize the various defects in the LPBF
methodology. Defects are undesirable errors due to melt-pool
instability, preheat built temperature, and improper process
conditions at the in situ and ex situ levels. Some commondefects
discussed in this review are spherical defects such as porosity,
residual stresses at melt-pool, delamination, and geometric
defects due to tolerance and balling.Te causes and solutions to
each defect under various LPBF methods are comprehensively
reviewed. Table 1 informs us about some of the most common
defects that can be seen in componentsmanufactured using AM
techniques, their causes, and their solutions. Integration of ML
with AM processes can help us prevent these defects in the very
initial phases and even stop manufacturing a defective com-
ponent as soon as the defect appears with the help of real-time
data tracking and decision-making techniques, which can
beneft economically as well as avert wastage. By implementing
ML, we can optimize input and output characteristics or even
predict a component’s properties for a given set of input pa-
rameters. Tus, ML has immense application in improving AM
processes’ speed, accuracy, and efciency and can infuence
quality outcomes [8].

Te current scenario of additive manufacturing has wide
applications in aerospace, automotive, prototyping, and
medical among many other industries in the 4.0 era [9].
However, it also has limitations in various scenarios such as
high residual stress, reproducibility, low porosity, etc. Dif-
ferent types of PBF processes such as DMLS (direct metal
laser sintering), EBM (electron beam melting), SHS (se-
lective heat sintering), SLM (selective laser melting), and SLS
(selective laser sintering) [10] were studied along with their
applications to gain in-depth knowledge of these concepts.
Due to the PBF process being step-by-step and working

layer-by-layer, there are many conditions and parameters to
be kept track of for ideal processing. Since numerous at-
tributes determine the outcome, keeping them manually
becomes practically impossible, especially if it has to be done
in real time during the procedure. Tat is where machine
learning is employed in this feld for smooth, fast, efortless
processing.

Today, the use of ML can be seen in many diferent
areas of the AM process [11]. It can help optimize input
parameters and output characteristics to get optimal results
much faster. Combined with multispectral data used for
learning and predicting product quality, it can enhance the
printers’ efciency and productivity. It can also enhance
build-time estimations, speed up design iterations, opti-
mize cost and weight performance, and enhance our ca-
pability to infuence part performance by examining the
powder and its characteristics. With the introduction of
machine learning (ML) such as supervised learning, un-
supervised learning, and reinforcement learning algo-
rithms, methods, and techniques depicted in Figure 1 were
used to implement tasks such as defect detection, in situ
monitoring, real-time process monitoring, quality moni-
toring, porosity analysis, optimizing process and param-
eters, parameter selection, prediction of inherent strain,
fatigue life, part distortions, and anomalies and parameters
like laser power [12–14].

ML can also aid with defects speeding up defect
identifcation and deciding the usability of the component
produced via AM. However, one main limitation is that
there is a serious lack of technology or application of ML
for real-time tracking of the AM process that can si-
multaneously follow both input parameters and output
characteristics observed in every printed layer. Tis kind
of real-time tracking can help keep an eye on the com-
ponent being manufactured and parallelly keep an eye on
the defect formation or development of material prop-
erties. Furthermore, with such application, the AM pro-
cess can be immediately stopped when an undesirable
defect such as huge porosity, stress accumulation, or
excessive coarsening of grain is formed after a layer of
molten powder has coalesced, etc. Stopping the AM
process from completing in such cases will help us avoid
using more material uselessly when we know the end
product will get rejected anyway. It can also save time that
will, otherwise, be wasted. All these applications can
signifcantly improve AM process efciency, productivity,
and quality. Tis real-time tracking can also help maintain
stricter and more accurate geometry. In PBF processes, the
powders’ fuidity, spreading, or fow pattern can signif-
cantly infuence the defect formation, geometric tolerance,
and material characteristics. However, current ML tech-
nology for AM applications cannot predict, track, or
manipulate such parameters in real time. Scientists are
building ML algorithms that can handle huge amounts of
data about various input and output parameters, observed
and recorded in real time, and simultaneously control
these parameters dynamically in real time to achieve re-
quired results. Tese algorithms will be able to do this by
being able to predict the powders’ fow or spreading. Tis
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development could also mean faster qualifcation times
and more fexibility for the AM machine user to buy
feedstock materials.

Along with the wide applications, machine learning is
a recent and developing feld. It paves the way for numerous
other applications and enhancements concerning the PBF
process that are yet to be discovered. For example, architectures/
algorithms could be improved upon with ongoing de-
velopments and transfer learning.Newparameters could also be
looked upon, and the accuracy of parameter readings could be
improved with the advent of newer technology, such as sensors.

2. Powder Bed Fusion and 3D
Printing Technologies

Powder bed fusion is an additive manufacturing technique
that enables it to create complex geometries that could not be
made/achieved by any other means. Laser powder bed fu-
sion’s metal components/parts can incorporate complex
designs and achieve the required mechanical properties. Most
of the time, reprinting and discarding these parts is observed
to eliminate defects. Te methods are optimized so that no
time andmoney are wasted in reprinting and discarding these
parts. Prototypes and simulations help in achieving the goal.

Te PBF process, from the initial stages of data in-
terpretation to the product capability steps, is di-
agrammatically shown (Figure 2). Data interpretation
includes 3D models of all the various formats and defects.
Te next PBF process proceeds with its process parameters
and material requirement. Each and everything is
reviewed and then it moves to the next step where product
capability is tested, such as its strength, dimension ac-
curacy, and even roughness [4, 15].

Powder bed fusion is an actively used technique in the
current day-to-day industry used in producing original and
conventional components’ sensing, which is available by ma-
chine. Manufacturers imply detection of factors like thermal
emissions from melt pool; less-known detection is of the
emission system for the excited gases which are present as
a result of emission of highly excited evaporations can fnally
conclude that the sensing systems rely on plume monitoring
for powder bed fusion [16–19].

Powder bed fusion techniques give out the best results
based on factors such as reproductivity and dimensional
accuracy in the aspect of part production, and the PBF
process uses to fabricate components is a step-by-step
procedure repeated layer-by-layer to fabricate a whole
component [20–23]. Using a material, various conclusions
were drawn out lack of fusion porosity was due to the
overlap of the melt pool, where PBF techniques can be used
to improve geometric designs, and more complex models of
the melt pools dimensionally can be used to predict accuracy
[2, 24–27]. As well increased deposition efciency, charac-
terization, and quantifcation may result in a more excellent
window to identify defects. Powder bed fusion uses methods
such as in the process to increase user confdence and en-
courage further adoption in high-value manufacturing
sectors’ systems to assess system accuracy and precision
[2, 28–31]. Te high-value sectors such as biomedical and
automobiles have complex geometrical components and
diferent design capabilities and are muchmore accurate and
preferred as the process is layer-by-layer building to achieve
such high design complexities [32–37].

One of the forms of AM is powder bed fusion, which has
been in the limelight for a few years now because of its unique
capabilities of producing 3-D geometries, complex structures,
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Figure 1: Machine learning algorithms are involved in various additive manufacturing processes, including powder bed fusion.
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and quality as required, so high-value industries have a keen
interest in this process.Te layer-by-layer deposition has many
advantages as milling, turning, and postprocessing are less
involved [38–43].

Powder bed fusion (PBF) is the earliest additive
manufacturing process. It is one of the most popular powder-
based sintering used for prototyping and in the end-use ap-
plication in many industries that compete with injection
molding and any other polymer manufacturing process
[44–46]. Tese are generally used for low-medium complex
partsmanufacturing.Te laser and electronmethods are one of
the fastest-growing methods in the industries of methods in
DED. Tey are mostly used for aerospace and biomedical
applications due to their properties to make any complex part
and excellent material properties. Tis is a layer-by-layer
method, improved build quality, and comparative reduction
in cost. Te future of this method is quite bright in various
felds such as Aerospace Component Manufacturing For
Complicated Components and Medical and Industrial Ap-
plications [47–49]. One study highlighted this by investigating
the dental implants manufactured by the PBF method com-
pared to other conventional methods. Te study particularly
examined the geometric and dimensional accuracy of the
manufactured parts. An approximate increase of around 20%
was seen in the PBF samples [50].

3. Types of PBF Processes

Figure 3 explains the various types of processes based on
their energy sources. Selective heat sintering comes under
thermally fused, selective laser sintering comes under laser
fused, and electron beam melting comes under electron
beam fused.

3.1. Direct Metal Laser Sintering. Direct Metal Laser Sin-
tering (DMLS) is an additive manufacturing methodology in
which metal powder such as Inconel 625, cobalt chrome, and
stainless steel is used to generate a solid three-dimensional
model by sintering [1]. Te process of joining two entities
into one compound by heating and fusing, without melting,
is called sintering. Te recent advancements in the feld of
DLMS have found it to be a superior additive manufacturing
technology over SLS in reduction of part porosity,
manufacturing reliability, postprocessing, and processing
time. Te DMLS working process consists of the following
parts: laser unit, which uses a CO2 laser, scan head, fber that
connects the laser unit and the scan head, the building
platform for layer-by-layer deposition of metal powder,
dispenser platform, recoated blade, and collector platform.
Metal powder in the dispenser is released one layer at a time
from the dispenser platform to the building platform. Te
relative heights are placed so that the dispenser platform is
above the building platform to enable the recoater blade to
move without any obstruction. Te recoater arm sweeps the
powder from left to right motion, and the excess powder is
deposited at the collector platform. An inert gas such as
argon or neon controls the atmosphere in the chamber
construction [2, 9].

In contrast to SLM, the DLMS processes the fabricated
parts are generated at 95% density. Tus, it cancels the
required successive sintering of the produced parts [2]. In
the DMLS process, each layer of powder does not undergo
melting and solidifcation with successive layers, but each
layer is heated to a point below the recrystallization tem-
perature, allowing each to fuse with the next one without
achieving the melting of the substrate. Tis is completely
diferent from AM techniques such as SLM as it involves
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melting, welding, and solidifying each successive layer. In
such a process, the temperature will cross the re-
crystallization temperature and reach well up to the melting
point. In DMLS, the metal powder deployed does not
contain fuxing agent or binder and is sintered using a high-
power CO2 laser at 20 to 40 μm layers. Te energy absorbed
by themetal powdermaterial is measured as absorbance. It is
a ratio between the energy fux absorbed by powder matter
to the energy fux irradiated by the laser source.

Absorbance can be increased by multiple laser beam
refections, implying a higher optical penetration depth.
Apart from absorbance, another important physical phe-
nomenon is the balling efect. Riza et al. found that using
a low-power laser resulted in undercooling of the sintered
powder, thus forming coarsened balls. Moreover, the balling
efect was observed at higher scan speeds along with large-
diameter powder balls (∼10 μm) [10]. Tis unwanted phe-
nomenon could be avoided by increasing the volumetric
density of energy at the input. Te main parameters in
DSLM include laser scan speed, hatch spacing, layer
thickness, and laser power. Te relationship between energy
density with the four parameters is given by

E �
P

Vhd
, (1)

where E�> energy density (J/mm3̂), P �> laser power (W),
V �> laser scan speed (mm/s), h�>hatch distance (mm),
d�> layer thickness of the powder bed (mm).

Te surface roughness depended on the four parameters’
laser power and scan speed. Higher laser power and lower
scan speed meant more surface roughness. However, it does
not depend on the energy density [17].

Upon studying the factors that afect overhanging
structures Yap et al., found that higher hatch distance
values intensify distortion and accelerate the separation of
the part material. Tus, an optimal hatch distance of
0.5mm was obtained [12]. It was also concluded that laser
scan speed does not signifcantly afect the heat fux in the
powder material but reduces the total laser heating time
[12]. Te scan speed, however, determines the growth of
the microstructure. A higher scan speed indicated the
presence of small spheroidal balls, giving rise to the
balling phenomena [9]. A lower scan speed indicated
interagglomerated sintering necks resulting in surface
roughness [15]. Te layer thickness is a signifcant process
parameter in fnal surface quality. Decreasing the layer
thickness gives a greater surface quality as the spheroidal
balls become fully densifed. An optimal range for layer

thickness is 0.15–0.25mm, and fat surfaces were obtained
in the preheated tracks [4, 9].

Te laser sintering process has four stages. In the frst stage,
powder atoms from two diferent surfaces make initial contact.
Due to the high surface energy of the particles at contact,
necking is formed at a slow growth rate. Te particles coalesce,
and grain boundary size increases while the surface area de-
creases. Finally, a full merging of the two particles occurs at an
infnite time, and the powder is said to be sintered.

Te DLMS process is widely used in implants such as
joint reconstructions at the medical forefront. Te Ti6Al-4V
alloy is used as the powder material as it has good bio-
compatibility, corrosion resistance, and fatigue resistance.
Intricate manufacturing applications in scafolding fnd
DLMS in demand as it can produce materials with fne
porous structures and higher density [10, 16].

However, support structures are required during the
sintering process to avoid overhangs. Te fnal fabricated
metal part requires postprocessing technologies such as
short peening, removal of support structures, and heat
treatment [2, 9].

3.2. Electron BeamMelting. Electron beam melting (EBM) is
an additive manufacturing methodology often considered
rapid prototyping (RP) (Figure 4). EBM uses a high-power
electron beam source, unlike the other AM processes, which
deploy a laser beam as a heat source for melting and fusing the
metal powder. Developed by ARCAM AB, EBM machines
have biomedical, automotive, and aerospace applications. A
typical EBM machine consists of the following components:
a flament made of tungsten, a grid cup for directing the
electrons to the anode, anode plates connected to the positive
end of the DC voltage supply, focus and defection coils to
adjust the position, and determine the diameter of the beam.
Te sliced data from theCADfle is diferentiated into contours
and squares. During the part fabrication, contours are
boundaries forming the geometry, which behave as an interface
between the metallic powder and part. Squares are the regions
formed between the set contours [25]. Te build table is placed
in an inert vacuum chamber with helium or argon (∼10−2-
10−3 Pa) [29]. Te reason is to maintain the integrity of the
electron beam, yield high tensile strength, remove any im-
purities, and maximize the density of the fabricated part. Te
built platform is initially preheated to a temperature ranging
from ∼500 to 700°C [27]. Powder materials such as titanium,
cobalt chrome, 316L steel, maraging steel, and Inconel 718 are
used as they can conduct electric charge having a particle size
ranging between 45 and 100 microns. Electron beam melting

POWDER BED
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Fused
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Laser Fused

Selective Laser Sintering (SLS)

Electron
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Figure 3: Powder bed fusion types based on energy sources.
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process parameters are classifed into scanning parameters such
as scan speed and line ofset and beam parameters such as
beam current and accelerating voltage. Te amount of energy
incident by the beamon a powder bed is termed energy density.
Tis occurs due to an elastic or inelastic collision of electrons
with the material atoms. Te signifcant interactions between
the accelerated electrons with the substrates are scattering,
backscattering (energy loss), and transmission (energy pene-
tration) [19]. Silvestri et al. found that the backscattering co-
efcient was directly dependent on beam intensity.

Moreover, the scattering value depends on the target
substrate’s depth [19]. Surface roughness increased with the
decrease in scan speed and beam current. A linear speed
calculated as the ratio between beam intensity and scan speed
was found to increasewith the temperature rise. Scan speedwas
a deciding parameter in the thermal difusion time as melt pool
temperature was higher at a shorter duration of scan speed.
Tis implies that surface roughness decreases with an increase
in temperature. Line ofset, the distance between hatch lines
was observed to infuence material hardness, i.e., with a de-
crease in a line ofset, energy density was higher, leading to
rougher microstructures [20]. While studying the surface
roughness of inclined parts, Dolimont et al. found that the
underside had a lower value for surface roughness than the
upper side [18]. Ding et al. studied the correlation between
process parameters and melt pool geometry for a single bead
experiment at various preheating temperatures, beam powers,
and scan speeds. It was deduced that as the line energy (beam
power and scan speed) increased, the width and depth of the
melt pool strictly increased in accordance with Rosenthal’s
model for welding [28].

Te advantages of EBM type additive manufacturing
are mainly the following: reduction in lead time, residual
stress reduced due to high process temperature, and the
inert gas providing an oxidation-reduction environment.
Large-scale industrial production of light switches was
developed by an Italian company, BTicino, where EBM
technology was used by injection molding [2]. Conformal

cooling channels in cobalt chromium alloys with anti-
corrosion and high abrasive resistance were deployed to
conduct uniform cooling of the molded part [23, 24]. Te
fabricated tool displayed 43 HRC Rockwell hardness,
yielding 600MPa, and tensile strength of 900MPa. Te
total lead time was efectively one week.

3.3. Selective LaserMelting. Selective laser melting is a type
of additive manufacturing process in which a powder bed
is melted and layers fused at a high-power laser beam. Te
setup for the SLM process is similar to DLSM, the dif-
ference being the sintering of powder (coalesces without
being converted into liquid) instead of melting. Te part
fabrication begins with slicing CAD fle data into layers,
and layer thickness ranges from 20 to 100 μm. Each slice is
selectively fused using support structures if needed. Te
fnal three-dimensional part has up to 99.98% part density
as the laser spot size ranges from 20 to 30 μm, creating
a melt pool smaller than the EBM process. However, this
increases the depth and surface tension of particles
around the melt pool, giving rise to more defects in SLM
than in EBM. Terefore, a skin-core strategy is used here
[30]. Te part to be fabricated is classifed into an inner
core and an outer core forming the skin. Te process
parameters and focus diameters are distinct in these
separate areas. Te inner core is manufactured with
a beam diameter of 1000 μm and higher laser power
(1000W), subsequently obtaining a higher value of
process-relatedbuild-up rate. However, the outer skin is
fabricated using a smaller laser beam diameter of 200 μm,
focusing on the precision and surface fnish of the part.

One of the key undesirable efects of SLM production is
residual stress. Te direct cause of residual stresses is the
varying fuctuations in thermal energy resulting in the crack
formation of the fabricated part. Mugwagwa et al., found
that upon heat treatment of SLM parts at a range between
600 and 700°C for one hour, the residual stress was reduced
by 70% [37]. A recent study by Yasa et al. addresses
a newfound scanning strategy termed “sectorial scanning,”
signifcantly reducing residual stresses. Tis method con-
solidates the various layers into square grids, and adjacent
grids are scanned perpendicular to each other [36]. How-
ever, ceramic powders show properties of highmelting point
and low thermal conductivity, resulting in a signifcantly
high thermal gradient during the process.Tis could be fxed
by mixing a eutectic mixture of ammonia and zirconia to
reduce the melting temperature to 1860°C [34]. Dross for-
mation is another undesirable formation in low melting
metals such as aluminum and tin. In the SLM process, the
dross formation was found to reduce in a 30 μm layer
thickness compared to 50 μm demonstrating higher strength
and lower elongation of the fabricated part [31]. Porosities
are spherical defects that occur when gas between powder
particles dissolves into the molten pool due to the low
packing density of metal powders. Balling efect is an un-
desirable phenomenon in the SLM process; it occurs when
the molten powder does not wet the primary substrate due to
surface tension [32]. Tis increases the surface roughness

Filament

Grid Cup

Anode

Focus Coil

Defection Coil

Powder ContainerElectron Beam

Build Platform

VACUUM
CHAMBER

Figure 4: EBM processes.

Complexity 7



and decreases the density of the produced part. Yadroitsev
et al. study has concluded that a scan speed of 1mm/s and
laser power of 10W produced no balling efect as the scan
track is widened due to heat conduction, similar to the
shrinkage efect [33].

Moreover, in a combination of high scan speed and high
laser power, the balling phenomenon does not occur as rapid
melt pool solidifcation occurs behind the laser spot. In
a study by Özel et al., increasing the scan velocities tends to
decrease the grain sizes in both 67° and 90° rotation strat-
egies. Increasing hatch distance tends to reduce the grain
average grain diameters in the case of 90° rotation and is not
signifcant at 67° [35].

SLM materials such as 316 L stainless steel are widely
used in the medical industry to develop body implants.
Tubular bone, orthodontic products, and mandibular canal
segment are a few examples of gradient porosity and
stainless steel’s strength [32]. Inox 904 L steel produces
conformal cooling channels as the wall thickness is about
100 μm. Other applications include microtooling of steel
X110CrMoV Al 8-2, and this metal was produced with high
hardness and fne structure simultaneously.

3.4. Selective Laser Sintering. Powder bed fusion is an
additive manufacturing process. Tis can spawn products
and make them with precision/accurately. Tis technique
of 3d printing enables the manufacture of complex geo-
metrical components with heat sources, like laser/electron
beam, which would fuse the particles of the layer above the
layer and fnally becomes a solid component. Tis process
substantially gives the manufactures the freedom to de-
sign through PBF. It uses a laser to sinter the powdered
material layer-by-layer to form a solid material. Te
product is then brushed to remove the extra or loose
powder. Te material used in this process SLS is poly-
amides (basically nylons), alumite (a mixture of poly-
amide blended with gray aluminum), and rubber-like
material. Each material has specifc properties, like nylons
are strong and fexible, making it one of the best materials
for manufacturing springs, brackets, and snap. Designers
also consider the possibility of cracking and shrinkage.
Sometimes CO2 laser beam is used. In contrast to DMLS,
which can only be used to manufacture parts made of
metals, the SLS process can also produce parts made of
nonmetals such as composites and polymers. Tis is one of
the main diferences between DMLS and SLS.

3.5. Selective Heat Sintering. Te SHS process uses a heated
thermal head for sintering plastic powders, which get fused
due to the heated head as it is touched and moves on the STL
model slides. Generally, this process is used to manufacture
structural parts, mostly prototypes (concept-based). Selec-
tive heat sintering (SHS) process plastic powder particles
fuse by a heated head. Te heated head touches the powder
and moves based on the sliced STL model. Tis method is
used to manufacture structural parts and conceptual pro-
totypes, usually made using polymer or plastic materials.
Figure 5 shows the schematics of SHS.

4. Application of ML in Powder Bed Fusion

Powder bed fusion is an additive manufacturing method-
ology used to manufacture three-dimensional metallic ob-
jects or parts per requirement, i.e., 3D printing of metallic
equipment in short. Tis procedure is carried out by frst
dividing the part to be manufactured into layers with the
help of computer-aided design (CAD) software that gives
a model to be followed while constructing. Ten, the
manufacturing procedure is carried out layer-by-layer se-
quentially by the spreading of the metallic constituent
powder on top of the previous layer, which is then subjected
to a moderate amount of heat, usually with the help of a laser
power source resulting in their consolidation to form a solid
structured layer. For this layer construction, specifc pa-
rameters must be considered and monitored throughout to
ensure that the procedure is carried out in the desired
manner and produces the expected outcome, i.e., a fawless
part. Te production of a fawless part is an entirely ideal
situation and is not practically possible. However, the
procedure can be worked upon by continuous monitoring to
achieve an almost ideal outcome. Te manufacturing pro-
cedure consists of several parameters that directly afect the
outcome, which must be set and kept at specifc value ranges
throughout the optimal product. Tis is where machine
learning comes into play.

Machine learning is a developing subsection of Artifcial
Intelligence currently being used in several application areas.
It involves a machine trying to learn, as the name suggests, to
perform tasks without any explicit programming relating to
that specifc task. Initially, the machine is passed some inputs
and their known correct outputs with the aim of themachine
to come up with a correlation between the two so that when
an unknown input is passed onto it, it can come up with the
output. Tis particular feature could be twisted to beneft
many scenarios in the industry, one of which is in the PBF
process. Te process consists of specifc parameters that
a trained machine learning model can monitor.Temodel is
frst passed on some particular example readings that
resulted in a successfully manufactured product through
which it can establish a cooperative relationship between the
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parameters and the outcome for an optimal workfow. After
being trained on these examples, the model is employed to
monitor these parameters and report or change them if it
predicts a failed outcome based on the values of the pa-
rameters captured then. Tis particular feature of in situ
observation makes the application of machine learning
unique and incredibly helpful, as this can help stop the
procedure in between if it leads to the manufacturing of
a failed product, thus saving a lot of time and resources [51].

Tere are numerous application areas of machine
learning in the feld of PBF. Machine learning consists of
various algorithms depending on the desired functionality.
Some of the algorithms used in this process are K-nearest-
neighbors [52], support vector machines [52–55], K-means
clustering [56], principal component analysis [57, 58],
polynomial regression [59], and Gaussian process regression
[58, 60]. Tese algorithms cover both the supervised and
unsupervised learning domains of machine learning.

Supervised learning involves learning the trend between
the input and the output to predict the outcome of custom-
supplied input accordingly. Tus, the data given to the
model for training consists of the parameter values and the
target values, i.e., whether the product was successful or not
for that particular set of parameter values.Tesemodels then
come in handy for in situ observation of the procedure.

Unsupervised learning does not involve anything with
the output or target values. It aims to separate or cluster the
data according to suitability or similarity.Terefore, the data
provided to the model does not consist of target values but
only of parameter values. Tese algorithms come in handy
when dealing with high-dimensional data, say if the number
of parameters under consideration is huge, as the PBF
process consists of numerous parameters that afect the
quality of the outcome. In this particular scenario, it is hard
for supervised algorithms to operate on this data as the
complexity and amount of computation are severely high.
Tus, unsupervised algorithms, particularly dimensionality
reduction algorithms such as the PCA, convert the high
dimensional data supplied into a low dimensional data space
by either removal of insignifcant parameters or simplifying
the correlation between numerous parameters.

Te parameters described above are basically process
parameters or settings based on which the product quality is
decided. Tose parameters include laser power, scanning
speed, beam diameter, melt pool size, and layer angles. All
these various algorithms coupled with these numerous
parameters to be considered lead to several possibilities
where machine learning may be applied in the process and
hence serves useful.

In some cases, the complexity of computations becomes
high, resulting in the inability of statistical machine learning
algorithms to operate efectively. Tis paves the way for deep
learning. Deep learning is a subsection of machine learning,
particularly dealing with neural networks, an artifcial mimic
of the biological brain consisting of a model of a network of
interconnected neurons. Tese neurons communicate with
each other andmap complex relations between the input and
output space, which simple statistical algorithms might be
inefective.

A wide variety of networks exist in this particular do-
main as well, some of which are artifcial neural networks
[53, 54, 61–65], convolutional neural networks
[53, 54, 64, 66–69], generative adversarial networks [62],
spectral convolutional neural networks [70], and sequential
decision analysis neural networks [71]. Again, these spe-
cialize in diferent requirements, as seen in the case of
statistical algorithms. Tus, this leads to another area of
application of machine learning in this feld. Algorithms
such as the IT2 fuzzy TOPSIS model, vector evaluation
genetic algorithm (VEGA), evolutionary algorithms (EAs),
and multiobjective evolutionary algorithms (MOEAs) can
help in monitoring pBF input parameters in real-time and
dynamically controlling them by varying the input values of
the most infuential input parameters for the elimination of
errors and defects, and development of particular properties
without compromising on other properties. Tis ML algo-
rithm application can help reduce uncertainties, errors, and
defects during production [69, 72].

Te PBF process has numerous stages, from product
design development to manufacturing and postprocess-
ing, where ML implementation can be performed. Te
various stages include the digital phase, where the geo-
metric and material design of the product is decided, and
ML algorithms can be integrated into this process to help
us in predicting the design or process parameters we need
to consider to get a desirable product; in the stage of fle
preparation we worry about the LPBF part orientation,
position, and arrangement on the build platform, all of
which can have signifcant efects on the processing speed,
process stability, and part properties. Tey can also afect
the build cost, time, and quality. To improve machine
utilization and decrease cost, it is more efcient to pack as
many parts as possible in the building envelope. In ad-
dition, support structures may also be needed to fx the
part onto the build platform and to support overhanging
structures.

Furthermore, they are also needed for heat dissipation
to avoid residual stresses. However, it is needed to mini-
mize the volume of necessary support structures as they
lead to additional material cost, prolong the build time and
require postprocess removal. Alternative build orientations
are generated efciently using a nonsupervised ML method
and K-means clustering with Davies-Bouldin criterion
cluster measuring.Tus, optimizing parameters involved in
fle preparation; then comes the manufacturing and
monitoring phase, where ML techniques can be used to
optimize input parameters for the PBF process, monitor
these parameters in real time, and dynamically manipulate
their values to avoid the formation of defects or un-
certainties; and fnally, the postprocessing and quality
control phases where ML methods can be implemented to
automate and improve the efciency of quality checking of
the products produced and also optimize postprocessing
input parameters for getting good quality products [73].
ML algorithms can also be implemented to learn from the
monitoring and quality checking phases to train themselves
to better optimize input parameters for manufacturing and
postprocessing.
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Applications of machine learning in powder bed fusion
include in situ melt pool monitoring, in situ parameter
monitoring, in situ defect detection, dimensionality re-
duction of data, clustering of data points based on parameter
values, optimizing parameter values for an optimal outcome,
maintaining uniform print quality in all printers, prediction
of product density, and prediction of fatigue life. As can be
seen, machine learning has a huge number of applications in
each of the mentioned areas, along with great scope for
future enhancements.

5. Discussion

Figure 6 shows the summary of all the parameters con-
cerning the LPBF process, both in situ and ex situ, describing
all the various parameters in PBF.Tere are three parameters
such as process, signature, and product quality. So, under
process parameter space, there are 2 subdivisions, namely,
controllable and predefned. Next comes the signature pa-
rameter space with three subdivisions such as melt pool,
track, and layer. Regarding product quality parameter space,
there are three subdivisions such as geometric, physical, and
mechanical.

Common process parameters in LPBF methods such as
DLSM, EBM, SHS, SLS, and SLM include laser scan speed,
hatch spacing, laser power source, layer thickness, bed
temperature, and scan strategy. Te dimensional tolerances
which border secondary stresses in part formation are
mainly afected by the scanning angle, overhang ratio, and
curvature. Te relationship between overhang length (L),
build angle (s), and thickness of powder layer (t) is given by:
L� t ∗ tan (s) [42]. As the build angle increases, the over-
hanging surface smoothness increases. In the working
chamber, an inert environment is necessary for powder bed
fusion as the fabricated part does not come in contact with
reactive gases in the atmosphere such as oxygen, nitrogen,
and carbon dioxide to produce contaminants. Renishaw’s
AM250 is an AMmachine that deploys a unique approach to
maintaining inert gas. First, present gases and humidity
within the chamber are removed by forming a vacuum.
Subsequently, the chamber is then charged 600 L of pure
argon. Te atmosphere levels are set at <1000 ppm (0.1%
Oxygen), and it deploys gas feed at rates as low as <30 L/hr
[74]. Residual stresses caused by rapid changes in temper-
ature gradient can be decreased by postprocessing tech-
niques such as shot peening, heat treatment, age hardening,
grinding, and polishing.

Low laser power causes a low cooling rate and lesser
formation of liquid, giving rise to coarsened balls. Te high
scan speed of the laser beam induced melt splashes, causing
an agglomeration of the powdered balls. Terefore, the
balling efect can be avoided by lowering the scan speed,
increasing laser power and reducing layer thickness. Po-
rosities in part fabrication are of two types such as keyhole
and contour. Keyhole porosities happen when gas bubbles
are trapped due to improper melting/sintering. Contour
porosities occur due to substantial diferences between hatch
and contour tracks [41]. In LBPF, the temperature gradient
is largest in the layer build direction (Z direction) as the

cooling occurs more towards the base substrate via con-
duction and less towards the ambient at the top layer. Te
production time decreases as the number of lasers increases
due to an increase in the build rate per layer.

Increase in the number of lasers increases average
powder bed temperature and more area of Heat Afected
Zone, which reduces temperature gradient and cooling rate.
Te peak melt pool temperature value was independent of
the scan strategy, and several lasers were used per layer [43].
LPBF in medical feld applications seeks material charac-
teristics such as resistance to corrosion, biocompatibility,
shear strength, positive elastic modulus, density, and
osseointegration. Ti-6AL-4V alloy is, therefore, excellent for
surgical and implant applications. Powder morphology,
such as particle size distribution, and shape characteristics of
individual particles, make for an important parameter in the
preprocessing stage. Tis powder morphology is critical in
determining the powder bed’s optical penetration depth,
thermal conductivity and packing density. Optical pene-
tration leads to the formation of a melt pool. It is defned as
the depth at which the radiation intensity inside the material
falls to 1/e of the original value. Te melt pool’s size and
cross-section heavily depend on the powder bed’s thermal
conductivity. A higher densely packed powder bed leads to
better ultimate tensile strength [44]. Te tensile residual
stress developed during the manufacturing process can be
minimized by shot peening. It was obtained that anisotropy
in the residual stress felds can be controlled by altering the
laser pattern of the print, island scan methods, and rotating
patterns to reduce anisotropy. Termal difusivity and
thermal conductivity play a major role in correlation to
residual stress. Overall, it was found that such thermal
properties played a heavier role than material properties,
such as ultimate tensile strength and yield strength in the
LPBF process [45].

A 3-D fnite element analysis (FEA) is generally deployed
to allow the prediction of residual stress and distortion in the
multilayer build models. All the common sources of failures
in additively manufactured components are the unwanted
residual stress and distortion. It is observed that the newly
deposited layer generally experiences greater tensile stress
while the layers beneath them generally experience com-
pressive stress. Te residual stress drives the workpiece’s
mechanical responses [75].

A Dynamic strategy of adaptive meshing has been de-
veloped for the laser powder bed fusion (LPBF) process.Tis
process keeps the fnemesh in themelt pool with the steepest
gradient while coarse the rest of its mesh. Updating the mesh
at each time frame as the heat source moves, its utility and its
accuracy of using dynamic adapting meshing for its simu-
lation (thermal) for the LPBF process is used to predict
material properties as well the lack of fusion in it or not [76].

Te LPBF process parameters are classifed into in situ
parameters and signifcant powder characteristics in
Figure 7.

One of the greatest advantages of polymer laser sintering
is that it does not require any support structures, which
means it has design freedom and fewer post-processing
eforts are utilized. Te ones where there are overhangs

10 Complexity



used for support must be removed after the completion of
the structure or basically when a build is completed/done.

Te laser sintering polymer processing can increase the
variety of polymers available for usage due to this technique.

However, it was suggested that the concentration must not
be only on single layer phenomena but also consider
building up bigger/whole structures. All the factors, from
monitoring to control, all improvised strategies contribute to
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the process that can compete with the conventional
manufacturing process [77]. Additive manufacturing to
produce an improved version of the useful simulations
would signifcantly reduce wasteful behavior so that it could
eliminate the failed parts. It ultimately makes AM a useful,
economically feasible, and more widely accepted
manufacturing technique [48].

5.1. PostProcessing of LPBF. Te frst step in postprocessing
is the removal of support structures [39]. In order to avoid
collapsing the fabricated part due to its weight, support
structures are needed. To optimize and automate this step,
ML algorithms can be applied. Regarding the postprocessing
of LPBF processed components, handling defects formed
and fnishing operations to be performed on the component
are the most important factors to worry about. Defects that
occur in part fabricated by LPBF can be internal or external.
Porosities such as spherical, keyhole, or contour are internal
defects that afect the part density, thus varying the me-
chanical and physical properties when measured in diferent
directions. External defects are caused due to rapid melting
and solidifcation, residual stresses, and balling phenome-
non resulting in surface roughness and cracking. Internal
pores are treated using a hot isostatic press [41].

Moreover, optimizing input parameters for HIPing such
as load, dwell time, and pressure to get the best possible
component will the least amounts of defects retained, avoid
excessive grain coarsening in the case of using certain
materials or retainment or enhancement of mechanical
properties, can be achieved by the implementation of ML
algorithms designed to predict optimal solutions based on
extensive trial and error knowledge already accumulated
from literature and industry. Doing so can also eliminate
human error associated with the trial and error method and
aid in faster and more efcient postprocessing. Although the
heat treatment helps improve the mechanical properties of
the fabricated part, it does not ensure surface smoothness.
Nelaturi et al., worked on a refned grain structure protective
coating that can be produced in the tiny regions near the
surface using drag fnishing, vibratory surface fnishing, and
fnished machining processes. Terefore, the fabricated
part’s microstructural and mechanical characteristics are
improved [40]. ML can again help optimize input param-
eters such as cutting force, use of cutting fuid, depth of cut,
and cutting velocity, to get desired results after fnishing.
Implementing ML can also reduce the chances of human
error and help efciently automize these fnishing opera-
tions. ML can also be implemented to study, predict, and
validate structural and material properties and even cor-
relate material structures of metallic AM and machining
properties [78].

5.2. Applications of LPBF Produced Parts. LPBF fnds the
most usage of applications in the feld of medical, auto-
motive, and aerospace industries. Healthcare systems re-
quire parts that are biocompatible along with other
characteristics. Te production here is low volume. How-
ever, it requires rapid prototyping for patients. Parts such as

dentures, bone implants, splints, and surgical guides are
some examples. Tissue engineering is another good example
of the SLS process [46]. LPBF is used in the aerospace in-
dustry to produce door clamps for engine front bearing
housing. Rolls Royce uses EBM-type AM to produce a ti-
tanium front bearing part. Turbine blades, rotor turbines,
stators, combustion chambers, fuel nozzles, and air ducts are
other components produced using this technique.

Moreover, applications in the feld of the automotive
industry fnd use in producing wireless sensors which
connect vehicles. Other examples include gear shift knobs,
pneumatic and hydraulic systems, prototypes of the head-
lamp, fuel tanks, gearbox pump impeller, wheel rims, and
turbine blades [47]. LPBF is also used as a biomanufacturing
technique in the feld of tissue engineering, which has en-
abled the quick fabrication of three-dimensional personal-
ized scafolds designed to promote tissue regeneration and
organs [79]. Tis is one place where deep learning and ML
concepts can help refne and develop better scafold models
that promote enhanced vascularization and better
osseointegration. Te use of ML can also enable one to
predict the appropriate structure and develop various
scafolds with diferent gradients, mixing diferent materials
in the same scafold, its properties, and the prediction and
correction of their complex architectures [80, 81]. Some
commonly used powder materials seen across our review
and the properties exhibited by samples made from them
with the help of PBF have been listed in Table 2.

5.3. Machine Learning Implementations and Outcomes.
Supervised and unsupervised learning algorithms are used in
the powder bed fusion process. Supervised algorithms
mainly used in this procedure include linear and logistic
regression, support vector machines, Gaussian process re-
gression, and k-nearest neighbors. Linear polynomial re-
gression deals with determining the relationship between an
independent and a dependent variable, respectively, or
parameters in the case of this process. Using polynomial
regression with two models having an average relative error
magnitude (AREM) of 23% and 17%, respectively, and the
latter being implemented, melt pool variation saw a re-
duction by a massive 78% by updating the laser power as per
the observations of the model [91]. Gaussian process re-
gression has a similar intuition apart from the fact that
instead of fnding a polynomial relation, it defnes
a Gaussian distribution that suits the data points. It is used in
[57] to determine the relationship between the relative
density of the produced part and the laser power and scan
speed, giving a prediction error of only 0.3%. It is also used in
[74] to assist in the design process of powder bed fusion by
giving an idea of the remelted depth of single tracks, which
signifes whether the energy used for sintering the powder
layers is sufcient or not. K-nearest neighbors (KNN) is
another supervised algorithm used both in the case of re-
gression and classifcation. In [52], KNN is used for re-
gression in which the mean of target values of k-nearest
neighbors is taken in the feature space of all parameters, i.e.,
location, morphology, and size of the defect being the
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parameters and fatigue life being the target value with
a mean squared error value of 1.2736×10−³ and R-squared
value of 0.96761.

Support vector machine is yet another supervised al-
gorithm that can be used for classifcation and regression,
where it constructs a hyperplane or boundary that contains
the maximum average margin value from the associated
data points in the feature space [52]. We used an SVM
along with a KNN for fatigue life prediction as a function of
morphology, location, and defect size with a mean squared
error value of 7.0665 ×10−⁵ and an R-squared value of
0.99418. It is also used in [59] for product density pre-
diction from raw optical signals and can do so with an
accuracy of about 93% [55]. We used an SVM to determine
whether an abnormality in the produced part is a faw or
a nominal build condition, giving accuracy as high as 85%.
As mentioned in [54], SVMs are also used in in situ
monitoring of the procedure and reduce defects in the
produced part during the process. Unsupervised algo-
rithms include K-means clustering and principal compo-
nent analysis (PCA), mainly used in the PBF process. K-
means clustering involves dividing the data points into “K”
clusters, with each point belonging to the cluster with the
nearest mean of the cluster to the point itself. In [56], the
researchers use K-means clustering for zoning process
histories based on thermal data. Principal component
analysis is a dimensionality reduction method used to
reduce the data’s complexity by mapping high feature space
data into lower feature space without any signifcant data
loss. Te authors of [57, 58] use PCA to reduce the data
dimensions for ease of further computation.

Deep learning is another branch of machine learning and
artifcial intelligence dealing with neural networks that are
some of the most advanced algorithms. Neural networks
mimic the human nervous system consisting of nodes in
place of neurons and the whole network of nodes instead of
the nervous system. Tis interconnection of numerous
nodes consisting of innumerable connections in layers helps
map complex relations between parameters that statistical
machine learning algorithms might fail to perform upon.
Te neural networks used in the PBF process include arti-
fcial neural networks, convolutional neural networks,
spectral convolutional neural networks, generative

adversarial networks, and sequential decision analysis neural
networks (SeDANN).

Artifcial neural networks (ANNs) are the simplest
neural networks consisting of layers of nodes interconnected
to the preceding and the following layer, respectively, along
with an input and an output layer and activation functions to
remove linearity [61]. We used ANNs to control andmanage
the quality of produced parts by identifying the mapping
between input process parameters and product quality.
Inherent strain prediction is carried out as a function of
hatch layer, i.e., angles between diferent layers of the
produced part that gives an idea of product distortions in
[63] with the help of an ANN consisting of a single hidden
layer and a mean prediction error of 2.78% [64]. We used an
ANN consisting of an input layer of 3600 nodes, 9 hidden
layers, and an output layer consisting of a single node for
prediction of laser power value based on an in situ image of
the process, giving an accuracy of about 99%. An ANN with
two input nodes, two hidden layers, and four output nodes is
used in [65] tomap the relation between spreader speeds and
layer properties, giving an accuracy of around 96%. Also, as
mentioned in [54], ANNs are used for process parameter
optimization, in situ observation, control of part geometry,
tailoring microstructure and properties, and reducing
defects.

Convolutional neural networks (CNNs) is a type of
neural network specializing in image-based processing,
using the convolution operation between layers. Te
roughness of produced part from the hyperspectral image is
carried out in [66] using a CNN consisting of four con-
volutional layers, including maxpool layers, a fatten layer,
and two dense layers, along with the application of a dropout
value of 0.4 to reduce overftting which yields a fnal mean
absolute error of 2.1 μm [53]. We used CNNs for density
prediction from raw optical signals with the architectures of
VGG-16 and Alex Net using transfer learning, thus
obtaining a training accuracy of 94.88%, validation accuracy
of 88.54%, and testing accuracy of 81.24%. Te research in
[64] also uses CNNs for melt pool monitoring to predict
laser power values. In the CNN, three flter sizes (3× 3, 5× 5,
7× 7) and three channel sizes are considered, making the
comparison span up to 9 CNNs. In all the CNNs, 4 con-
volutional layers are used with a stride of 1 and no zero

Table 2: Diferent powders and their properties.

Powder type
Layer

thickness
(mm)

Density
(g/cm³)

Tensile
strength
(MPa)

Yield
strength
(MPa)

E-modulus
(GPa)

Elongation
at break (%)

Roughness,
Ra (μm)

Roughness,
Rz (μm)

Hardness
(HV) Ref

AlSi10Mg 0.03–0.1 >2.59 >250 >180 70 >1.0 <20 <80 >80 [82]
Ti-6Al-4V 0.03–0.6 >4.36 >900 >830 110 >10 <20 <80 >310 [83]
IN718 0.03–0.1 >8.07 >940 >750 220 >8 <15 <60 >300 [84]
SS316L 0.03–0.1 — — — — — — — — [85]
H13 0.05–0.1 >7.80 >1200 >370 210 >9.0 — — — [86]
IN625 >8.44 >990 >670 170 >35.0 — — >30 [87]
ABS-M30 0.18–0.25 1.04 36 — — 4 — — — [88]
PA 12 (SLS) 0.12 0.95 48 — — 20 — — — [89]
Polypropylene
(PP) 0.12 0.84 32 — — 529 — — [90]
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padding. Maxpool layers follow the frst three layers with
a stride of 2 and the application of zero padding. Te last
layer’s output shape is adjusted to 1× 1 by changing the flter
input size. Te 3× 3 CNN gave lower RMSE values on in-
creasing the channel size. All R2̂ values of the 9 CNNs were
closer to 1, but the value of the 3× 3 CNNs was compara-
tively closer than others. Te 7× 7 CNN obtained the best
RMSE value with a channel size of k� 3. Similarly, [67] uses
CNNs for in situ monitoring by taking in situ images as
input and predicting the build quality of the produced part
with an architecture having four structures consisting of
a convolutional layer, rectifed linear unit activation, a layer
for batch normalization, and an average pooling layer, along
with a fully-connected layer, regression layer, input, and
output layer. Again, [68] we used CNN for in situ moni-
toring and thus default detection yielding amean accuracy of
97.87%. Figure 8 shows a fowchart that depicts a typical
example of a CNN architecture, consisting of convolutional
and pooling layers in possibly an alternative manner of
order, connected in a network for classifcation with one or
more fully-connected layers at the end.

A generative adversarial network (GAN) is a special type
of neural network that, if trained adequately, can generate
custom images on the required theme. Tey are used in [62]
for generating artifcial images of produced parts to train
the CNN.

In [71], a sequential decision analysis neural network
(SeDANN) is used for monitoring the process to establish

reliable part production and reduce quality assessments after
obtaining the produced part. It consists of three echelons/
levels traversed sequentially by the data for processing. Each
echelon plays a role in the processing by giving some sig-
nifcant detail used by the subsequent echelons as input. A
SeDANN approach uses elementary statistical attributes that
are obtained based on the physical reasoning of the process
mechanism, which also facilitates understanding. Te frst
echelon, an ANN, is tasked with predicting laser velocity and
power as a function of four variables of the pyrometer signals
such as mean, standard deviation, skewness, and kurtosis of
the signature of the pyrometer. Te second echelon, an
ANN, uses these predicted values of power and velocity
alongside melt pool image features obtained from rapid
video camera images as input and predicts the single-
track width.

Additionally, the single-track width standard deviation is
obtained by approximating the mean width over three
sections of the single-track. Te third echelon predicts the
percentage continuity as a function of melt pool charac-
teristics and the statistical features predicted in the second
echelon. It performed better than all its counterparts, i.e.,
CNN, LSTM RNNs, SVMs, and KNN, with an average R-
squared value of 0.836.

Work in [70] uses a spectral convolutional neural net-
work which is an extension of the convolutional neural
networks (CNNs) but can process data of a more complex
confguration achieved using irregular convolutions. A

INPUT DATA

Convolutional Layer

Pooling Layers

Fully Connected
Layer/s

POWDER BED
FUSION

Can be alternative

Figure 8: Example of a CNN architecture [68].
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sparse signal representation with a wavelet spectrogram is
passed to the neural network using which it can classify the
data based on the parameter values calculated from the
spectrogram.Temodel seemed to give an accuracy between
83% and 89%, with the highest accuracy being in the poor-
quality part images. It has been discovered that the most
common parameters considered in most papers are laser
power and scanning speed because they represent the
fundamental characteristics of the power source for melting
the metal, which is a laser in this case. Tis assertion is
backed by several papers showing prediction and detection
accuracies of (>90%) when used with appropriate algo-
rithms. Table 3 gives a list of the ML techniques imple-
mented in various types of PBF methods. Table 4 states the
corresponding advantages and disadvantages of the papers
stated in Table 3.

6. Summary and Conclusion

Laser powder bed fusion is an additive manufacturing
methodology for fabricating metal components. LPBF
processes use a high power-density laser beam to selectively
fuse a region of powder material; successive layers of
a powder material are stacked to build a three-dimensional
part. Te fused portion of powder material forms a liquid
pool, called the melt pool, which solidifes and cools down
rapidly [64, 67, 93, 99–101]. Te process parameters include
laser scan velocity, spot size, hatch spacing, and power. Te
most common powder used is Ti-6Al-4V alloy. Te mi-
crostructure properties include relative density, grain size,
orientation, and growth direction. Te correlation between
microstructure properties and possible concerns over the
preprocessed three-dimensional component is studied
depending on a set of constant process parameters
[55, 68, 70, 94, 102]. Melt-pool instability, keyhole efect,
irregular microstructure, and subsurface integrity are some
of the named concerns. Various reasons and solutions to the
part defects are discussed. Te postprocessing of LPBF has
three stages—support structure removal, heat treatment,
and surface smoothening. Each stage is explained to opti-
mize the cost of production. Te applications of the LPBF
process exponentially grew in the industry 4.0 era. Its usage
in automotive, aerospace, medical, and other minor felds is
discussed. Additive manufacturing is preferred over sub-
tractive manufacturing for the following reasons: fexibility
in design, cost of geometric complexity, need for assemblage,
and better lead time. AM can produce any complex ge-
ometry as it is a layer-wise fabrication process. However,
subtractive manufacturing requires various tooling and
fxtures making it harder to cut into depths [56, 60, 65, 69].
Tus, AM has only a few constraints and more degrees of
freedom to achieve design functionality. Te geometric
complexity is directly proportional to the mold cost. In-
tricate designs require support structures that add to
postprocessing. However, compared to traditional injection
molding AM does not have an additional cost as there is an
absence of tooling and fxturing. Tis decreases the opera-
tional intensity and lead time. Moreover, AM provides di-
mensional accuracies up to a hundredth of a millimeter.

dimensional tolerance for SLS is ±0.3% (lower limit:
±0.3mm). AM provides for “single-part assemblies,”
avoiding the need for integrating diferent components as in
conventional manufacturing.

Further research needs to be done to optimize the
process parameters for assessing the manufacturability of
LPBF. Te defects, including porosities, need further re-
search on correlating them with the existing scan strategies.
Process parameters such as laser power and scan speed afect
the residual stresses induced in the melt pool, on which the
degree of vaporization depends. Moreover, powder mor-
phology and its characteristics play a vital role in micro-
hardness. Te formation of overhangs in part fabrication
and their dimensional tolerance plays a signifcant role in
postprocessing. One of the factors that afect dimensional
tolerance of overhang features is the overhang ratio which is
the ratio between self-supported contours and the total value
of admissible and inadmissible contours. A direct re-
lationship between borders efect and overhang ratio is
found and needs further study to prevent shape deviations of
overhangs [98, 103–105]. Melt pool occurs when a laser
strikes the powder causing spheroidization and roughness at
the track. In order to produce high-quality fabricated parts,
melt-pool behavior at various energy parameters (laser
power and scanning speed) needs to be studied to reduce the
balling efect. Te scan strategy rotation is found to de-
termine the size of the powder particle. Desirable powder
characteristics, such as high temperature, high tensile
strength, and corrosion resistance, must be analyzed at
a minimal cost. Applications in tissue engineering are on the
rise for SLS type AM. Various biocompatible materials must
be researched to obtain medical scafolds for tissue resto-
ration. Moreover, composite polymeric materials should be
investigated for bioactive response to obtain reinforcements
such as bioglass, Ag, Cu, and HAp [106–107].

In this era of artifcial intelligence, machine learning and
deep learning algorithms are used in this PBF process to
enhance its quality and reliability. Various algorithms are
used, from supervised statistical algorithms such as linear
and logistic regression, SVMs, KNNs, and unsupervised
algorithms such as K-means clustering to deep learning
approaches making use of ANNs, CNNs, GANs, and
SeDANNs to carry out tasks such as in situ monitoring of
melt-pool signature, process parameters such as laser power
and scanning speed, defect detection, quality prediction, and
relative density prediction. Tis monitoring of various
factors is carried out in real time, thus reducing the wastage
of time and resources to a great extent [108].

Out of these, the most signifcant algorithm that stands
out comparatively regarding metal melting procedures is the
ANN. Since it is an artifcial mimic of the biological brain, it
can capture and process complex relations between pa-
rameters efortlessly due to the numerous interconnections
between nodes [78, 109–111]. ANNs see applications in
several areas in this procedure as described in [54], including
process parameter optimization, in situ observation, control
of part geometry, tailoring microstructure and properties,
and reduced defects. Tus, ANNs are seen to be versatile,
thus being helpful in this procedure [112–116]. Most of the
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results obtained using this mechanism are also promising,
supported by various papers [64, 65] showing the model’s
accuracy varying in the range of 90’s in percentages
[109, 117, 118].

However, a few limitations are encountered while ap-
plying machine learning in the LPBF process. Statistical
analysis and machine learning models, in general, require
a huge amount of data conforming to certain standards for
efective training and testing, which is hard to gather.
Modeling for producing data to train these models is also
a complex and difcult procedure due to the huge number of
parameters involved. Te numerous parameters make it
harder for the model to decide on relevant parameters,
which might vary based on the material properties
[119–126]. Te dimensionality reduction models used for
reducing the numerous attributes to a few might not gen-
eralize well and scrap useful attributes that might turn out
relevant on newly encountered data. Even if the data turns
out to be sufcient, there is the problem of underftting and
overftting. A very simple architecture is used in some papers
on a smaller biased dataset, thus resulting in a biased model.
Te other potential problem might be a highly sophisticated
architecture specializing in the training data a little too
much, thus failing to generalize well with new unseen data.
Tis paves the way for numerous future enhancements that
could address these issues, thus improving the model per-
formance signifcantly than achieved already [127–129].
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