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Mobile edge computing (MEC) is receiving more attention than centralized cloud computing due to the massive increase in
transmission and compute requirements in 5G vehicle networks. It ofers a signifcant amount of processing and storage resources
to the edge of networks, ofoading applications from vehicle terminals that are computation-intensive and delay-sensitive. For
devices with limited resources, it uses edge resources to provide computationally heavy operations while conserving energy. Tis
paper proposes a novel approach for computing ofoading in MEC. To efectively optimize the MEC resources, this paper
proposes a novel algorithm. First, the joint optimization and service cache decision subproblems were determined from
continuous and discrete variables. Ten, the near-optimal solution is determined from the subproblems through convex op-
timization and Karush–Kuhn–Tucker method. Simulation results show that the proposed algorithm has better computational
ofoading and resource allocation performance as compared to existing algorithms.

1. Introduction

Many computing-intensive and delay-sensitive applications
(such as autonomous driving, image identifcation, and
natural language processing) have increasing needs due to
the rapid expansion of mobile communications and the
Internet of Tings (IoT) [1]. One of the major problems that
needs to be resolved immediately is how to reduce appli-
cation processing delays because terminal devices with
limited computing capacity would produce substantial task
delays when processing such programs [2]. Te issue of
terminal computing limitations has been resolved by the
development of mobile cloud computing (MCC) technology
[3, 4]. Te purpose of MCC is to increase the potential

computing capabilities of terminal devices by extending
the abundant computing resources of the cloud to
resource-constrained terminal devices [5]. Te vast com-
munication distance between the terminal device and the
cloud server results in a network delay, making it impossible
to rely exclusively on MCC to meet the network needs of
latency-sensitive applications. Mobile Edge Computing
(MEC) is suggested as a new technology to address the
aforementioned issues and support MCC [6, 7]. Base sta-
tions and associated edge servers make up the majority of
mobile edge computing (MEC) systems. When terminal
devices carry out computing tasks, edge nodes made up of
base stations and servers can ofer computing, communi-
cation, and data storage services to these terminals nearby,
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lowering task completion latency and enhancing system
performance [8, 9]. Currently, related studies on resource
allocation based on MEC networks and task ofoading have
been conducted. In [10–12], the power consumption and
system spectrum resources are collaboratively optimized
with the goal of maximizing energy efciency in various
application scenarios. Researchers in [13, 14] optimized
computation and spectrum resources while minimizing
energy usage and delay, respectively. However, in real-
world applications, edge servers’ processing and storage
capabilities are constrained, and excessive computing de-
mands will unavoidably result in high computing and
storage demands, which will have an impact on system
performance. A fresh approach to resolving the afore-
mentioned issues is ofered by the resource allocation and
unloading method implemented within the converged
network of MCC and MEC. When a terminal device re-
quests a task, it can be executed not only locally but also on
an edge server or in the cloud thanks to the integrated
network architecture of MCC and MEC. In order to meet
various service requirements, the network design can ofer
terminals more efective and adaptable ofoading services.
Relevant research has demonstrated that the joint opti-
mization of ofoad decision-making and resource alloca-
tion can enhance network performance under a three-level
network design [15, 16].

To sum up, the three-tier network architecture made up
of terminals, edge services, and clouds is thoroughly ex-
amined in this paper, along with aspects like wireless
bandwidth resources, computation resources, and storage
resources. A service cache is proposed as a joint optimization
algorithm with resource allocation with the aim of mini-
mizing the task delay of all terminal devices and carefully
taking into account the impact of storage resources, com-
puting resources, ofoading decisions, and task ofoading
ratios on task delays. Following are the particular innovation
points:

(i) A three-layer network architecture made up of
cloud servers, edge servers, and multiusers is built.
Each user’s computing responsibilities can be par-
tially ofoaded to the local server using a ground
server, edge server, or cloud server. We explain the
paradigm for minimizing terminal task latency and
discuss how user computing resources, edge service
computing resources, storage resources, and
bandwidth resources may afect the delay.

(ii) A joint optimization strategy for service caching and
resource allocation is proposed. First, the contin-
uous variable and discrete variable of the original
problem are decoupled into two subproblems, that
is, the service cache decision problem and the joint
optimization problem of computing resources and
communication resources. Secondly, the two sub-
problems are alternately iteratively optimized based
on the reconstruction linearization technique
(RLT), relaxation, and convex optimization
methods. Finally, a suboptimal solution to the
problem is obtained.

(iii) Te simulation results demonstrate that the sug-
gested technique has clear advantages in terms of
convergence speed and performance over existing
algorithms.

2. Related Work

With the development of 5G, data exchange between ter-
minal devices and remote cloud servers may cause the
backhaul network to be paralyzed. It is difcult to achieve
millisecond-level computing and communication delays by
relying solely on the cloud computing model. In order to
solve the delay and energy consumption problems caused by
the distance between cloud computing data centers and
terminal devices, scholars have proposed to transfer cloud
functions to the edge of the network. At the edge of the
network, close to the terminal mobile device, MEC has
emerged as a new network structure and computing para-
digm that provides information technology services and has
computing capabilities.

Te authors in [6] investigate the energy cost reduction
for mission-critical internet of things (IoT) in mobile edge
computing (MEC) systems based on convex optimization. In
order to lower transmission delay and increase the lifespan
of the IoT devices’ batteries, brief data packets are sent
between the devices and the access points (APs). It is made
clear how short-packet transmission afects the distribution
of radio resources. We frame the challenge of minimizing
energy costs analytically as a mixed-integer nonlinear
programming (MINLP) problem, which is hard to solve
optimally. To be more precise, the challenge stems mostly
from the interplay between resource management across all
IoT devices and binary ofoading factors. A strategy for
resource allocation and job ofoading based on MEC is
proposed in [7]. To address the issue of small-base station
long-term performance optimization, a system model is
constructed. In addition, a Lyapunov drift penalty
technology-based energy consumption defcit queue is
created to enable tiny base stations to meet energy con-
sumption limits throughout the long-term optimization
process. Te suggested algorithm is capable of computing
ofoading decisions and iterating based on time slots. Te
results of the simulation experiment demonstrate that the
algorithm clearly optimizes both energy consumption and
time delay. Simultaneously, it is confrmed that the algo-
rithm can be balanced by iterations in the computation of
ofoading, ensuring consistent and coordinated users and
a low total cost. It does not, however, take into account work
ofoading and resource allocation under cloud-side col-
laboration, nor does it increase the scalability of edge servers
and multichannel communication. It also does not integrate
cloud computing with MEC. Te challenge of minimizing
energy usage for MEC systems was examined in [8]. With
respect to the latency limitations, it jointly optimized the
transmit power, local and edge computation resource al-
location, as well as task ofoading. Te optimization
problem concerning energy consumption has been framed
as a nonconvex, NP-hard MINLP problem. To address this
challenge, we have created a two-loop combined search and
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SCA system, in which the outer loop searches for the best
ofoading options while the inner loop uses fxed ofoading
decisions to solve the optimization problem. However, this
paper does not consider dynamic allocation and requires
a large number of iterations.

Te authors in [17] cooperatively optimize ofoading
choices and resources inside the centralized network when
MEC and MCC are connected to lessen job delays across all
terminals. Te authors in [18] optimized the task ofoading
and resource allocation designs in order to maximize system
income. Te research mentioned above address the issue of
task ofoading and resource allocation jointly from various
angles; however, they do not consider how task ofoading
and service cache coupling afect system performance. By
storing databases, applications, function libraries, and re-
lated codes connected to computing jobs in edge services to
support various applications, the term “service cache” is
used. Existing MEC research can be split into two groups
from the perspective of task ofoading: total ofoading of
computing tasks and partial ofoading of computing ac-
tivities. Te full-ofoad approach is appropriate for highly
integrated or relatively basic tasks that cannot be split and
can only be carried out by mobile devices or by edge servers
as a whole, such as natural language processing, navigation,
etc. For divide-and-conquer activities like image identif-
cation, augmented reality (AR) applications, etc., the partial
ofoading approach is appropriate. Such applications allow
for the simultaneous or serial execution of tasks that have
been broken down into many smaller jobs. Te resource
allocation based on the partial unloading model is more
rational, the resource utilization is more efcient, and the
usage rate is also higher than the complete unloading model.
Tere are currently studies being done on resource alloca-
tion and service caching. Te authors in [19] suggest an
integer linear programming and random search approach to
optimize the service cache resources between edge nodes in
order to reduce the supplier cost. In [20], the placement of
edge servers and user service requirements are collabora-
tively optimized with the goal of reducing the overall cost of
service caching. Te authors in [21] optimize the content
cache of the edge server while minimizing delay and ex-
pense. Although task ofoading and service cache optimi-
zation have enhanced system performance in the
aforementioned research, they are all based on resource
allocation optimization when tasks are inseparable and do
not apply to activities that are separable.

Te majority of complicated applications are made up of
various execution components. For instance, real-time face
recognition tasks must be broken down into 4 subtasks: face
detection, image processing and feature extraction, face
recognition, and face recognition. Tese sub-tasks demand
various amounts of computational, storage, and connectivity
resources. Terefore, it is crucial to fgure out how to si-
multaneously optimize using service caching and partial task
ofoading. Using an open Markov queuing network model,
researchers in [22] construct a service chain model, aim to
reduce network response time under the constraints of
storage and computing resources, construct an edge
node service scheduling model, and examine cache

decision-making and computing resources. When tasks are
ofoaded, joint optimization ignores resources like termi-
nals and cloud servers that are available. According to [23],
which is based on the partial ofoading model, joint opti-
mization research is conducted on service cache and task
ofoading under the constraints of computing resources, but
it assumes that bandwidth resources are evenly distributed,
resulting in tasks with a large amount of computing data
getting less bandwidth resources and resulting in relatively
low bandwidth resources. In addition, low-bandwidth
processes with high delay receive greater bandwidth re-
sources, wasting resources. Te storage space of edge nodes
is also not constrained by [23], hence in this study, the edge
server has unlimited storage space and can cache all per-
tinent data needed for task execution.

Researchers in [24] proposed a total energy consumption
minimization optimization method under time-sharing and
computing time constraints and formulated a resource
management strategy for heterogeneous input data arrival
time and computing deadline. In [25], a hybrid fber-wireless
network is designed to provide support for the coexistence of
centralized cloud and multi-access edge computing, and
a fber-wireless access network architecture and ofoading
scheme are proposed. In order to improve efciency, re-
searchers in [26–28] focus on the research of binary full
ofoading strategy to minimize delay or energy consump-
tion. Researchers in [29] comprehensively considered the
optimization of ofoading decisions, channel allocation, and
computing resource allocation schemes. By combining the
advantages of genetic algorithms and particle swarm opti-
mization to improve the performance and convergence
speed of ofoading algorithms, a suboptimal algorithm
based on genetic algorithms and particle swarm optimiza-
tion is proposed. However, these works only focus on the
calculation and ofoading process of wireless access net-
works, ignoring the dynamic changes in channel in-
formation and interference. Aiming at the ofoading
problem of multiuser computing, researchers in [30] pro-
posed a D2D resource sharing scheme with optimal com-
prehensive benefts, which can signifcantly improve the
performance of the ofoading network. Researchers in [31]
used D2D ofoading computing, combined with user be-
havior and specifc network operating conditions to develop
a large-scale D2D-supported cellular network ESE evalua-
tion framework. To analyze the SNR distribution and av-
erage rate, researchers in [32] proposed a D2D
communication framework. In [33], the authors adopted
spectrum sharing and provided a comparative analysis of the
coverage performance of two diferent sharing modes.

Some recent works are dedicated to adopting distributed
computing ofoading schemes. For example, researchers in
[33] proposed a game algorithm to jointly determine the
computing ofoading scheme, transmission scheduling
rules, and pricing rules. Tis algorithm can maximize the
benefts of the entire network and realize the game balance
between mobile users. Researchers in [34] proposed
a noncooperative exact potential game for edge node pair
communication and computing resource contention, aiming
at maximizing the long-term benefts of ofoading.
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Researchers in [35] used evolutionary game theory to op-
timize the subcarrier allocation scheme and allocated more
subcarriers to subcarriers with better channel conditions to
optimize energy efciency. Researchers in [36] studied a new
computing ofoading problem in the MEC network: mobile
devices can ofoad tasks to distributed computing nodes
through D2D communication or the MEC server, and they
deduced the ofoading decision problem of mobile devices
as a sequence game. However, it does not consider the
service cache; that is, there is no binary fle on the distributed
computing nodes and edge servers [37], which is dependent
on the cache and computing tasks. Due to the limited
computing and storage resources of the edge server, it will
inevitably afect the quality of service.

3. System Model

3.1. Centralized Mobile Edge Network Model. Figure 1 de-
picts a centralized mobile edge network. Te cloud server,
a single service node (made up of edge servers and base
stations), and L terminals with computation and commu-
nication capabilities make up the centralized mobile edge
network, as can be seen in Figure 1. In this context, the term
“terminal201d often refers to terminals with computational
capabilities, such as mobile phones, tablets, and cars[38, 39].
Te formula for the number of terminals is L� {1, 2, . . ., L},
i ∈ L. For the terminal to receive dependable communica-
tion, computation, and storage services, an optical fber
connection connects the cloud server and the service node
[40]. Tis cloud server has a lot of computing and storage
resources because it is mostly made up of cloud server
clusters.

In the situation depicted in Figure 1, the service node can
act as a coordinator, making storage and computing de-
cisions in response to the task requests from the terminals, in
addition to providing communication, computation, and
storage resources for the terminal. Here, it is assumed that
the edge server storage computing service’s maximum
storage capacity is C and its maximum processing capacity is
F [41, 42]. Databases, data dictionaries, and related appli-
cation codes make up the majority of the computing service
data, where each application stands for a specifc kind of
computing work [43–74]. In addition, the service cache must
be refreshed frequently because storage is a lengthy oper-
ation. In this study, the system is believed to run in discrete
time intervals with interval lengths that correspond to
service caching and task assignment decision update in-
tervals. While ignoring the index of other time periods, this
research examines one of them [45]. At the beginning of
a time period, each terminal randomly requests a computing
task, and one type of computing task corresponds to one
type of computing service. It is assumed here that there is
a computing serviceҠ� {1, 2, . . .,K}, wAi

� c
input
Ai

, si􏽮 􏽯 means
that user i requests the corresponding task of computing
service Ai, Ai ∈ K, where c

input
Ai

represents the terminal i size
of the input data for executing the related task of service Ai,
and si represents the number of cycles required to execute
1 bit data. In order to facilitate the analysis, this paper makes
the following reasonable assumptions:

(1) Te service node is aware of the channel state in-
formation (CSI), the size of each task’s input data,
and the task’s cycle count. An efcient resource
allocation and ofoading decision can be made based
on the aforementioned hypotheses [46–48].

(2) Each application’s calculation result data are con-
siderably less than its calculation input data; there-
fore, the calculation results’ backhaul link
transmission latency is disregarded.

3.2. Communication Model. Te spectrum bandwidth used
in this research is B, and the orthogonal frequency division
multiplexing method is used to distribute spectrum re-
sources to terminal equipment.Te uplink transmission rate
of terminal i executing work connected to service Ai can be
represented as in [49, 50]. Each terminal device will use
uplink spectrum resources when ofoading computational
duties to service nodes.

r
up
Ai

� θAi
Blog 1 +

hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

− r

BN0

⎡⎣ ⎤⎦. (1)

Among them, θAi
is the percentage of the uplink

bandwidth that the terminal uploads data, Pi,s is the transmit
power of the terminal, hi,B is the channel fading coefcient
between the base station and the terminal, d is the distance
between the terminal and the base station which indicates
the mobility of device, r is the path loss, and BN0 is the noise
power of the channel which is related to σ2. N0 is the power
spectral density of Gaussian white noise [51].

3.3. Service Cache Model. Te service nodes can do relevant
computing tasks if the edge server contains computing
services. If not, the tasks will be given to the cloud server to
complete. Te edge server must make judgments using the
service data that has been cached because it does not have
enough storage to handle all of the terminal devices’
compute requests [52]. Here, the storage decision of
the server is expressed as X � xA1

, xA2
, . . . , xAi

􏽮 􏽯,

xAi
∈ 0, 1{ }, Ai ∈Ҡ,i ∈L; xAi

indicates whether the server
caches the Ai requested by the terminal device, xAi

� 1
indicates that the server caches the computing service Ai,
xAi

� 0 indicates that the server does not cache the cor-
responding computing service Ai. Te required storage size
for each service Ai is cAi

, and the edge server caching
decision is limited by the storage capacity, i.e.,
􏽐i∈LxAi

cAi
≤C, Ai ∈Ҡ.

3.4. Computational TaskOfoadingModel. A computational
workload may be divided into a number of smaller subtasks
via partial task ofoading [53]. Tis article carries out re-
search using the unloading model, which states that pro-
grams that partition codes, such as image recognition, are
separated into several modules, with the result of one
module serving as the input for the next module. Tis article
then partially unloads the model and describes the task
execution delay model.
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(1) When the computing service Ai is stored on the edge
server, the task can be executed on the edge server. At
this time, the task execution delay is analyzed as
follows.
If some tasks are ofoaded locally, the percentage of
task unloading is represented by βAi

, and the
local unloading amount of tasks is represented by
clocalAi

, that is, clocalAi
� c

input
Ai

βAi
, 0≤ βAi

≤ 1, ∀i ∈L,
Ai ∈ Ҡ, the local computing capability is flocal

i

[54, 55], then the local computing delay of the task is
expressed as follows:

t
local
Ai

�
c
local
Ai

si

f
local
i

. (2)

If some tasks are ofoaded on the service node,
when the task is ofoaded to the edge server, the
task ofoading percentage is expressed as 1 − βAi

,
and the data size of the corresponding task
ofoaded to the edge server is expressed as cmec

Ai
�

c
input
Ai

(1 − βAi
) [56]. Te computing resource allo-

cated to the terminal device is expressed as fmec
i and

the execution delay of the task at the edge server is
expressed as follows:

t
mec
Ai

�
c
mec
Ai

si

f
mec
i

. (3)

Te terminal device will use the uplink to transmit
data after the task has been sent to the edge server; at
this point, the uplink’s transmission delay is
expressed as follows:

t
up
Ai

�
c
mec
Ai

r
up
Ai

. (4)

In conclusion, the overall task execution latency is
represented as follows when the computing service is
kept in the service center:

U
local mec
Ai

� t
local
Ai

+ t
up
Ai

+ t
mec
Ai

. (5)

(2) When the computing service Ai is not stored in the
edge server, the computing tasks will be partially
ofoaded locally and in the cloud.

If some tasks are ofoaded locally, the percentage of task
unloading is expressed by αAi

, and the local unloading
amount of tasks is expressed by clocal nocach

Ai
, that is,

clocal nocach
Ai

� c
input
Ai

αAi
, 0≤ αAi

≤ 1, ∀ i ∈L, ∀ k ∈Ҡ. Te local
computing power is flocal

i [57], so the local computing delay
of the task is expressed as follows:

t
local nocach
Ai

�
c
local nocach
Ai

si

f
local
i

. (6)

If the task is ofoaded to the cloud server, the ofoad
percentage is expressed as 1 − αAi

, where the data size of the
task ofoaded to the edge server is expressed as cloud ccloudAi

�

c
input
Ai

(1 − αAi
) [58]. A task execution delay is only connected

to the transmission delay, specifcally the uplink trans-
mission delay and the backhaul link transmission delay,
because the cloud server has a large amount of computa-
tional resources [59]. As a result, the task’s transmission
delay is expressed as follows when it is carried out on the
cloud server:
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Figure 1: System model.
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t
cloud
Ai

�
c
cloud
Ai

R
+

c
cloud
Ai

r
up
Ai

. (7)

Among them, R is the transmission rate between the
edge service and the cloud server. Terefore, when the
computing service is stored in the cloud server, the total
delay of task execution is expressed as follows:

U
local cloud
Ai

� t
local nocach
Ai

+ t
cloud
Ai

. (8)

4. Problem Description

Storage changes are minimal since they are part of a long-
term statistical process, but computation and communica-
tion resources must be adjusted in real-time to meet the
needs of various users [60]. Tis study takes into account the
current time period’s joint optimization of computation,
communication, and storage resources based on the
aforementioned features [61]. Te main goal of this paper is
to jointly optimize the service cache decision x, uplink
spectrum resource θ, task partial ofoad percentage α and β,
and server computing resource f under the constraints of
computing, communication, and storage resources to
minimize the execution of all terminal devices total delay of
the task [62]. Te optimization objective can be expressed as
follows:

P0: min
x,θ,α,β,f

􏽘

L

i�1
xAi

U
local mec
Ai

+ 1 − xAi
􏼐 􏼑U

local cloud
Ai

s.t.C1: 􏽘
i∈L

xAi
f
mec
i ≤F

C2: 􏽘
i∈L

θAi
≤ 1

C3: 0≤ αAi
≤ 1, 0≤ βAi

≤ 1,∀ i ∈L
C4: xAi

∈ 0, 1{ },∀ i ∈L
C5: 􏽘

i∈L
xAi

cAi
≤C,

(9)

P0 shows that the constraint condition C1 indicates that the
total computing resources allotted to terminal devices are
less than or equal to the server’s maximum computing
capacity, and C2 indicates that the total spectrum bandwidth
is less than or equal to the frequency allotted to terminal
devices. C3 stands for the task ofoad ratio [63, 64], C4 for
the service caching choice, and C5 for the maximum amount
of computing services that the edge server may cache. In
addition, P0 requires the development of a novel optimi-
zation approach because it is a challenging mixed-integer
nonlinear programming problem made up of discrete and
continuous variables.

5. Algorithm Description

Tis work suggests a joint optimization method of service
caching and resource allocation for task ofoading and
service caching in order to address the aforementioned is-
sues. Tis strategy is referred to as the joint optimization
strategy of service caching and resource allocation. First,
separate the original problem’s continuous and discrete
variables into two distinct issues: the service cache decision
issue and the combined optimization issue for communi-
cation and compute resources [65, 66]. Second, the fxed
cache choice is used to resolve the problem of allocating
communication and computation resources. After receiving
the optimal resource allocation variables, optimize the cache
decision once more. Finally, loop iteration yields the answer
to the original problem.

5.1. Joint Optimization of Computing and Communication
Resources. Prior to jointly optimizing compute and com-
munication resources, cache decisions are initialized. P0
becomes a function made up of continuous variables like
compute resource, bandwidth resource, and task ofoad
ratio under the specifed cache decision condition. Te next
step is to solve the continuous variables. After the initial
cache decision is given as x(0) [67, 68], the multiterminal
delay optimization function is expressed as follows:

y(α, β, θ, f) � 􏽘

L

i�1
x

(0)
Ai

c
input
Ai

βAi
si/f

local
i􏼐 􏼑 + c

input
Ai

si 1 − βAi
􏼐 􏼑/fmec

i􏼐 􏼑􏽮 􏽯/cinputAi
1 − βAi

􏼐 􏼑

c
input
Ai

1 − βAi
􏼐 􏼑/θAi

B log 1 + hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

−r/σ2􏼐 􏼑􏽨 􏽩

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ 1 − x
(0)
Ai

􏼐 􏼑
c
input
Ai

αAi
si

f
local
i

+
c
input
Ai

1 − αAi
􏼐 􏼑

θAi
B log 1 + hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

−r/σ2􏼐 􏼑􏽨 􏽩
+

c
input
Ai

1 − αAi
􏼐 􏼑

R
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(10)

Te corresponding optimization problem is expressed as
follows:
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P1: min
α,β,θ,f

y(α, β, θ, f)

s.t. C6: 􏽘
i∈L

x
(0)
Ai

f
mec
i ≤F

C2: 􏽘
i∈L

θAi
≤ 1

C3: 0≤ αAi
≤ 1, 0≤ βAi

≤ 1,∀i ∈L.

(11)

After the caching decision is determined, its corre-
sponding constraint condition changes simultaneously, and
its constraint condition will change from C1 to C6. In order
to avoid division by zero, constants ε1 and ε2 are added to the
variables θAi

and fmec
i [69], which can be expressed as θAi

�

(θAi
+ ε1)

− 1 and f−mec
i � (fmec

i + ε2)
− 1. Finally, substitute

this variable into formula (10) and the corresponding
constraints to obtain new functions and constraints [70].Te
corresponding question is expressed as follows:

P2: min
α,β,θ,f

􏽘

L

i�1
x

(0)
Ai

c
input
Ai

βAi
si

f
local
i

+ c
input
Ai

si 1 − βAi
􏼐 􏼑f

−mec
i +

c
input
Ai

1 − βAi
􏼐 􏼑θAi

B  log 1 + hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

−r/σ2􏼐 􏼑􏽨 􏽩

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ 1 − x
(0)
Ai

􏼐 􏼑
c
input
Ai

αAi
si

f
local
i

+
c
input
Ai

1 − αAi
􏼐 􏼑θAi

Blog 1 + hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

−r/σ2􏼐 􏼑􏽨 􏽩
+

c
input
Ai

1 − αAi
􏼐 􏼑

R
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

s.t. C7: 􏽘
i∈L

1
f

−mec
i

− ε2 ≤F, k ∈ Ҡ

C8: 􏽘
i∈L

1
θAi

− ε1 ≤ 1, k ∈Ҡ

C3: 0≤ αAi
≤ 1, 0≤ βAi

≤ 1,∀i ∈L.

(12)

It can be seen from P2 that there is a product term for
multiplying two variables in formula (12), so this problem is
a nonconvex optimization problem. In order to solve P2, the
above problem needs to be transformed again.

5.2. RLT-Based Problem Transformation. Since P2 contains
product terms αAi

θAi
, βAi

f−mec
i , and βAi

θAi
, the above

problem needs to be transformed by RLT [71].
First, introduce three auxiliary variables μAi

, ηAi
, χAi

,
where μAi

� αAi
θAi

, ηAi
� βAi

f−mec
i , χAi

� βAi
θAi

. Substituting
new variables into formula (12), P2 can be rewritten as
follows:

P2: min
α,β,θ,f

􏽘
i∈L

x
(0)
Ai

c
input
Ai

βAi
sAi

f
local
i

+ c
input
Ai

s
m
i f

−mec
i − siηAi

c
input
Ai

θAi
− c

input
Ai

χAi

Blog 1 + hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

−r/σ2􏼐 􏼑􏽨 􏽩

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ 1 − x
(0)
Ai

􏼐 􏼑
c
input
Ai

αAi
si

f
local
i

+
c
input
Ai

θAi
− c

input
Ai

μAi

Blog 1 + hi,B

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Pi,sd

−r/σ2􏼐 􏼑􏽨 􏽩
+

c
input
Ai

1 − αAi
􏼐 􏼑

R
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(13)

For the newly added variables μAi
, ηAi

, χAi
,

and constraints such as 0≤ αAi
≤ 1,0≤ βAi

≤ 1,
1/F + ε2 ≤f−mec

i ≤ 1/ε2, 1/1 + ε1 ≤ θAi
≤ 1/ε1, the RLT factor

product constraint condition of μAi
can be obtained as

follows:
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αAi
−0􏽨 􏽩 θAi

−
1

1 + ε1
􏼢 􏼣≥ 0􏼨 􏼩

LS
,

αAi
−0􏽨 􏽩

1
ε1

− θAi
􏼢 􏼣≥ 0􏼨 􏼩

LS
,

1 − αAi
􏽨 􏽩 θAi

−
1

1 + ε1
􏼢 􏼣≥ 0􏼨 􏼩

LS
,

1 − αAi
􏽨 􏽩

1
ε1

− θAi
􏼢 􏼣≥ 0􏼨 􏼩

LS
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Among them, {·}LS represents the linearization step [72].
Substituting μAi

� αAi
θAi

into formula (14), we can get

μAi
−

αAi

1 + ε1
≥ 0,

αAi

ε1
− μAi
≥ 0,

θAi
−

1
1 + ε1

− μAi
+

αAi

1 + ε1
≥ 0,

1
ε1

− θAi
−
αAi

ε1
+ μAi
≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Among them, ∀i ∈L. Similarly, the RLT factor product
constraint condition corresponding to ηAi

is

βAi
−0􏽨 􏽩 f

−mec
i −

1
F + ε2

􏼢 􏼣≥ 0􏼨 􏼩
LS

,

βAi
−0􏽨 􏽩

1
ε2

− f
−mec
i􏼢 􏼣≥ 0􏼨 􏼩

LS
,

1 − βAi
􏽨 􏽩 f

−mec
i −

1
F + ε2

􏼢 􏼣≥ 0􏼨 􏼩
LS

,

1 − βAi
􏽨 􏽩

1
ε2

− f
−mec
i􏼢 􏼣≥ 0􏼨 􏼩

LS
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Substituting ηAi
� βAi

f−mec
i into formula (16), we can get

ηAi
−

βAi

F + ε2
≥ 0,

βAi

ε2
− ηAi
≥ 0,

f
−mec
i −

1
F + ε2

− ηAi
+

βAi

F + ε2
≥ 0,

1
ε2

− f
−mec
i −

βAi

ε2
+ ηAi
≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Similarly, the RLT factor product constraint condition
corresponding to χAi

is

βAi
−0􏽨 􏽩 θAi

−
1

1 + ε1
􏼢 􏼣≥ 0􏼨 􏼩

LS
,

βAi
−0􏽨 􏽩

1
ε1

− θAi
􏼢 􏼣≥ 0􏼨 􏼩

LS
,

1 − βAi
􏽨 􏽩 θAi

−
1

1 + ε1
􏼢 􏼣≥ 0􏼨 􏼩

LS
,

1 − βAi
􏽨 􏽩

1
ε1

− θAi
􏼢 􏼣≥ 0􏼨 􏼩

LS
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Substituting χAi
� βAi

θAi
into formula (18), we can get

χAi
−

βAi

1 + ε1
≥ 0,

βAi

ε1
− χAi
≥ 0,

θAi
−

1
1 + ε1

− χAi
+

βAi

1 + ε1
≥ 0,

1
ε1

− θAi
−
βAi

ε1
+ χAi
≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

After the above transformation, the new optimization
problem P3 is obtained as
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P3: min
α,β,θ,f,μ,η,χ

y
″
(α, β, θ, f, μ, η, χ)

s.t. C3, C7, C8

C9: formula (15)

C10: formula (17)

C11: formula (19),

(20)

P3 is a convex optimization problem, so it can be solved by
Lagrangian multiplier method as well as gradient method
[73, 74]. After substituting the obtained solutions θ and f

into θAi
� (θAi

+ ε1)
− 1 and f−mec

i � (fmec
i + ε2)

− 1, the so-
lution of the original variables can be obtained.

5.3. Solution toCacheOptimizationProblem. After obtaining
the solution of P1, the cache decision problem is solved
below. First, substituting the obtained resource allocation
scheme α(0), β(0), θ(0), f(0) into P0, the cache decision
problem P4 is obtained as follows:

P4: min
x

􏽘

L

i�1
xAi

U
local mec
Ai

+ 1 − xAi
􏼐 􏼑U

local cloud
Ai

s.t. C4: xAi
∈ 0, 1{ }, ∀ i ∈L

C5: 􏽘
i∈L

xAi
cAi
≤C,

(21)

P4 is a 0-1 problem, which can be solved by the branch and
bound method. However, the branch and bound method
requires 2k operations in the worst case, and its complexity is
acceptable when the amount of input data is small. It be-
comes more challenging to fnd an approximation optimal
solution quickly as the amount of input data increases [75].
In order to reduce the time complexity, this paper relaxes the
integer variable xAi

into a continuous variable of 0≤xAi
≤ 1.

At this point, P4 becomes a convex optimization problem,
which can be solved by the interior point method and the
KKT (Karush–Kuhn–Tucker) condition [76]. Te continu-
ous variable is then restored by rounding, and the threshold
is simply set to 0.5.

5.4. Pseudocode of Algorithm. Based on the aforementioned
analysis, it is clear that the edge server executes the opti-
mization strategy, obtains the entirety of the information for
the current access terminal in stages [77], and then sends the
cache decision and resource allocation results to the terminal
device, minimizing the execution delay of every device task.
Te detailed procedures are described in Algorithm 1.

6. Simulation Results

Tis section runs simulation tests on MATLAB 2017b and
evaluates how well the suggested optimization algorithm
performs. Additionally, this work mimics the following
baseline techniques for performance comparison.

Complete ofoad cloud (COC) strategy:Te cloud server
houses all of the service-related task data. Te process has
now been completed on the cloud server, and each terminal

device has received an equal share of the uplink bandwidth
resources [36].

Random resource allocation and caching (RCRA)
strategy Edge servers with limited storage employ random
caching techniques to maximize the amount of service
material they can cache and to maximize computational and
bandwidth resources based on [55].

Local ofoad completely (LOC) strategy: Task-related
service data is presumptively stored at the local terminal, and
all tasks are processed locally at the terminal [57].

6.1. Simulation Parameters. In the simulation experiment,
the number of terminal devices is 10, which are randomly
distributed in a square area with a side length of 500m. hi,B

obeys the exponential distribution with a mean value of 1
[58], the computing task data size is denoted as ci and obeys
the uniform distribution of [100, 200] kB, and si is set to
1500 cycle/bit. Te simulation parameter settings are shown
in Table 1.

6.2. Algorithm Complexity and Convergence Analysis.
Since the original problem P0 is a mixed integer nonlinear
programming problem, the complexity of solving the
problem by the exhaustive method is O(2n), showing ex-
ponential growth. Te proposed algorithm converts the
original problem P0 into P3 and P4, and P3 is a standard
convex optimization problem [78], which can be solved by
the interior point method, and the complexity of the interior
point method is O(n3) [79–82]. P4 is a 0-1 discrete variable
convex optimization problem after relaxation, and its al-
gorithm complexity is O(n3). In addition, the complexity of
the number of alternate iterations is O(n) [79]. Terefore,
the overall complexity of the proposed algorithm is the
product of interior point method and that of the number of
alternate iterations, i.e., O(n4). Compared with the ex-
haustive method, the complexity of the proposed algorithm
is greatly reduced.

Figure 2 depicts the algorithm convergence process. Te
value produced using the exhaustive procedure is used as the
ideal answer in this paper. Te exhaustive technique is
typically utilized in small-scale applications because it takes
a long time. Figure 2 shows that the suggested algorithm
swiftly converges and approaches the ideal solution after just
25 iterations, demonstrating that its performance is very
similar to that of the exhaustive technique and that it is
capable of obtaining an approximate optimal solution. Tis
validates that the proposed algorithm can be tuned to the
desired convergence value by confguring the specifc sub-
optimal value of iterations and other parameters.

6.3. Simulation Results and Analysis. Te simulation results
in this section were realized with MATLAB 2017b on
a desktop computer equipped with an Intel Core i5 9400F
2.9GHz processor and 16GB RAM. Under the conditions of
N� 10, C� 300GB, and R� 1, the infuence of the computing
power and storage capacity of the edge server on the task
execution delay is shown in Figures 3 and 4, respectively.
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As observed in Figure 3, the task execution delays of the
proposed optimization approach and the RCRA strategy
gradually reduce as the processing capacity of the edge server
gradually increases, whereas the task execution delays of the
LOC strategy and the COC strategy remain constant. Tis is
so that all jobs in the LOC strategy continue to execute with
the same delay because the task delay of the LOC strategy

solely depends on the local computing power, and the task
execution delay has nothing to do with the resources con-
trolled by the edge server. When a task is carried out using
the COC strategy, the task execution delay is solely de-
termined by the available wireless bandwidth and the
backhaul link’s transmission rate. As a result, the task

Initialize: Caching strategy of edge services x
(0)
Ai

, ∀i ∈L, terminal transmit power pi,s, task input data size input c
input
Ai

, calculation
required for each bit of input data quantity si, the maximum number of iterations tmax, and the algorithm termination condition ξ
(1) Convert the original issue into a continuous nonlinear issue to produce the new issue P2 based on the established service caching

scheme.
(2) Transform the nonlinear problem into convex optimization problem P3 by relaxing P2 with RLT
(3) Use the interior point method to solve P3, and obtain the resource allocation scheme α, β, θ, f, μ, η, χ under the condition of

known cache decision x
(0)
Ai

(4) Substitute the solution obtained in step 3 into P4 and obtain the corresponding unloading decision xAi
through relaxation

method and convex optimization method
(5) Obtain the diference between the objective function in step 3 and step 4, if the diference is less than ξ or the number of

iterations reaches the maximum value tmax, stop the calculation. Otherwise, perform loop iterations on steps 3 and 4.

ALGORITHM 1: Joint resource allocation and service caching.

Table 1: Simulation parameters.

Parameter Value
Number of terminal devices 10
Base station communication range side length d 500m
Computing task input data c

input
Ai

U[100, 200] kB
Calculation service type 10K
Uplink bandwidth B 20MHz
Mobile terminal transmit power Pi,s 23 dBm
Path loss r 4
Noise power σ2 −174 dBm/Hz
Computing power of the edge server F 30000 Megacycle
Computing power of the terminal flocal

i N(500, 50) Megacycle
Service cache required to execute a task cAi

U[30,80] GB
Maximum storage capacity of the edge server C 500GB
Transmission rate between the server and the remote cloud R 1Mbps
Number of terminal equipment L 10
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Figure 2: Algorithm convergence process.
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Figure 3: Te infuence of the computing power of the edge server
on the task execution delay.
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execution delay of the COC strategy does not change as the
computing power of the edge server increases. Furthermore,
it is also evident from Figure 3 that the suggested optimi-
zation strategy performs marginally better than the RCRA
strategy in terms of speed. Tis is because the JSCRA op-
timization strategy reasonably optimizes the service cache,
allowing for the execution of more tasks on the edge server.

Figure 4 shows that the task execution delays of the
proposed approach and the RCRAmethod steadily reduce as
the storage capacity of the edge server increases, whereas the
task execution delays of the LOC strategy and the COC
strategy remain constant. Te proposed technique has a 10%
reduction in job execution latency compared to the RCRA
strategy and a 30% reduction in task execution delay
compared to the COC strategy. Te COC strategy’s task
execution time is tied to bandwidth resources and backhaul
connection transmission rates, whereas the LOC strategy’s
job execution delay is only related to local computing ca-
pacity. As a result, neither the LOC strategy nor the COC
strategy’s job execution delay is afected by the edge server’s
storage capacity. In addition, Figure 4 demonstrates that the
performance advantages of the proposed method and the
RCRA technique rise when the storage capacity of the edge
server increases in comparison to the COC strategy. Tis is
due to the fact that when an edge server’s storage capacity is
limited, only a portion of its computational services may be
cached, and the remainder must be saved on a distant cloud
server. Since the majority of jobs will currently be carried out
via cloud services, the proposed approach and RCRA
method performmarginally better in terms of task execution
delay than the COC strategy. However, as storage capacity
rises, the amount of service content that the edge server can
cache grows, and the percentage of operations that must be
executed remotely gradually declines. Since the edge server’s
computational capacity is currently being used to its full
potential, the performance of the suggested approach and
the RCRA strategy outperforms the COC algorithm by
a wide margin.

Figure 5 depicts the efect of task input data size on task
execution delay. Figure 5 demonstrates that the performance
of the suggested technique outperforms previous strategies
and that task execution delays increase with task input data
size. Tis is due to the fact that as the amount of input data
increases, the task will require more processing and com-
munication resources and all techniques will execute tasks
more slowly. In addition, the combined optimization of
processing, communication, and storage resources makes
the suggested technique perform better than existing
solutions.

Figure 6 depicts the efect of the edge server’s and the
remote cloud’s transmission rates on the task execution
delay. Figure 6 shows that the total length of all jobs for the
proposed method, the RCRA strategy, and the COC strategy
steadily lowers as the transmission rate between the edge
server and the remote cloud gradually rises. When R� 5, the
above three strategies performance is the same. Tis is so
that task ofoading to the cloud server takes longer than task
execution on the edge server when the transmission rate
between the edge server and the remote cloud is low. Te
proposed technique performs very well when compared to
RCRA and COC strategies at this moment because the
majority of work will be carried out on the edge server. Te
performance diference between the proposed, RCRA, and
COC algorithms will become smaller and smaller as the
transmission rate increases because the execution delays of
the task in the cloud and the task on the edge server are
getting closer and closer. Tis also demonstrates that the
proposed strategy can achieve higher performance gains
when the transmission rate is low. In addition, the LOC
policy task’s execution latency remains unchanged because
the task’s local delay is determined by the computational
capabilities of the terminal and the edge server, not by the
transmission rate between clouds.

Figure 7 compares the cache hit ratio of the algorithms
under diferent cache sizes. As can be seen from Figure 7, the
cache hit ratio of the proposed algorithm is higher than that
of LOC, COC, and RCRA algorithms which makes it su-
perior and efective for the cache utilization of MEC.

Figure 8 compares the throughput of the algorithms
under diferent number of mobile devices. As can be seen
from Figure 8, the throughput of the proposed algorithm is
higher than existing algorithms which further validates its
efectiveness.

To further validate the efectiveness of the proposed
algorithm, Figure 9 compares the execution delay of the
proposed algorithm and existing convex optimization al-
gorithms (References [6–8]) under transmission rate be-
tween the edge server and remote cloud. As can be seen from
Figure 9, the execution delay of the proposed algorithm is
lower than that of existing algorithms. Tis further proved
the superiority and importance of the proposed algorithm.

Figure 10 compares the execution delay of the proposed
and references [80–82] algorithms under increasing storage
capacity of the edge server. As can be seen from Figure 10,
the execution delay of the proposed algorithm is lower as
compared with competing alternatives which validates its
efectiveness.
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Figure 4: Efect of storage capacity of the edge server on task
execution delay.
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7. Conclusion

Tis study suggests a service cache for the efect of task
ofoading and service cache coupling on task latency in
a centralized mobile edge network made up of multiple
terminals, single service nodes, and cloud servers. Te
combined optimization issue of service caching and resource
allocation is frst established under the restrictions of
computation, communication, and storage capacity. Te
original problem is then divided into two smaller issues and
iteratively improved using the convex optimization ap-
proach, relaxation, and reconstructive linearization tech-
niques. According to the simulation results, the proposed
method efectively minimizes the system delay and has good
convergence when compared to the RCRA strategy, LOC
strategy, and COC strategy.
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