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Tis paper proposes a recursive delta-operator-based subspace identifcation method with fxed data size. Te majority of existing
subspace identifcation methods are constrained to discrete-time systems because of the disparity in Hankel matrices. Addi-
tionally, due to the storage cost, LQ-factorization and singular value decomposition in identifcation methods are best suited for
batch processing rather than online identifcation.Te continuous-time systems are transformed into state space models based on
the delta-operator to address these issues. Tese models approach the original systems when the sampling interval approaches
zero. Te size of the data matrices is fxed to reduce the computing load. By fading the impact of past data on future data, the
amount of data storage can be decreased. Te efectiveness of the proposed method is illustrated by the continuous stirred tank
reactor system.

1. Introduction

In recent decades, subspace identifcation method has be-
come an important part in the area of identifcation and
control [1–3]. Te discrete-time systems have been the main
focus of the identifcation approaches. Indeed, the mathe-
matical models of continuous-time systems are diferential
equations, which constitute the majority of existing systems.
Te numerical techniques like LQ-factorization and singular
value decomposition form the foundation for subspace
identifcation. Tese tools are suitable for time-invariant
systems, but due to the high computing weight, they are
not suitable for the identifcation of time-varying systems.
Terefore, a new recursive identifcation approach for
continuous-time systems is very desirable.

Te direct method and the indirect method are the two
basic methods for identifying continuous-time systems.
Te direct methods determine the system model from the
data, and the indirect methods obtain the system model
after obtaining the discrete-time systems. Actually, the
key to the identifcation methods is how to deal with the

time-derivative issues of the continuous-time systems.
Te time-derivative problems have been addressed in
a variety of ways [4]. Te continuous-time model was
obtained by utilizing the bilinear connection rather than
determining the input-output operator [5]. In [6], the
subspace identifcation approach and Poisson moment
functionals (PMFs) were used to handle the time-
derivative problems of the signals. Te input-output
matrix equation in the time-domain was found by us-
ing random distribution theory to characterize the time-
derivative [7]. Te identifcation approaches of a toroidal
continuously variable transmission were investigated in
[8], and the study introduced linear integral flter methods
and PMF to obtain the submodel parameters. Te
Laguerre flter-based subspace identifcation method for
continuous-time systems was presented in [9]. Te
identifcation problems of fractional commensurate order
systems from the nonuniformly data were solved [10]. Te
continuous-time state space models identifcation method
was obtained by using generalized orthogonal basis
functions [11]. Te continuous-time system identifcation
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approach with missing outputs was investigated by using
PMF and nuclear norm minimization [12]. A method of
nuclear norm subspace identifcation based on Kalman
flter for the stochastic continuous-time system is pro-
posed in [13]. In [14], the recursive subspace identifcation
method of continuous-time systems via generalized
Poisson moment functional is presented.

In the subspace identifcation process, LQ-factorization
and singular value decomposition (SVD) are reliable tools
[4, 15]. However, they are computationally expensive in
online estimation. To handle the issues with online identi-
fcation, recursive subspace identifcation is widely in-
vestigated. Te traditional recursive identifcation algorithm
was presented by the propagator method after analyzing the
connection between array signal processing and subspace
identifcation [16]. By using the least squares support vector
machines, the recursive Hammerstein system identifcation
was proposed [17]. Te constrained recursive least squares
identifcation method with the forgetting factor was pro-
vided [18]. Te recursive identifcation approach was ob-
tained by integrating canonical correlation analysis [19]. In
[20], the load disturbance response and the observer Markov
parameter matrices were obtained by using the recursive least
squares methods, and the identifcation methods were de-
rived. Te local polynomial modeling was used to investigate
the two-dimensional recursive least squares identifcation
approach [21].Te recursive tracking approach that identifed
the parameters of the spacecraft was described [22]. Te
recursive combined-deterministic stochastic subspace iden-
tifcation algorithm was provided, which used a system ob-
servability matrix recursively that avoids the need for SVD
[23]. In [24], a new recursive least squares identifcation al-
gorithm with variable-direction forgetting was proposed for
multioutput systems. Based on sparse adaptive hybrid in-
tegration, Zhao and Lam [25] demonstrated the general
stifness and redundancy issue in the fast subspace. Rump and
Lange [26] proposed the fast computation algorithm of error
bounds for all eigenpairs of a Hermitian and all singular pairs
of a rectangular matrix. Bhowmik et al. [27] presented the
identifcation approach for structural modal parameters via
recursive canonical correlation analysis.

It is clear from the aforementioned references that
discrete-time systems are the research focus of the majority
of the recursive identifcation methods. However, identif-
cation of continuous-time systems has real value in a variety
of circumstances [28, 29]. In addition, the references
[16, 18, 22] that mention subspace tracking include the
assumption that the system order is known beforehand.
Instead, this paper proposes a recursive subspace identif-
cation algorithm with the priori order unknown. Based on
delta-operator-based method, it fxes the size of the data
matrices and proposes a recursive identifcation algorithm
obtained by performing the LQ-factorization recursively.
Te proposed method has the main contributions as follows:
(1) for the online continuous-time identifcation problems,
the state space model that is convergent to the original
systems is obtained by using the delta-operator-based

method and (2) to reduce the computational burden and
storage cost, the size of the data matrices is fxed a priori to
fade the infuence of old data to the updated data.

Te rest of this paper is structured as follows. Te
problem formulation is described in Section 2. In Section
3, the proposed recursive subspace identifcation algo-
rithm is derived. Section 4 provides the application to the
continuous stirred tank reactor system. Section 5 presents
the conclusions.

2. Problem Statement

Consider a continuous-time system as follows:

x
.
(t) � Ax(t) + Bu(t) + w(t),

y(t) � Cx(t) + Du(t) + v(t),
(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rl is the output
vector, u(t) ∈ Rm is the input vector, A ∈ Rn×n is system
matrix, B ∈ Rn×m is input matrix, C ∈ Rl×n is output matrix,
D ∈ Rl×m is direct transmission matrix, and w(t) ∈ Rn and
v(t) ∈ Rl are white Gaussian processes. Te corresponding
covariance matrices are as follows:

E
w(t)

v(t)
  w(τ) v(τ)(   �

R S

ST Q
 δ(t − τ), (2)

where δ(t − τ) is the Dirac delta function and E(·) is the
expectation operator. Identifying thematricesA,B,C, andD
via the input-output data is our purpose.

It can be clearly seen that the input and output de-
rivatives are at least equal to (i − 1)-th. However, the output
vector y(t) and the state vector x(t) have no time-derivative,
and the noises w(t) and v(t) are not diferentiable. Under
these circumstances, it is also impossible to adapt traditional
subspace identifcation techniques, which are initially
studied in the context of ofine discrete-time models, to the
identifcation of online continuous-time systems. Terefore,
to deal with the issue of online identifcation of continuous-
time stochastic systems, we provide a novel approach
RSI-DOSM (recursive subspace identifcation based on
delta-operator state space model).

3. Recursive Subspace Identification via Delta-
Operator State Space Model

3.1. Deriving the State Space Model by Delta-Operator.
We initially establish the state space model based on delta-
operators to handle the identifcation issues of systems (1).
Te sampled input-output behavior of system (1) can be
derived by using a straightforward antialiasing flter and
zero-order hold.

qx(t) � Aqx(t) + Bqu(t) + wq(t),

y(t) � Cqx(t) + Dqu(t) + vq(t),
(3)

where
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Aq � e
A∆

,Bq � 
Δ

0
e

Aτdτ B≃∆B,

Cq �
1
∆


k∆+∆

k∆
Ce

A(τ− k∆)
dτ ≃C,Dq � D,

(4)

where q is the shift operator with qx(t) � x(t + ∆), ∆ is the
sampling period, ≃ denotes the both sides are nearly equal,
and wq and vq are stochastic disturbances; they satisfy the
following equation:

Qq � cov wq ≃Q∆,

Sq � cov wq, vq ≃ S,

Rq � cov vq ≃
R
∆

,

(5)

where cov is the abbreviation for covariance.

Theorem 1. According to equation (3) described above, the
state space model of system (1) via delta-operator can be
obtained.

Proof. As the sampling period Delta goes to zero, it is found
from equation (4) that Aq⟶ I,Bq⟶ 0,Cq⟶ C.
Hence, the shift operator q causes a model degeneracy. Te
delta-operator in [30, 31] is introduced as follows:

δf(t) �
f(t + ∆) − f(t)

∆
. (6)

For a sufciently small ∆, we have
_f(t) � pf(t)≃∆f(t), (7)

where p is the diferentiation operator.
According to [32], the model based on delta-operator is

given.

δx(t) � Aδx(t) + Bδu(t) + wδ(t),

y(t) � Cδx(t) + Dδu(t) + vδ(t),
(8)

where

Aδ �
Aq − I
∆

,Bδ �
1
∆
Bq,Cδ � Cq,Dδ � Dq,

wδ(t) �
1
∆
wq(t), vδ(t) � vq(t).

(9)

Te covariance matrices are as follows:

Qδ � cov wδ ≃
Q
∆

,

Sδ � cov wδ, vδ ≃ S,

Rδ � cov vδ ≃
R
∆

.

(10)

It is found that Qδ andRδ are both approximately equal
to 1/∆.

Te spectral densities are defned to achieve sampling
independence as follows:

Θδ � ∆Qδ,

Ωδ � ∆Rδ,
(11)

Aδ⟶ A,Bδ⟶ B,Cδ⟶ C,Dδ⟶ D,Θδ⟶ Q, and
Ωδ⟶ R when ∆⟶ 0. Hence, the state space model (6)
via delta-operator converges to the original continuous-time
system (1).

In terms of [33], the optimal flter for the model (8) is as
follows:

δx(t) � Aδx(t) + Bδu(t) + Kδ(t) y(t) − Cδx(t) − Dδu(t) ,

Kδ(t) � ∆Aδ + I( Pδ(t)CT
δ ∆CδPδ(t)CT

δ +Ωδ 
− 1

,

(12)

where Kδ(t) is the Kalman gain, x(t) is the one-step pre-
dicted estimate of x(t), and Pδ(t) is the delta form of Riccati
equation in [34, 35].

In addition, the new innovation process is described as
follows:

e(t) � y(t) − Cδx(t) − Dδu(t). (13)

Te innovation form of system (8) is given by the fol-
lowing equation:

δx(t) � Aδx(t) + Bδu(t) + Kδe(t),

y(t) � Cδx(t) + Dδu(t) + e(t).
(14)

Hence, the state space model based on delta-operator is
derived. □

3.2. Obtain Input-Output Matrix Equation. Under the as-
sumption that k is larger than n, the extended observability
matrix for the model (14) is defned as follows:

Γk �

Cδ

CδAδ

CδA
2
δ

⋮

CδA
k− 1
δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Te input data matrix is given as follows:

Uk,N �

u(t) u(t + ∆) · · · u(t +(N − 1)∆)

δu(t) δu(t + ∆) · · · δu(t +(N − 1)∆)

δ2u(t) δ2u(t + ∆) · · · δ2u(t +(N − 1)∆)

⋮ ⋮ ⋮ ⋮

δk− 1u(t) δk− 1u(t + ∆) · · · δk− 1u(t +(N − 1)∆)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(16)

where the matrices Yk,N andEk,N are the same form as Uk,N.
Te state vector sequence is described as follows:

XN � [x(t), x(t + ∆), . . . , x(t +(N − 1)∆)]. (17)
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According to equation (14), the extended model is given
by the following equation:

Yk,N � ΓkXN + HkUk,N + GkEk,N, (18)

where

Hk �

Dδ 0 0 · · · 0

CδBδ Dδ 0 · · · 0

CδAδBδ CδBδ Dδ · · · 0

⋮ ⋮ ⋮ ⋮ ⋮

CδA
k− 2
δ Bδ CδA

k− 3
δ Bδ CδA

k− 4
δ Bδ · · · Dδ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Gk �

I 0 0 · · · 0

CδKδ I 0 · · · 0

CδAδKδ CδKδ I · · · 0

⋮ ⋮ ⋮ ⋮ ⋮

CδA
k− 2
δ Kδ CδA

k− 3
δ Kδ CδA

k− 4
δ Kδ · · · I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

To handle the high frequency noises of input-output
signals, the stable preflter with order l is frst defned as
follows:

F(δ) �
1

E(δ)
�

1
δl

+ e1δ
l− 1

+ · · · + e1
, (20)

where e1, e2, . . . , el are the preflter parameters.
Based on flter (20), system (14) is transformed as

follows:

δxf
(t) � Aδx

f
(t) + Bδu

f
(t) + Kδe

f
(t),

yf
(t) � Cδxf

(t) + Dδu
f

(t) + ef
(t),

(21)

where uf(t) � 1/E(δ)u(t), yf(t) � 1/E(δ)y(t), xf(t), and
ef(t) are similar to uf(t).

Te input-output matrix equation (18) becomes as
follows:

Yf

k,N � ΓkX
f
N + HkU

f

k,N + GkE
f

k,N, (22)

where

Uf

k,N �

uf
(t) uf

(t + ∆) · · · uf
(t +(N − 1)∆)

δuf
(t) δuf

(t + ∆) · · · δuf
(t +(N − 1)∆)

δ2uf
(t) δ2uf

(t + ∆) · · · δ2uf
(t +(N − 1)∆)

⋮ ⋮ ⋮ ⋮

δk− 1uf
(t) δk− 1uf

(t + ∆) · · · δk− 1uf
(t +(N − 1)∆)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

and Xf

N,Uf

k,N, andEf

k,N are defned in a similar way.
Defne

Ψf
ui

�

uf
i (t)

δuf

i (t)

⋮

δk− 1uf
i (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ψf
yj

�

yf
j (t)

δyf

j (t)

⋮

δk− 1yf
j (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

where uf
i (t), i � 1, 2, . . . , m is the i-th component of uf(t),

which is similar for yf
j (t), i � 1, 2, . . . , l.

In view of preflter (20), we get the following equation:

δluf
i (t) � − e1δ

l− 1uf
i (t) − · · · − e1− 1δ

l− 1uf
i (t) + ui(t),

δlyf
i (t) � − e1δ

l− 1yf
i (t) − · · · − e1− 1δ

l− 1yf
i (t) + yi(t).

(25)

Equation (25) can be converted to the following
equation:

δΨf
ui

(t) � ΦΨf
ui

(t) + Υuf
i (t),

δΨf
yi

(t) � ΦΨf
yi

(t) + Υyf
i (t),

(26)

where

Φ �

0 1

0 1

⋱ ⋱

0 1

− el − el− 1 · · · − e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ �

0

0

⋮

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

In terms of equation (27), the input-output data matrices
Uf

k,N andYf

k,N can be obtained.

Remark 2. It should be pointed out that, compared with the
identifcation methods in [36–38], the computation of
matrix logarithm is avoided by using the delta-operator state
space model (8).
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Remark 3. It is important to note that the delta-operator
method has fewer design parameters than the more general
continuous-time subspace identifcation methods in
[7, 11, 12].

3.3. Recursive Estimation of the ExtendedObservabilityMatrix.
Let Uf

k,N � Uf(t | t + (N − 1)∆) � [uf

δ (t), . . . , uf

δ (t + (N

− 1)∆)] and the instrumental variable Up

k,N � Up (t | t + (N

− 1)∆) � [up

δ(t − i), . . . , up

δ(t − i + (N − 1)∆)]. Te matrix
Yf

k,N is similarly defned as Uf

k,N.
Given a set of new output data, construct data vectors

uf

δ (t + 1), up

δ(t + 1), and yf

δ (t + 1) as updated data. Te
relation is described as follows:

Uf(t | t +(N − 1)∆) ⋮ uf

δ (t + 1)

Up(t | t +(N − 1)∆) ⋮ up

δ(t + 1)

Yf(t | t +(N − 1)∆) ⋮ yf

δ (t + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

uf

δ (t +(N − 1)∆) ⋮ Uf(t + 1 | t +(N − 1)∆ + 1)

up

δ(t +(N − 1)∆) ⋮ Uf(t + 1 | t +(N − 1)∆ + 1)

yf

δ (t +(N − 1)∆) ⋮ Yf(t + 1 | t +(N − 1)∆ + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

Theorem 4. Based on equation (28), the projection matrix
constructed by input-output data can be obtained by the LQ-
factorization and matrix transformation.

Proof. Perform the LQ-factorization on the left submatrix in
the left-hand side of equation (28), it gives the following
equation:

Uf(t | t +(N − 1)∆)

Up(t | t +(N − 1)∆)

Yf(t | t +(N − 1)∆)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

L11(t) 0 0

L21(t) L22(t) 0

L31(t) L32(t) L33(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT
1 (t)

QT
2 (t)

QT
3 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

Ten, perform the LQ-factorization on the right sub-
matrix in the right-hand side of equation (28), it gives the
following equation:

Uf(t + 1 | t +(N − 1)∆ + 1)

Uf(t + 1 | t +(N − 1)∆ + 1)

Yf(t + 1 | t +(N − 1)∆ + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

L11(t + 1) 0 0

L21(t + 1) L22(t + 1) 0

L31(t + 1) L32(t + 1) L33(t + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT
1 (t + 1)

QT
2 (t + 1)

QT
3 (t + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

Substituting equations (29) and (30) into the two sides of
equation (28) and according to the relation QiQj � Iδij, it is
found that

L0(t) � L11(t)LT
11(t), (31)

L1(t) � L21(t)LT
11(t), (32)

L2(t) � L21(t)LT
21(t) + L22(t)LT

22(t), (33)

L3(t) � L21(t)LT
21(t) + L22(t)LT

22(t), (34)

L4(t) � L31(t)LT
21(t) + L32(t)LT

22(t). (35)

Ten, we have the relations as follows:

L0(t + 1) � L0(t) + uf

δ (t + 1)ufT

δ (t + 1) − uf

δ (t +(N − 1)∆)ufT

δ (t +(N − 1)∆), (36)

L1(t + 1) � L1(t) + up

δ(t + 1)ufT

δ (t + 1) − up

δ(t +(N − 1)∆)ufT

δ (t +(N − 1)∆), (37)

L2(t + 1) � L2(t) + yf

δ (t + 1)ufT

δ (t + 1) − yf

δ (t +(N − 1)∆)ufT

δ (t +(N − 1)∆), (38)

L3(t + 1) � L3(t) + up

δ(t + 1)ufT

δ (t + 1) − up

δ(t +(N − 1)∆)ufT

δ (t +(N − 1)∆), (39)

L4(t + 1) � L4(t) + yf

δ (t + 1)upT

δ (t + 1) − yf

δ (t +(N − 1)∆)upT

δ (t +(N − 1)∆). (40)
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In terms of equation (33), we get the following equation:

L32(t) � L4(t) − L31(t)LT
21(t)  LT

22(t) 
− 1

. (41)

According to equation (31), we have the following
equation:

L31(t)LT
21(t) � L2(t)L− 1

0 (t)LT

1 (t), (42)

L22(t)LT
22(t) � L2(t) − L1(t)L− 1

0 (t)LT

1 (t). (43)

According to equations (39)–(41), we have the following
equation:

L32(t)LT
32(t) � L4(t) − L2(t)L− 1

0 (t)LT

1 (t) 

· L3(t) − L1(t)L− 1
0 (t)LT

1 (t) 
− 1

· L4(t) − L2(t)L− 1
0 (t)LT

1 (t) 
T

.

(44)

In view of equation (31), we obtain the following
equation:

L31(t)L− 1
11(t) � L2(t)L− 1

0 (t). (45)

Perform the eigenvalue decomposition on
L22(t + 1)LT

22(t + 1), we get the following equation:

L32(t + 1)LT
32(t + 1) � Un(t + 1) U⊥n (t + 1) 

·
S21(t + 1) 0

0 S22(t + 1)

⎡⎢⎣ ⎤⎥⎦

·
UT

n (t + 1)

U⊥n (t + 1) 
T

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(46)

According to equations (43) and (44), the matrices
A(t + 1), B(t + 1), C(t + 1), and D(t + 1) can be estimated
recursively. We can determine the system order by
inspecting the eigenvalue value in equation (46). Te order
of the system is equal to the number of eigenvalue values
diferent from zero.

In terms of the literature [39], we have the following
equation:

Γi � US1/2,

Γi− 1 � Γi ,
(47)

where Γi denotes the matrix of Γi without the last l rows.
According to equation (47), the state sequence is ob-

tained. Te matrices A, B, C, and D can be solved by the
following equation:

Xi+1

Yi|i

⎡⎣ ⎤⎦ �
A B

C D
 

Xi

Ui|i

⎡⎣ ⎤⎦ +
ρω
ρυ

 , (48)

where Yi|i is a block Hankel matrix with only one row of
outputs, Xi is the state sequence, and ρω and ρυ are the
Kalman flter residuals. Intuitively, since the Kalman flter

residuals ρω and ρυ are uncorrelated with the state, it seems
natural to solve this set of equations in a least squares sense.

For clarity, the proposed method RSI-DOSM is shown in
Table 1. □

Remark 5. It is worth mentioning that the main advantages
of the proposed method RSI-DOSM are twofold: (i) Optimal
flter (12) converges to the original flter for system (1) when
the sampling period goes to zero, which circumvents the
identifcation difculty from the time-derivative. (ii)Te size
of the data matrices is fxed a priori to perform the LQ-
factorization recursively, which is a key to reduce compu-
tational burden of the identifcation algorithm.

4. Application to Continuous Stirred
Tank Reactor

A simulated continuous stirred tank reactor (CSTR) system
is used to validate the efcacy and accuracy of RSI-DOSM
[40, 41]. Te process fow diagram is depicted in Figure 1.

Te reactor’s main purpose is to deliver the concen-
tration of the outlet efuent at a prescribed value, by ma-
nipulating the coolant fow rate circulating in the reactor’s
jacket. A frst-order irreversible reaction in the CSTR system
is assumed. One component B, which is an outfow stream, is
produced by the reactant A and solvent’s incoming fow.Te
heat produced by the reaction is transferred via the jacket’s
cooling fow.Te temperature is maintained by adjusting the
amount of heat transferred through the reactor jacket. To
control the reactor’s liquid level and temperature, the cas-
cade control approach is used. It is a challenge for the
process of system identifcation because of the complex
nonlinear dynamics and the temperature-dependent rate
constant as well as the coupled dynamics between tem-
perature and concentration.

Te dynamic model of the CSTR system can be written
by using the fundamental idea of the balances of compo-
nents, mass, and energy as a foundation.

dCa

dt
� − k0e

− E/RT
Ca +

Qf Caf − Ca( 

Ah
,

dT
dt

�
k0e

− E/RT
Ca(− ∆H)

ρCp

+
Qf Tf − T 

Ah
+
UAc Tf − T 

ρCpAh
,

dTc

dt
�

Qc Tcf − Tc( 

Vc

+
UAc T − Tc( 

ρcCpcVc

,

dh
dt

�
Qf − Qo

A
,

(49)

where A is the reactor’s cross-sectional area, E is the acti-
vation energy, k0 is pre-exponential factor, ρ is the content’s
density, R is the gas constant, Cpc is the heat capacity of
coolant, Cp is the heat capacity of the contents, ∆H is the
reaction heat, Ac is the total heat transfer area, U is the heat
transfer coefcient, and ρc is the coolant’s density.
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Table 2 lists the system’s remaining specifcations. It lists
the associated standard deviations of the Gaussian noise uti-
lized in the simulation process. Data sets are produced using
the remaining variables in Table 2 as inputs and
Ca, Caf , Tc, andTcf as the measured outputs in the CSTR
simulation system’s usual operatingmode. Table 2 also presents
the correspondingGaussian noise standard deviations.Tefrst
200 samples of the data set are used to build the model. Te
scaled data have a unit variance and zero mean.

Two forms of natural changes between t � 301s and t �

700s are used to describe the time-varying properties: (1)
a slow variation in Caf with a slope of 0.6 × 10− 3s and (2)
a slow variation of catalyst deactivation E/R with
3K · min− 1. We set each number of future and past block
rows p � f � 10, N � 700.

Te prediction outputs of RSI-DOSM are shown in
Figure 2. Te measured data from CSTR and the predicted
data from RSI-DOSM are displayed, respectively, by the red
and black lines. It can be found that the predicted trajectory
obtained by RSI-DOSM and the measured trajectory are
quite consistent.

In contrast, the estimated results are also obtained using
the recursive subspace identifcation based on Laguerre
flters (RSILF) approach [42]. Te predicted outputs of
RSILF are shown in Figure 3. Te red and black lines
represent the CSTR measured data and RSILF predicted
data, respectively. Figure 4 displays the prediction error
between the measured and predicted values for each of the
output fgures from RSI-DOSM and RSILF. Te RSI-DOSM
and RSILF prediction errors are represented by the black and

Table 1: Summary of the RSI-DOSM method.

Step 1: Construct the delta-operator-based state space model
(1) Obtain the delta-operator-based model by using equation (8)
(2) Construct the optimal flter for the model (8) via equation (12)

Step 2: Derivation of the input-output matrix equation
(3) Build the extended model of the innovation system by using equation (18)
(4) Compute the input-output matrix equation by using equation (22)

Step 3: Obtain the continuous-time system
(5) Compute L32(t)LT

32(t) by using equation (44)
(6) Perform the eigenvalue decomposition on L32(t)LT

32(t) by using equation (46)
(7) Solve the matrices A, B, C, and D via equation (48)

TC TT

TC TT

FC FT

LCLT

Ca Qo

Qc Tc

QfCaf Tf

Qc Tcf

Figure 1: Te process fow diagram for CSTR.

Table 2: Variables description and noise standard deviation values for CSTR.

Variable Description Noise standard deviation
values

Ca Concentration of species A in the reactor 0.0024mol · L− 1

Caf Concentration of species A in the feed stream 0.0024mol · L− 1

Tc Coolant temperature in the cooling jacket 0.45K
Tcf Temperature of the coolant feed 0.45K
T Temperature of the reactor 0.45K
Tf Temperature of the feed stream 0.45K
h Liquid level of the reactor 0.04m
Qc Coolant fow rate 0.32mol · L− 1

Qo Outlet fow rate out of the reactor 0.71mol · L− 1

Qf Feed fow rate into the reactor 0.71mol · L− 1

Complexity 7



Measured
Predicted

320

325

330

335

340

345

350
Tc

100 200 300 400 500 600 7000
time (s)

Measured
Predicted

297

298

299

300

301

302

303

Tc
f

100 200 300 400 500 600 7000
time (s)

Measured
Predicted

0.95

1

1.05

1.1

1.15

1.2

1.25

Ca
f

100 200 300 400 500 600 7000
time (s)

Measured
Predicted

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Ca
100 200 300 400 500 600 7000

time (s)

Figure 2: Te prediction outputs of RSI-DOSM.
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Figure 3: Te prediction outputs of RSILF.
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blue lines, respectively. It can be demonstrated that RSI--
DOSM has more consistency.

Two distinct performance metrics, the variance
accounted for (VAF) criterion and the mean square error
(MSE), are taken into consideration in order to compare the
RSI-DOSM and RSILF models [39, 43]. Te defnitions of
the MSE and VAF are as follows:

VAF � max 1 −
Var y − y 

Var y 
, 0  × 100%,

MSE �
(y − y)

2

N
,

(50)

where y is the prediction output of the system and N is the
data length.

Te results are summarized in Table 3.
Clearly, for the two separate criteria taken into con-

sideration, the RSI-DOSMmodel’s predictive ability exceeds
that of the RSILF model. In particular, the improvements of
26%, 40%, 35%, and 18% in the MSE of output variables are
obtained by resorting to the RSI-DOSM model as an al-
ternative to RSILF model, respectively. It demonstrates that

RSI-DOSM’s prediction performance is superior to RSILF’s
prediction performance.

 . Conclusions

A recursive subspace identifcation method based on
delta-operator state space model (RSI-DOSM) is pro-
posed. Te state space model that is converged to the
original systems is derived utilizing the delta-operator.
Te size of the data matrices is chosen a priori to minimize
the impact of historical data and reduce the calculation
cost of recursive algorithms. Te results of the simulation
suggest that the proposed identifcation algorithm has the
improvements of 26%, 40%, 35%, and 18% in the MSE of
output variables. It is important to extend the proposed
method to eigen perturbation techniques, which will be
the future work.

Data Availability

Te simulation data used to support the fndings of this
study are available from the corresponding author upon
request.
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Figure 4: Te prediction error of RSI-DOSM and RSILF.

Table 3: Te performance criteria for RSI-DOSM and RSILF models.

Variable
RSI-DOSM RSILF

MSE VAF MSE VAF
Tc 0.0058 90.2684 0.0079 87.2945
Tcf 0.0032 89.2874 0.0054 86.2584
Caf 0.0041 92.8746 0.0063 91.2475
Ca 0.0067 91.2967 0.0082 90.8547
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