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Electric vehicles are not widely adopted without proper charging infrastructure, despite their environmental benefts and growing
popularity in transportation. Tis paper focuses on the location problem of charging infrastructure to achieve a more optimized
charging facility layout. Te charging demands of electric vehicles can be divided into two categories. Te frst category is
generated at network points such as shopping malls, ofce buildings, parking lots, and residential areas. Te second category is
generated along the fow of network paths, such as on the highway and on the way to and from work.Te goal of this problem is to
maximize both categories of charging demands using a nonlinear integer programming model. We introduce the spatial in-
tersection model to obtain the data on path demand. Te spatial intersection model is introduced to obtain data on path demand.
In addition, future demand is taken into account in the optimization through data forecasting. Ten, the greedy algorithm is
designed to solve the optimization model. Te efectiveness is proved by a lot of random experiments. Finally, the efects of
parameters are analyzed by a case study.Te location decision of charging stations for both demands is more reasonable than only
one type of demand consideration. Te proposed model ensures the coverage and appropriate extension of the charging network.

1. Introduction

In recent years, due to the energy crisis and serious envi-
ronmental pollution, the Chinese government has vigor-
ously promoted the development of new energy vehicles.
National and local governments have adopted a series of
incentive policies for the promotion of . With the support of
these policies, the market size of EVs in China has increased
rapidly, as shown in Figure 1. However, current EV pene-
tration is far behind government planning. Te new Energy
Vehicle Industry Development Plan (2021–2035) puts for-
ward the new goal that by 2025, the proportion of EV sales
should reach about 20% of the total vehicle sales [1], but now
the proportion is 5.4%. Among these reasons for the slow
promotion, one of the major problems is the backward
charging of infrastructure construction. On the one hand,
the number of existing charging stations seriously lags

behind the EV development plan. On the other hand, the of
charging stations is unreasonable. In 2018, the utilization
rate of public charging stations was less than 10%, which is
difcult for operating enterprises to make a proft [2]. For
example, Wuhan has more EV charging piles than the
number of EVs, but the EV is still difcult to charge; the daily
utilization rate of public charging piles in Beijing is only 6%
to 7%, and they are idle most of the time; TELD, the new
energy company, has sufered losses for four consecutive
years, with a cumulative loss of 600 million yuan.

Te purpose of this paper is to reasonably locate the
charging stations to maximize the number of charging
demands.Te previous literature on the location of charging
stations can be mainly divided into two categories [3]. One
category assumes the charging demands generated in net-
work points, such as in shopping malls, ofce buildings,
parking lots, and residential areas. Tis kind of research is
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usually based on the coverage location model, which sets the
coverage radius of the charging station and aims to maxi-
mize the charging demands within the coverage radius
[4–8]. Te other research studies the charging demands as
fows generated on the network paths, such as on the
highway and on the way to and from work. Tis kind of
research is often based on the fow interception location
problem (FILP) [9–14].

However, in reality, the charging demands are not so
clear to distinguish. One charging station intends to provide
service to both demands. For example, the charging station
on the main road serves lots of the charging demands on this
path and its surrounding paths but also provides services for
nearby communities, shopping malls, and ofce buildings
around it. Similarly, charging piles built in ofce buildings
and shopping malls can also charge EVs passing by.
Terefore, this paper considers the charging demands from
points and paths at the same time, through the weight factor,
adjusting the infuence of two types of demands on the
location decision.

But actually, it is difcult to obtain the fow between
origin-destination (O-D) pairs, which is assumed to be given
in traditional FILP. However, in general, only transport with
the given route can obtain the fow of O-D pairs, such as
trains [15] and buses [16]. Moreover, in a large-scale
complex network, it is almost impossible to obtain each O-D
pair of trafc fow, even if the trafc on each network edge
can be obtained through advanced technologies, such as
monitoring and data crawling. In this paper, we introduce
the spatial intersection model (SIM) to estimate the charging
demands of each O-D pair. SIM is frst applied to estimate
the demand of the retail industry; the number of retail
customers attracted from a town around the retail location is
directly proportional to the population size of the town and
inversely proportional to the distance between the two places
[17]. Ten, it is applied to measure the trade fows between
two countries and trafc fows between two places [18].

In the existing empirical research or case analysis on the
location of charging stations, the charging demand concerns
the number of existing EVs [5–8, 11–14, 18, 19], assuming
that charging demand is highly stochastic, with a scenario-
based model to describe it; however, all scenarios are de-
scribed on the current observation. Even scholars who study
the expansion of multiperiod charging stations assume that
the number of EVs will remain unchanged over each period
[10, 16], which is seriously inconsistent with the current
development of EVs. From Figure 1, the market size of EVs
is increasing rapidly, so the design of charging stations must
consider the operation in the future, or the charging station
will be “outdated” after its establishment.

Compared with traditional vehicles, the most signifcant
feature of is trip range restriction. Due to the limitations of
battery technology, endurance cannot be compared with
traditional vehicles, which causes range anxiety for drivers.
Terefore, the distance between adjacent charging stations
should not be too far. According to the data released by the
National Energy Administration, the distance between ad-
jacent public charging stations in China is no more than
50 km [20], which is adopted as one constraint in our model.

Our model is an NP-hard problem, so an efective al-
gorithm is necessary [21–24], and we design greedy heu-
ristics to solve it.

For this paper, the main contributions are as follows:

(1) In reality, charging demands are generated from the
points and paths, and the charging station intends to
provide service to both demands. Terefore, we
consider mixed charging demands in our location
model.

(2) As EVs are increasing rapidly, we consider the future
number of EVs as the basis for the design of charging
stations. Tis paper proposed a prediction method
for EV numbers with neural networks based on a
government plan.

(3) As our model is an NP-hard problem, a heuristic
algorithm for large-scale examples is proposed.

2. Model Establishment

2.1. Parameters and Decision Variables. First, the symbols
are defned as follows:

Sets:

V: set of all points on the network
I: set of candidate locations of charging stations
P: set of all paths
H: set of all combinations of charging stations

Parameters:

θ: coefcient, θ ∈ [0, 1]

wj: the number of charging requirements at point j

fρ: the number of charging requirements on path ρ
m: the number of total charging stations to be built

Decision variables:

aij: if point j is within the coverage radius of charging
station i, then aij � 1; otherwise, aij � 0, i ∈ I, j ∈ V

bρh: if the charging station combination h can support
an EV to complete the round trip of path ρ, bρh � 1;
otherwise, bρh � 0, h ∈ H, ρ ∈ P

υh: if all points in combination h establish charging
stations, then υh � 1; otherwise, υh � 0, h ∈ H
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Figure 1: Annual sales volume of EVs in China from 2011 to 2020
(unit: 10,000).
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vhi: if charging station i is in combination h, then vhi

� 1; otherwise, vhi � 0, h ∈ H, i ∈ I

zj: if charging demands at point j can be served, then
zj � 1; otherwise, zj � 0, j ∈ V

xi: if a charging station is established at point i, then xi

� 1; otherwise, xi � 0, i ∈ I

yρ: if EVs on path ρ can complete the round trip, then
yρ � 1; otherwise, yρ � 0, ρ ∈ P

2.2. Mathematical Model. Trough the above symbol def-
nition, the charging station location model is established as
follows:

maxZ � θ 􏽘
j∈V

wjzj +(1 − θ) 􏽘
ρ∈P

fρyρ, (1)

subject to

􏽘
i∈I

xi � m, (2)

􏽘
h∈H

bρhυh ≥yρ ∀ρ ∈ P, (3)

]hixi ≥ υh ∀h ∈ H; i|vhi � 1, (4)

􏽘
i∈I

aijxi ≥ zj ∀j ∈ V, (5)

xi, yρ, zj, υh ∈ 0, 1{ } ∀i ∈ I, j ∈ V, ρ ∈ P, h ∈ H. (6)

Objective function (1) represents maximizing of
charging requirements from the covered points and paths
by charging stations. Constraint (2) indicates that the
number of charging stations to be established is m.
Constraints (3) means that at least one combination that
can support the EV to complete the round trip can be
found, and all charging stations in the combination have
been established, then the charging requirements on the
path are covered. Constraints (4) mean vh holds to zero
unless all the charging stations in combination h are
established. Constraints (5) indicate that charging re-
quirements at a point j can be served only when the point
j is within the coverage radius of the point i where the
charging station has been established. Constraints (6)
describe the binary restrictions.

2.3. Te Relationship between fρ and w. Let G(V, E) be a
network where V is the set of demand points, E is the set of
arcs, and I is the set of candidate locations of charging
stations (I⊆V). It is assumed that the driver knows the
shortest path ρ between O-D and selects it as the driving
path. fρ represents the charging requirements on the path ρ.
Berman et al. [9] and Hodgson [25] proposed. Assumes that
the fow on the path between each O-D pair is known, and
once a facility is built at a point, all fows passing through
that point are covered.

However, in reality, the network is complex, and the
acquisition of the fow of each O-D pair is difcult. Te

common method to obtain the data on O-D pairs and
charging requirements is tracking the driving trajectory of
electric taxis through GPS [26], but it is very difcult for
the trajectory of other general EVs. Other methods are
through technologies such as monitoring or data crawling
to obtain the edge fow of the network [27], but it is not
enough because monitoring cannot discriminate which
fow belongs to which O-D pair. Still, the fows between
O-D pairs cannot be made available. In this paper, SIM is
introduced to obtain fρ from w by using the following
formula [17]:

fρ � k
wiwj􏼐 􏼑

α

d
β
ij

. (7)

From (7), the fow between the two points is directly
proportional to the point demands but inversely pro-
portional to the distance between the two points. In our
model, ρ is assumed to be the path with the shortest
distance between points i and j. Tere are a total of C2

|V|

paths, in which |V| represents the number of point gen-
eration charging demands. wi and wj(i, j ∈ V) represent
the charging demands generated at points i and j, and dij

shows the shortest distance between points i and j. β
indicates the sensitivity of distance to spatial interaction.
Te larger the value of β, the weaker the interaction be-
tween points i and j. Te coefcients k, α, and β can be
derived from the regression models based on historical
data.

2.4. Determination of w Parameters. Due to the rapid de-
velopment of EVs, the construction of charging stations
must take into account the future number of EVs to be
served. Terefore, the input parameter w in the model
should be the future predicted value rather than the current
value of the point charging requirement. In this paper, a
nonlinear neural network tool is adopted for time series
prediction [28–30] which is based on historical data. But,
due to the short development time of EVs, there is less
historical data collection. Furthermore, its development is
mainly driven by government policies; therefore, predic-
tion is unreasonable directly according to historical data
like the previous research [31]. Tis paper proposes a
prediction framework. Tis framework frst predicts the
number of vehicles in the future by the nonlinear neural
network. Due to the long history of automobile develop-
ment and the rich historical data of vehicles, the prediction
of the number of vehicles is much more accurate than the
direct prediction of the number of EVs. Ten, combined
with government planning, we can get the predicted
number of EVs.

Te model adopts a nonlinear autoregression with ex-
ogenous inputs (NAR) neural network, which can be de-
scribed by the following formula:

y(t) � f(y(t − 1), y(t − 2), . . . , y(t − p)), (8)

where f is a nonlinear function, and the value of y at t time
depends on the previous p values of y.
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Assuming that the occupation ratio of the local EV is the
same as the national average, the prediction framework is as
follows:

Step 1: according to the historical data of national
vehicle ownership, the NAR neural network is used to
predict the future national vehicle ownership, VQ.
According to the future national EV ownership EVQ

planned by the government, the occupation ratio of
national EVs in the future is obtained as θ � EVQ/VQ.
Step 2: according to the historical data of vehicle
ownership in a local area, the NAR neural network is
used to predict the future local vehicle ownership VQ′.
Te future EV ownership in this region is
EVQ′ � VQ′θ.

Step 3: allocate the number of EVs at each demand
point according to the population proportion
wi � EVQ′pi%, where pi% is the population ratio of
point i.

2.5. Mileage Limit. Nowadays, the battery capacity of EVs is
not enough to ignore the distance between adjacent charging
stations, that is, the trip mileage limit. EV users are always
afraid that the battery is out of power before they fnd the
next charging station, which is called trip mileage anxiety. In
order to reduce or even eliminate trip mileage anxiety, we set
a reasonable trip mileage limit between adjacent charging
stations before construction. If the distance between adja-
cent charging stations is more than the trip mileage limit,
drivers will produce strong mileage anxiety. As mentioned
above, the distance between charging stations established in
China is no more than 50 km [20], so we set the trip mileage
limit to 50 km.

In the mathematical model, we adopt the method in [32]
to express the trip mileage limit. It is assumed that (1) when
the distance between two adjacent charging stations exceeds
the trip mileage limit, the charging stations cannot cover the
path; (2) the covered path is a round-trip path; (3) the
charging station can only be established at the point; (4) if
there is no charging station at the starting point, the initial
driving mileage of the EV is half of the trip mileage limit.
Constraints (3) and (4) mean that at least one combination h

that can support the EV to complete the round trip can be
found, and all facilities in the combination h have been
established, then the EV can complete the round trip. Tese
constraints are obviously diferent from FILP in which as
long as there is a facility on the O-D path, the fow can be
intercepted.

3. Algorithm

As the charging station location model is an NP-hard
problem, with the expansion of the model scale, the com-
puting time of the accurate algorithm will be very long. It is

necessary to fnd an efective algorithm for this kind of
problem. In this paper, a greedy algorithm is used to solve
the problem, and the solving steps are described as
Algorithm 1.

4. Simulation Experiments

In this section, random examples are generated to verify the
efectiveness of the greedy algorithm by comparing it with
the exact solutions.Te exact solutions are obtained by using
the enumeration algorithm. A connected network is ran-
domly generated, the point demand is randomly generated
in the interval (0, 10), the distance between two adjacent
points is distributed in the interval (0, 20), and the con-
nection probability between points is 0.5. Because the cal-
culation time of the enumeration algorithm is long, the
number of points and charging stations cannot be large. In
this paper, the number of network points is set to be 20, 25,
30, 50, 100, and 150, and the number of charging stations is
set to be 3, 4, 5, 10, 15, and 20. When the point number of
networks is 50 and the number of charging stations is 5, the
computational time of enumeration exceeds 2 hours. We set
the upper bound of the enumeration algorithm time to 2
hours. Diferent network points and charging stations
constitute a group of examples, and 10 examples are gen-
erated randomly in each group. A total of 170 examples are
generated in this section to verify the efectiveness of the
greedy algorithm. Te parameters of SIM are set as follows
[25]: k= 0.5, α= 0.5, and β= 2. Other parameters: θ = 0.5, the
point coverage is 8, and the trip mileage limit is 10. Te
calculation results of the greedy algorithm are shown in
Table 1.

From Table 1, it can be found that the gap of the greedy
algorithm is small, no more than 5.48%. Usually, the optimal
solution can be found by using the greedy algorithm, and the
lowest group is 70%. With the increasing number of points
and charging stations, as computational time limitations of
enumeration, the greedy algorithm shows more advantages
in computational time and result accuracy than
enumeration.

However, it is found that the trip mileage limit has a
great impact on the accuracy of the greedy algorithm, as
shown in Table 2.Te trip mileage limit is set to be 0.5, 1, 1.5,
2, and 5, respectively, and 10 examples are randomly gen-
erated for each value of the trip mileage limit with 25 points
and 5 charging stations. It is found that the smaller the trip
mileage limit, the greater the gap. Te performance of the
greedy algorithm in our model is similar to that in the
literature [32]. When the trip mileage limit is 0.5, the
maximum gap reaches 75.25%, and only 4 of the 10 examples
reach the optimal solution. When the trip mileage limit is
too small, the greedy algorithm is difcult to fnd the optimal
combination of charging stations to cover the round trip of a
path because the greedy algorithm only adds one charging
station each time.
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5. Case Analysis

Cixi City is located on the Bank of Hangzhou Bay, Zhejiang
Province, with a population of 1,051,000. It is composed of 4
streets and 15 towns, as shown in Figure 2. In Figure 2,
diferent sizes of points indicate diferent sizes of population.
Tis case takes the predicted number of Cixi EV in 2030 as
the demand parameter.

We adopt the GUI interface in MATLAB and Bayesian
regularization back-propagation as the training functions.
Trough repeated experiments, a nonlinear autoregressive
network with 1 : 5 feedback delay is created, the number of
hidden layer neurons is 10, and the response of a delayed
neural network is eliminated. According to the historical
data of national vehicle ownership from 1940 to 2020, it is
predicted that national car ownership will be 335.6 million in

2030. According to the historical data on vehicle ownership
in Cixi from 1993 to 2020, it is predicted that the vehicle
ownership in Cixi will be 0.57 million in 2030. Figure 3
shows the error between the national vehicle ownership
forecast data and the actual data. Te absolute error value is
no more than 500. It can be seen that the error is very small,
and the forecast data is reliable. Figure 4 shows the forecast
trend of national car ownership. Figure 5 shows the error
between the predicted car ownership data and the actual data
in Cixi City. Te relative error does not exceed 13%, and the
predicted data are reliable. Figure 6 shows the forecast trend
of vehicle ownership in Cixi City. According to the devel-
opment of energy-saving and new energy vehicles plan, by
2030, the number of EVs in China will reach 80 million, and
the percentage of EVs in the total number of vehicles will be
23.8%. Assuming that the percentage of EV ownership in

Input: V, I, m, wj(j ∈ V), α, β, k, θ, coverage radius and trip mileage limit
Output: X

(1) adopt dijkstra algorithm to calculate the shortest distance dij between any two points i(i ∈ I) and j(j ∈ V) and the shortest path
set P

(2) adopt SIM (fomular (7)) to obtain path demands fρ of all paths in P

(3) for i ∈ I

(4) for j ∈ V

(5) if dij is no more than the coverage radius
(6) aij � 1
(7) else
(8) aij � 0
(9) endif
(10) endfor
(11) endfor
(12) initialize X � Φ
(13) for n � 1: m

(14) for j ∈ V\X

(15) W(j) � 0
(16) endfor
(17) for j ∈ V\X

(18) for i ∈ I

(19) W(j) � W(j)+ aijwi

(20) endfor
(21) endfor
(22) for j ∈ V\X

(23) F(j) � 􏽐ρ∈P(X∪ j{ })fρ, P(X) is the set of paths that is covered by charging station set X

(24) endfor
(25) for j ∈ V\X

(26) Z(j) � θW(j) + (1 − θ)F(j)

(27) endfor
(28) j∗←argmaxj∈V\X Z(j)􏼈 􏼉

(29) X � X∪ j∗􏼈 􏼉

(30) V � V\ j∗􏼈 􏼉

(31) for i ∈ I

(32) if aij∗ � 1
(33) wi � 0
(34) endif
(35) endfor
(36) for ρ ∈ P(X)

(37) fρ � 0
(38) endfor
(39) endfor

ALGORITHM 1: Te greedy algorithm for the charging station location model.
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Cixi City is consistent with the national average level, it is
estimated that the number of EVs in Cixi City will be 0.136
million in 2030. According to the proportion of the pop-
ulation, the number of EVs in each region can be obtained,
as shown in Table 3.

Take the forecast EV data of 2030 as the demand pa-
rameter.Te coverage radius of the point demand is set to be
4 km. Figures 7–9 show the trends of covered point de-
mands, covered path demands, and the objective values with
the number of charging stations increasing under diferent θ.

Table 1: Performance of the greedy algorithm.

Point
number m

Minimum
gap (%)

Maximum
gap (%)

Average
gap (%)

Percentage of
optimal solution (%)

Average computational time
of the greedy algorithm

(unit: s)

Average
computational

time of enumeration
(unit: s)

20
3 0 5.84 0.72 70 2.08 27.16
4 0 0.41 0.04 90 2.64 151.97
5 0 0 0 100 2.89 413.25

25
3 0 0 0 100 4.05 119.05
4 0 0 0 100 3.88 502.38
5 0 0030 0 100 5.33 2003.40

30
3 0 0 0 100 6.95 221.58
4 0 0 0 100 6.72 1492.20
5 0 0.06 0.006 90 7.25 7585.80

50 5 −11.08 −0.09 −5.58 100 10.74 7200.00
10 −21.89 −2.62 −10.34 100 31.10 7200.00

100 5 −11.17 −0.92 −16.06 100 113.19 7200.00
10 −42.04 −4.33 −27.87 100 245.07 7200.00

150 10 −111.22 −1.56 −40.87 100 546.83 7200.00
20 −9.79 −1.68 −4.76 100 2043.53 7200.00

200 10 −81.50 −1.00 −41.25 100 1698.80 7200.00
20 −15.64 −4.23 −29.00 100 4377.60 7200.00

Table 2: Infuence of the mileage limit on the accuracy of the greedy algorithm.

Mileage limit Minimum gap (%) Maximum gap (%) Average gap (%) Percentage of optimal solution (%)
0.5 0 75.25 13.35 40
1 0 22.78 3.07 70
1.5 0 3.47 0.35 90
2 0 1.08 0.13 80
5 0 0 0 100

Unit: thousand

20~30
10~20
<10

Figure 2: Te map of Cixi.
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As we know, in traditional maximum coverage location
problems and FILP, the objective is a convex function of the
number of facilities. However, with the experiments of
diferent θ, we fnd that the covered point and path demands
have no convexity property with the number of charging
stations in our model because of the trip mileage limit.

Figure 10 shows the impact of θ on the location decision.
We considered two extreme cases, θ� 0 and 1. When θ � 0,
the model is transformed into FILP with the trip mileage
limit. When θ� 1, the model is just the maximum coverage
model. Compared with the only consideration being the
point demand (θ�1) or fow demand (θ� 0), what is the
diference in charging station location when considering
both demands? We set the number of charging stations at 5.
Figure 10 shows the location decisions with consideration of

only point demand, only fow demand, and both types of
demands (θ� 0.1). When only the point demand is con-
sidered, the layout of the charging station is relatively
scattered. Although the demand for point 19 (Long-
shanzhen) is large, it is relatively remote and far away from
other areas. Building the charging station at point 19 makes
the station more isolated and unable to enter the efective
mileage endurance network. When only the fow demand is
considered, the charging stations are set up intensively,
mainly in the urban area. Although it is convenient for
residents to travel in the urban area, this setting is not ideal
for properly expanding the service network, and it is in-
convenient for rural areas. When set θ� 0.1, we found that
the solution balances the above contradictions.Te charging
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Table 3: Forecast of EV ownership quantity in each region.

Point Region Forecast quantity
1 Zhouxiangzhen 28216
2 Changhezhen 7979
3 Andongzhen 13533
4 Zhonghan district 13985
5 Hushan district 19279
6 Gutang district 13081
7 Baisha district 11705
8 Kandun district 11420
9 Congshouzhen 6342
10 Henghezhen 11641
11 Kuangyanzhen 5831
12 Qiaotouzhen 8567
13 Xiaolinzhen 10019
14 Shengshanzhen 6918
15 Xinpuzhen 8821
16 Fuhaizhen 5548
17 Guanhaiweizhen 24607
18 Zhangqizhen 9373
19 Longshanzhen 20136
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station location is neither too centralized nor remote or
isolated so as to ensure the coverage and appropriate ex-
tension of the charging network.

6. Conclusion

Tis paper studies the location of EV charging stations
considering both point and path charging demands. De-
mands are closely related to the EV number. So, the location
of the charging station largely depends on the data of EV
numbers. As the fast expansion of EVs, the current number
of EVs is not a solid basis for the design of charging stations
because after the stations fnish, the number of EVs has
changed greatly. Tis paper proposes a prediction method
for EV numbers with a neural network. Ten, through SIM,
we obtain the future path demand between each O-D pair.

As range anxiety is one of the main concerns for consumers
buying EVs, the trip mileage limit is considered in our
model. Ten we propose a greedy algorithm to solve our
model. It is found that the solution accuracy of the algorithm
is verifed to be related to the value of the mileage limit by
using random examples. Te smaller the trip mileage limit,
the greater the gap between the computational result and the
precise solution. Finally, through a case study, we fnd that
the location decision is shown to be more reasonable with
our model than with the maximum coverage model or FILP.
Our method ensures the coverage and appropriate extension
of the charging network.

Data Availability

No data were used to support this study.
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