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Tis investigation centers on megastable systems, distinguished by their countable infnite attractors, with a particular emphasis
on the Quadratic Megastable Oscillator (QMO). Unlike traditional megastable oscillators reliant on external excitation, our
proposed QMO operates autonomously, contributing to its distinctiveness. Trough a comprehensive exploration of the QMO,
we elucidate various dynamical behaviors, enriching the understanding of its complex system dynamics. In contrast to con-
ventional megastable oscillators, the QMO yields nested types of multiple attractors for diverse initial conditions, elegantly
depicted in phase portraits. To gauge the sustainability of chaotic oscillation, we employ infuential parameter bifurcation plots,
providing a nuanced insight into the system’s dynamical evolution.Te complexity of the proposed system is further underscored
by its intricate basins of attraction, accommodating an infnite number of coexisting attractors. Exploring trajectory dynamics, we
observe that certain initial conditions lead trajectories to distant destinations, evading the infuence of local attractors. Tis
behavior underscores the uniqueness of the QMO and highlights its potential applications in scenarios requiring nonlocalized
attractor behaviors. Taking a practical turn, the QMO is applied to biometric fngerprint image encryption, demonstrating its
efcacy in real-world applications. Rigorous statistical analyses and vulnerability assessments confrm the success of the QMO in
providing secure encryption within chaotic system-based frameworks. Tis research contributes not only to the theoretical
understanding of megastable systems but also establishes the QMO as a valuable tool in encryption applications, emphasizing its
robustness and versatility in complex dynamical scenarios.

1. Introduction

Multistability is a very important phenomenon in dynamical
systems [1, 2]. In addition to the standard sensitive de-
pendence on initial conditions that distinguish a chaotic
system and prevent long-term prediction, multistable sys-
tems have an attractive state that depends on the original
conditions. Multistability is not practical when designing

commercial products where it is necessary to maintain the
desired state in a noisy environment. Furthermore, multi-
stability can be used with appropriate control strategies to
switch between coexisting states without compromising
system performance [2]. In this regard, many researchers
have investigated the property multistability in many lit-
erature. New dynamical systems were proposed recently
with an infnite number of coexisting attractors, and these

Hindawi
Complexity
Volume 2024, Article ID 2005801, 15 pages
https://doi.org/10.1155/2024/2005801

https://orcid.org/0000-0002-8738-3985
https://orcid.org/0000-0001-9151-3052
https://orcid.org/0009-0002-2806-3567
https://orcid.org/0000-0003-2993-7182
mailto:rkarthiekeyan@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


are known as megastable systems [3–5]. Multistability can be
identifed in two forms named extreme multistability and
megastability, which deals with infnite number of oscilla-
tors. Applications that demand more complex systems such
as cryptography and secure communications, chaotic sys-
tems with special properties aremore suitable.Te countable
number of infnite attractors which can generate for diferent
initial conditions supports well for infnite number of key
generations. Many works of literature recommended
megastable oscillators for designing encryption algorithms,
but to the best of our knowledge, most of them have an
external excitation [6, 7]. It motivates us towards developing
a megastable oscillator without external excitation. In order
to investigate the dynamics of the proposed system, we
adopted stability analysis [8] and bifurcation plots. Te
signifcance of the initial condition and its efect on the
dynamics can be revealed using a basin of attractors. In this
work, we used a fully automated method for identifying
attractor basins without approximations of dynamics [9, 10].

In recent years, the use of the Internet in daily and
business life, the use of social media, and in addition to
this, smart production systems, smart home systems, and
Internet of things applications that came with the industry
4.0 revolutions have increased considerably. In all of these
uses, there is a continuous fow of data [11, 12]. Te
advancements in information and communication tech-
nology have not only transformed various aspects of our
daily lives but have also signifcantly broadened the scope
of telemedicine. Tis evolution encompasses the delivery
of health services, including remote diagnosis, treatment,
and even surgical operations conducted from a distance
[13]. In addition, physiological data such as fngerprint
image, palm, eye iris and retina, face, hand geometry,
fnger geometry, vein image, and behavioral biometric
data such as voice, handwriting, and walking are widely
used today to safely recognize user identity [13–15]. Also,
biometric identifcation has become more popular than
traditional identifcation techniques, especially in identity
cards, passwords, and personal identifcation numbers
(PIN) applications.

Having an infnite number of attractors in a chaotic
system can potentially provide some advantages for key
generation applications. However, it is important to note
that the actual usefulness of these advantages will depend on
the specifc requirements and limitations of the application.
Here, we highlight a few potential advantages:

(i) Increased security: With a larger number of
attractors, it can be more difcult for an attacker to
determine which attractor corresponds to the cor-
rect key. Tis can increase the security of the system
by making it more difcult to guess or brute-force
the correct key.

(ii) Increased fexibility: Having more attractors to
choose from can providemore fexibility in selecting
the initial conditions for key generation. Tis can
allow for a wider range of potential keys and make it
easier to generate keys that meet specifc re-
quirements (e.g., length, complexity, etc.).

(iii) Robustness: In some cases, having multiple
attractors can provide a certain level of robustness
against perturbations or noise in the system. Even if
the initial conditions are slightly perturbed, the
system may still converge to a valid attractor and
generate a valid key.

With the increase in digital data in these mentioned
areas, illegal attacks during the transmission of these data
have increased [16, 17]. As a result, researchers have worked
on encryption methods to increase data security. Traditional
encryption methods such as SHA-1, MD5, AES, IDEA, RSA,
and DES are not ideal for encrypting biometric images due
to large data capacity, computationally intensive, high time
consumption, and high correlation between pixels. Instead,
chaotic system-based encryption schemes have become
more popular due to the good cryptological qualities of
chaotic systems, such as their sensitivity to system param-
eters and initial conditions, nonperiodicity, mixing, and
topological transitivity [16–19]. For this purpose, in the
literature, there are various encryption studies based on
chaotic systems [12, 14, 20, 21], hyperchaotic systems
[22–25], and chaotic maps [26–28]. Due to the above-
mentioned advantages, chaotic systems have been highly
preferred and studied in the encryption of physiological
biometric images [14–17, 19, 24, 29, 30]. Terefore, bio-
metric fngerprint image encryption is designed using the
proposed Quadratic Megastable Oscillator (QMO) in
this study.

Te impetus behind this research stems from the
pressing need for advanced encryption methodologies in
safeguarding sensitive information. In an era characterized
by the ubiquity of digital data and evolving cyber threats,
there is an increasing demand for encryption systems that
not only ensure confdentiality but also exhibit resilience
against sophisticated attacks. Te motivation to explore the
Quadratic Megastable Oscillator (QMO) for biometric fn-
gerprint image encryption arises from the unique dynamical
properties it exhibits. Leveraging these properties, we aim to
develop an encryption system that not only meets stringent
security requirements but also demonstrates versatility and
robustness in the face of diverse cryptographic challenges.

Tis research makes signifcant contributions to both the
theoretical understanding of three-dimensional autono-
mous quadratic megastable oscillators and their practical
application in secure communication systems. Te com-
prehensive analysis of attractors, phase portraits, parameter
bifurcation plots, and the sustainability of chaotic oscillation
provides a nuanced insight into the complex dynamics of the
QMO. Specifcally, the exploration of attractors and basin of
attraction concepts contributes to a deeper understanding of
the system’s behavior. Te extension of the QMO to bio-
metric fngerprint image encryption represents a novel
application, demonstrating its efcacy in real-world sce-
narios. Rigorous statistical analyses, including NIST 800-22
tests, histogram analysis, correlation analysis, entropy
analysis, and key sensitivity analysis, collectively establish
the robustness and security features of the proposed en-
cryption scheme.Tis research not only advances the feld of
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dynamical systems but also provides a practical solution to
the pressing need for secure encryptionmethodologies in the
realm of biometric data protection.

Te paper is organized as follows: In Section 1, the
introduction of QMO and its application are detailed. In
Section 2, a novel 3D Quadratic Megastable Oscillator
(QMO) is presented and its dynamics are investigated with
the help of stability analysis, orbit diagram, Lyapunov
spectrum, and the basins of attraction. A biometric fn-
gerprint image encryption of cryptographic application is
shown in Section 5. Finally, the highlights of the study and
conclusion are presented.

2. Quadratic Megastable Oscillator (QMO)

In his book “Elegant Chaos” [31], Sprott has proposed
several classes and types of chaotic systems. One such
classifcation is a quadratic oscillator defned generally as

€x + f( _x, x) � A sin(ωt), (1)

where the function f( _x, x) should contain at least one si-
nusoidal term or cubic nonlinear term. But such systems are
normally forced to exhibit chaos.

Inspired by (1), we propose a simple third-order qua-
dratic oscillator which exhibit chaos without external ex-
citation. Quadratic Megastable Oscillator (QMO) shows
megastability without an external excitation whereas
megastable oscillators [32] discussed in the most of literature
show chaotic oscillations only under external excitation
[33–38].

Te mathematical model of QMO is

_x � y,

_y � −b sgn(x) + a sin(z).

_z � −x.

(2)

We considered the parameter values a � 0.1, b � 0.4 and
performed the numerical simulation for x � −20 to x � +20
all other states are kept as y� z� 0, the 2D phase portrait is
presented in Figure 1. We could clearly observe the growing
kind of attractors. We used MATLAB ODE solver with
a runtime of 500.

In order to fnd the equilibrium points, the state space
equations are equated to zero.

_x � _y � _z � 0,

y � x � 0,

a sin(z) � 0.

z � sin−
(θ)⟹ nπ,

(or) π + 2nπ This can also bewritten as nπ.

(3)

Te equilibrium points of QMO system can be written as
(0, 0, nπ), where n is an arbitrary integer.

3. Stability Analysis of QMO System

Te stability analysis [8] can be found using the Jacobian
matrix and eigenvalues as given in equations (4) and (6).

Te Jacobian matrix of the QMO system at equilibrium
drives to infnity because of the term dirac(0). Hence, we
replaced the term sign(x) as tanh(Ax) and for A � 250 it
have been shown that the hyperbolic tan function
matches the signum function. Te modifed Jacobian
matrix is

0 1 0

b A tanh (Ax)
2

− A􏼐 􏼑 0 a cos(z)

−1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Te characteristic polynomial can be derived as

λ3 + Abλ + a cos(n × π), (5)

where the eigenvalues for diferent cases is presented in
Table 1.

We plotted the real parts of the eigenvalues (λ1, λ2 & λ3)
for n � 1 to 10 in Figure 2. For even values of n produces one
negative and two complex conjugate eigenvalues which
show the equilibrium point should be an attracting spiral
saddle. For odd values of n produce one positive and two
complex conjugate (with negative real part) eigenvalue,
hence the stability can be classifed as an extruding spiral
saddle.

4. Dynamical Behavior of QMO for
Parameter Variation

A bifurcation plot is a graphical representation that show-
cases the behavior of a dynamic system as a key parameter is
varied. It provides valuable insights into the system’s
transitions, stability, and the emergence of complex be-
haviors such as chaos. In the case of chaotic systems, bi-
furcation plots are particularly useful as they unveil the
intricate relationship between system parameters and the
resulting dynamics. A bifurcation plot typically consists of
a parameter axis and a state variable axis. As the parameter
value is gradually changed, the corresponding values of the
state variable are plotted on the graph. Te resulting plot
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Figure 1: 2D Phase portrait of QMO system for 21 initial con-
ditions (from x � −20 to x � +20 with steps equal to 2) and the
initial conditions for the other states is kept at 0.
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reveals the system’s behavior as the parameter sweeps
through diferent ranges, indicating points of stability, pe-
riodicity, or chaotic behavior. Bifurcation plots often exhibit
distinctive patterns such as period-doubling, intermittency,
or strange attractors, which provide crucial insights into the
system’s behavior.

Te Lyapunov exponent is a measure used to quantify
the sensitivity to initial conditions in chaotic systems. It
characterizes the exponential rate of divergence or con-
vergence of nearby trajectories in phase space. A positive
Lyapunov exponent indicates sensitive dependence on initial
conditions and chaotic behavior, while a negative exponent
suggests convergence towards stability or periodicity. Te
calculation of Lyapunov exponents involves analyzing the
linearized dynamics of a system and determining the ex-
ponential growth or decay of perturbations. A positive
Lyapunov exponent indicates chaotic behavior, while
a negative exponent implies stability. Moreover, the mag-
nitude of the Lyapunov exponent provides information
about the system’s sensitivity to initial conditions. A higher
magnitude indicates stronger sensitivity and a more chaotic
system.

Te study of parameter variation in megastable chaotic
systems holds signifcant importance in understanding their
behavior and dynamics. Megastable chaotic systems are
characterized by exhibiting both stability and chaotic be-
havior under diferent parameter values. Exploring the efect
of parameter variation helps elucidate the range of behaviors
these systems can exhibit and provides insights into their
underlying mechanisms.

By systematically varying the system’s parameters and
observing the resulting dynamics, researchers can iden-
tify critical points at which the system undergoes

bifurcations and transitions between stability and chaos.
Bifurcation plots ofer a visual representation of these
transitions, highlighting the parameter values at which
the system enters chaotic regimes or returns to stability.
In addition, studying the Lyapunov exponents of
a megastable chaotic system under diferent parameter
values helps quantify its sensitivity to initial conditions.
Te Lyapunov exponents provide a measure of the sys-
tem’s predictability and ofer insights into the overall
stability or chaotic nature of system. A comprehensive
analysis of Lyapunov exponents for various parameter
values allows researchers to identify regions of parameter
space where the system exhibits stable behavior or
transitions into chaotic regimes.

Te infuence of parameter variation is a crucial factor in
understanding the dynamics of chaotic systems. In Section 3
of the study, it becomes evident that the dynamics of the
QMO system are signifcantly afected by parameter a

changes. To gain insights into the system’s behavior with
varying parameters, we explored a specifc range of pa-
rameters. We focused on plotting the local maxima of the
state variable y against the parameter values 0≤ a≤ 0.5. Te
resulting orbit diagram, depicted in Figure 3(a), vividly il-
lustrates the chaotic nature of the QMO system within the
considered parameter range.

Additionally, we employed Wolf’s algorithm [39] to
calculate the Lyapunov Exponents for system. A fnite time
interval of 25000 s was chosen for this analysis. Te Lya-
punov Exponents were then plotted in Figure 3(b). It is
worth noting that the summation of Lyapunov exponents for
any particular value of parameter becomes zero, which
provides strong evidence for the conservative nature of the
system. Tis observation further reinforces the un-
derstanding of the QMO system’s behavior and its sensitivity
to parameter variations.

Te study emphasizes the vital role that parameter
variation plays in the dynamics of chaotic systems, as
exemplifed by the QMO system. By exploring a specifc
parameter range and examining the local maxima of the
state variable y, the researchers demonstrated the chaotic
nature of the system. Furthermore, the calculation of
Lyapunov Exponents using Wolf’s algorithm validated the
conservative behavior of the system, as indicated by the
summation of the exponents being consistently zero for
diferent parameter values. Tese fndings contribute to
a deeper understanding of the QMO system’s dynamics
and provide valuable insights for further research in the
feld of chaotic systems.

Table 1: Stability of the QMO system for diferent cases.

Cases Eigen values Stability

Case 1: for n is even 2nπ + π⟹ at a � 0.1
λ1 � −0.464159
λ2,3 � 0.232099 ± 0.40197

⎫⎪⎬

⎪⎭

Attracting spiral saddle

Case 2: for n is odd 2nπ⟹ at a � 0.1
λ1 � 0.464159
λ2,3 � −0.232079 ± 0.40197

⎫⎪⎬

⎪⎭

Repelling spiral saddle
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Figure 2: Eigenvalues (real part) of QMO system for “n” variation
from 1 to 10. Considering the parameter values a � 0.1, b � 0.4.
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4.1. Basin ofAttraction. Te concept of basins of attraction is
a central part of the body of knowledge about multistable
dynamical systems. Since most of the nonlinear systems are
impossible to study with analytical methods, numerical
simulations are the only choice for inquiry into their be-
havior. In order to construct the basins [9], the trajectory of
each chosen initial condition is compared to the trajectory of
a collection of known attractors. In addition to knowing the
long-term behavior of each initial condition, estimating the
basins has many other benefts. As an example, during
chaotic transients, they can reveal chaotic dynamics before
settling into a nonchaotic attractor. We used the algorithm
[10] for identifying the basin of attraction plot for the limit
cycle attractors shown in Figure 1. Figure 4 shows the basin
of attraction of the proposed QMO system. For the given
parameter value the system has 5 attractors in the x-y region.
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Figure 3: (a) Bifurcation of the QMO system with A; (b) corresponding Lyapunov exponents (LEs).
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5. Application of Fingerprint Image Encryption
Using the QMO System

In this section, the fngerprint image encryption appli-
cation is designed and analyzed using the QMO system.
Te encryption and decryption processes of the designed
fngerprint image encryption system are given in Figure 5
as a diagram. Tree initial values (x0, y0, z0) and two
parameters (a, b) values of the QMO system are used as
the key in the encryption design. In each encryption
process, the initial conditions and parameter values are
taken diferently within the specifed limits. For each
image encryption processing, key information is obtained
from a randomly determined list of initial conditions and
parameter values in the specifed order. A new key from
this list is used in each encryption operation. Tus, even if
the same image is encrypted, the encrypted image is
diferent. In the encryption process, the x, y, and z state
variables of the QMO system are frst calculated with the
key information. Next, 32 bit single foating-point
IEEE-754 binary numbers are created from the re-
trieved state variables. From these 32 bit binary values, the
6 bit LSB of the x state variable, the 2 bit LSB of the y state
variable, and the 6 bit LSB of the z state variable are taken.
Te LSB bits from the x and y state variables are combined
to obtain an 8 bit value in the combining part. Likewise,
the LSB bits from the y and z state variables are combined
to obtain an 8 bit value. Tese two combined 8 bit values
are sent sequentially to the XOR part in each period by the
“Multiplexer.” Te Up-Counter unit is used as the input
selector of the Multiplexer unit. Te Multiplexer sends the
8 bit values (x-y and y-z) obtained from the x, y, and z state
variables to the output, according to the 0 and 1
information sequentially from the up-counter unit that
counts up to one. Tus, the complexity is increased by
sending the combination value obtained from the chaotic
system state variables. In the XOR part, the 8 bit data from
the Multiplexer part and the 8 bit data coming from the
fngerprint image are processed by XOR.

In the decryption process, 8 bit combined data is ob-
tained from the QMO system in the same way as in the
encryption process. Te incoming encrypted fngerprint
image data and the 8 bit combined data are processed by
XOR operation to decrypt the fngerprint image. Tus, the
decrypted fngerprint image is obtained. Encryption and
decryption processes were performed in MATLAB- Simu-
link program with the block diagrams given in Figures 6 and
7, respectively. Te step size in the designed encryption and
decryption process is 1e− 8 seconds. Te processing bit rate
of the system is 800Mbps.

For the analysis of the designed encryption system, a real
grayscale fngerprint image with a height value of 390 pixels,
a width value of 355 pixels, and a bit depth value of 8, taken
from the fngerprint database given in reference [40], was
used.Te gray fngerprint image used in the design may vary
in size. Te design can be used exactly for fngerprint images

of diferent sizes. Color fngerprint images can be imple-
mented using the encryption design provided separately for
red, green, and blue pixel values.

Te encrypted and decrypted fngerprint images ob-
tained from the encryption and decryption processes (in
Figure 5) are given in Figure 8. As can be seen in Figure 8, the
design (Figures 6 and 7) can successfully perform encryption
and decryption operations.

5.1. SecurityAnalysis. Te encryption process should be able
to perform well against various statistical and security at-
tacks. To determine the performance of encryption, it is
necessary to examine it with various security tests. In this
section, randomness performance, statistical and attack
analyses which are histogram, correlation, correlation maps,
entropy, key sensitivity, key space, and known/chosen were
applied for the performance analysis of encryption.

5.1.1. Te Randomness Performance of the QMO System.
Since the chaotic QMO system is used in the encryption
design, the randomness level of the outputs obtained from
this system must be suitable for encryption. Te widely
accepted NIST 800-22 test is used for randomness perfor-
mance analysis. Te NIST 800-22 test consists of 15 separate
tests. For each test result to be successful, the p value in-
dicating randomness must be greater than the α value
chosen between 0.001 and 0.01 [41]. Te NIST 800-22 test
performance results of the x, y, and z state variables of the
chaotic QMO system are given in Table 2. Te p value was
taken as 0.01 in the tests. As can be seen from Table 2, the
values obtained from the outputs of the x, y, and z state
variables of the QMO system were successful in the
randomness tests.

5.1.2. Histogram Analysis. Te distribution of pixel values in
the encrypted image can be examined by using histogram
analysis. Te ideal histogram distribution should be uni-
form. In this way, the distribution of encrypted information
is almost the same, indicating that the original information is
difcult to predict with statistical analysis [28, 42]. Figure 9
shows the histogram diagrams of the original fngerprint and
the encrypted image. As may be seen, the histogram diagram
of the encrypted fngerprint image is uniform and therefore
difcult to predict by statistical analysis.

5.1.3. Correlation Analysis. Te correlation coefcient value
between two neighboring pixels in the original image and the
encrypted image is another crucial factor in determining en-
cryption performance. Te correlation between the vertical,
horizontal and diagonal pixel values of the image should be
near to zero to avoid statistical attacks. A correlation value near
0 denotes a negligibly weak correlation, whereas a correlation
value near 1 denotes a signifcant relationship [28, 43]. Te
correlation coefcient is given in equation (6) [18, 43]:
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rxy �
cov(x, y)
���������
D(x)D(y)

􏽰 , (6)

cov(x, y) � E([x − E(x)][y − E(y)])

�
1
N

􏽘

N

i�1
xi − E(x)􏼂 􏼃 yi − E(y)􏼂 􏼃,

(7)

E(x) �
1
N

􏽘

N

i�1
xi, (8)

D(x) �
1
N

􏽘

N

i�1
xi − E(x)􏼂 􏼃

2
, (9)

Analyzing the correlation distribution provides insights
into the degree of correlation between the original and
encrypted images. A deviation from the expected correlation
values for a secure encryption scheme indicates the

efectiveness of the encryption in breaking the correlation
patterns present in the original image, contributing to en-
hanced security.

Here, x and y are adjacent pixels from the encrypted or
original images that will be examined. Cov (x, y) is the
covariance of x and y, equation (7), D (x) and D (y) is the
variance of x, equation (9) and y. E (x) and E (y) represent
the average of x pixels, equation (8), and y pixels. N in the
formulas refers to the total number of pixels in the image
[18, 43].Te correlation coefcient values of the actual image
and encrypted image used in the study are given in Table 3.
As shown in Table 3, the correlation coefcient of the
vertical, horizontal and diagonal pixel values of the actual
image is near to 1, even though the fngerprint image’s
correlation coefcients are almost zero. Also, Figure 10
presents the correlation distribution maps of the actual and
encrypted image in horizontal, vertical and diagonal forms.
According to the correlation distribution maps, while the
correlation distribution in the actual image is concentrated

(a) (b) (c)

Figure 8: Te encryption and decryption processes (a) original fngerprint image and (b) encrypted fngerprint image (c) decrypted
fngerprint image.
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Figure 7: Simulink diagram of the decryption process.
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Figure 9: Histogram diagrams (a) original fngerprint image and (b) encrypted fngerprint image.

Table 2: Te NIST 800-22 test performance results of the x, y, and z state variables of the chaotic QMO system.

Test type p value x p value y p value z Result
Frequency (monobit) test 0.9378 0.7025 0.2627 Success
Frequency test within a block 0.2204 0.9218 0.1046 Success
Runs test 0.9076 0.7489 0.5165 Success
Test for the longest run of ones in a block 0.1097 0.8477 0.1085 Success
Binary matrix rank test 0.1308 0.4985 0.6488 Success
Discrete Fourier transform test 0.9780 0.0283 0.0651 Success
Nonoverlapping template matching test 0.9294 0.8947 0.4218 Success
Overlapping template matching test 0.6813 0.2080 0.1662 Success
Maurer’s universal statistical test 0.2050 0.8413 0.3269 Success
Linear complexity test 0.0758 0.9445 0.9277 Success

Serial test 0.9903 0.8832 0.4318 Success
0.9077 0.7490 0.5144 Success

Approximate entropy test 0.2163 0.2737 0.4486 Success
Cumulative sums test 0.8883 0.7848 Success
Random excursions test ∗

(x� −4) 0.0707 0.3537 Success
(x� −3) 0.9046 0.3775 Success
(x� −2) 0.7340 0.3514 Success
(x� −1) 0.7972 0.2836 Success
(x� 1) 0.7192 0.4131 Success
(x� 2) 0.2173 0.7693 Success
(x� 3) 0.1456 0.7260 Success
(x� 4) 0.3911 0.0434 Success

Random excursions variant test ∗

(x� −9) 0.3383 0.9068 Success
(x� −8) 0.2474 0.9917 Success
(x� −7) 0.1845 0.7380 Success
(x� −6) 0.2828 0.8225 Success
(x� −5) 0.4540 0.8617 Success
(x� −4) 0.9120 0.9213 Success
(x� −3) 0.4611 0.7462 Success
(x� −2) 0.2658 0.2229 Success
(x� −1) 0.6513 0.0423 Success
(x� 1) 0.1588 0.1845 Success
(x� 2) 0.1248 0.3968 Success
(x� 3) 0.2663 0.9641 Success
(x� 4) 0.2626 0.6375 Success
(x� 5) 0.0749 0.9040 Success
(x� 6) 0.0451 0.9758 Success
(x� 7) 0.0768 0.7254 Success
(x� 8) 0.0748 0.6256 Success
(x� 9) 0.0367 0.6714 Success

∗Test not applicable. Tere are an insufcient number of cycles.
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in a certain region, it is homogeneous in the encrypted
image. Tis outcome demonstrates that statistical assaults
are unable to decrypt the image.

5.1.4. Entropy Analysis. Te entropy value of a data stack
gives information about the distribution and randomness of
the data. Te entropy of the actual and encrypted fngerprint
image used in the study shows the distribution of each gray
value. Entropy is generally calculated with equation (10). In
equation (10), N represents the number of symbols, xi is the
pixel value and p(xi) represents the probability that xi will
appear in the data stack.TeN value for the 8 bit depth of the
grayscale fngerprint image used in the study is 8
[16, 20, 26, 27, 30].

H(x) � − 􏽘
2N

i�0
− 1p xi( 􏼁log2 p xi( 􏼁. (10)

If the entropy value is near 8 indicates that the ideal
information entropy is reached [23, 42, 43]. A high entropy
number denotes a uniform distribution of the image’s gray
values. Tis makes it difcult for attackers to obtain the
actual image through information analysis [28]. Te entropy
results of the original fngerprint image and the encrypted
fngerprint image are given in Table 3. While the entropy

value of the original image is 6.1343, the entropy value of the
encrypted image is 7.9987, which is very near to 8. Tis
indicates that the encryption design has good performance
against statistical attacks.

5.1.5. Key Sensitivity Analysis. Te efectiveness of the key
sensitivity analysis of the encryption design can be assessed
using UACI and NPCR values. NPCR describes the ratio of
the encrypted image’s changed pixel values to the original
image’s altered pixel values. Te intensity of the diference
between a specifc pixel’s value in the original image and the
encrypted image’s pixel values is specifed by UACI. NPCR is
calculated as in equations (11) and (12) and UACI is cal-
culated as in equation (13). Where H is the pixel number of
the image’s height, W is the pixel number of the image’s
width, i and j represent the pixel position, and C1 andC2
represent the two encrypted images. NPCR and UACI have
optimum values of 99 and 33 percent, respectively
[18, 23, 28, 42, 43].

NPCR �
1

H × W
􏽘
i,j

D(i, j) × 100%, (11)

D(i, j) �
1, if C1 (i, j)≠C2(i, j),

0, if C1 (i, j) � C2(i, j),
􏼨 (12)

Table 3: Te correlation coefcient and entropy values of the actual image and the encrypted image.

Image Horizontal correlation Vertical correlation Diagonal correlation Entropy
Original image 0.9558 0.9684 0.9432 6.1343
Encrypted image −0.0025 −0.0032 −0.0025 7.9987

Original Image Horizontal Correlation Distribution Encrypted Image Horizontal Correlation Distribution

Original Image Vertical Correlation Distribution Encrypted Image Vertical Correlation Distribution

Original Image Diagonal Correlation Distribution Encrypted Image Diagonal Correlation Distribution
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Figure 10: Correlation distributions for original and encrypted images.

10 Complexity



UACI �
1

H × W
􏽘
i,j

C1(i, j) − C2(i, j)

255
⎡⎢⎢⎣ ⎤⎥⎥⎦ × 100%. (13)

For the key sensitivity analysis, the initial conditions and
parameter values of the QMO systemwere increased by 10−6.
For instance, instead of using 10 as the initial value for the x
state variable, 10.000001 is used. In this way, UACI and
NPCR values of the normally encrypted fngerprint image
and the encrypted fngerprint image with parameter values
increased by 10−6 were calculated. According to the calcu-
lation result [44] as shown in Table 4 the NPCR value was
99.426% and the UACI value was 33.398%. Terefore, the
proposed encryption design has high key sensitivity.

5.1.6. Key Space Analysis. One parameter that determines
the security of encryption is the key space size.Te larger the
key space, the better the encryption performance and the
greater the resistance to key analysis. Te key space size
should be bigger than 2100 [23, 43] or 2128 [28, 42] for good
security.Te system used in this study has three initial values
(x0, y0, z0) and two parameters (a, b) as key. Assuming that
the key precision in the design is 10–15, the overall key size is
1075. Consequently, since the value of 1075 is much greater
than the value of 2128, the key space is sufcient to resist the
extensive attack.

5.1.7. Known/Chosen Image Analysis. Te encryption design
should resist against some known/selected image attacks.
Tese attacks are used to decrypt the encryption mask
[23, 43]. Tree initial values (x0, y0, z0) and two parameters
(a, b) values of the QMO system are used as the key in the
encryption design. Te result of these values is mixed
through various processes and used in the encryption
process. As stated in the analysis of the QMO system, the
initial condition of the state variable x, in particular, can vary
in a wide range between −20 and 20. As stated in the key
sensitivity analysis section, it is seen that even a very small
change in the initial condition creates a sufcient diference
in encryption. Tus, with each change in the initial con-
ditions and the system’s parameter values, the encryption
key also changes.

In this way, the initial conditions of the system and the
values of the system parameters constitute the key to the
encryption system. Tis key changes with each new en-
cryption. Te receiving system also knows the keys list and
the order of use algorithm within the specifed limits. In
practical uses, these key sequences are constantly updated.
For the attacker to succeed, the attacker must know the list of
these keys updated periodically and the usage order algo-
rithm. Without this information, it cannot be decrypted by
repeatedly sending the same image or one image with only
minor changes.

In the known/selected image analysis (Figure 11), frstly,
the complete white image (Figure 11(a)) was encrypted
(Figure 11(b)) in the designed encryption system. Ten, the
image with only one black pixel and all the remaining pixels
white (Figure 11(c)) is encrypted (Figure 11(d)). Te NPCR

and UACI values were analyzed for the diference between
the encrypted versions of the two images, and the results are
given in Table 4. Since the NPCR value is 99.609% and the
UACI value is 33.464%, the designed encryption system is
resistant to known/selected image attacks.

6. Discussion

Te fndings presented in this study contribute signifcantly
to the understanding of countable infnite attractors in
megastable systems, particularly in the context of the
Quadratic Megastable Oscillator (QMO). Te observed
dynamical behaviors of the QMO, such as the generation of
nested types of multiple attractors for various initial con-
ditions, enrich our comprehension of complex system dy-
namics. Tis intricate behavior is elegantly portrayed
through phase portraits, providing a visual representation of
the system’s evolving states.

Te sustainability of chaotic oscillation in the QMO is
thoroughly examined using infuential parameter bi-
furcation plots, shedding light on the nuanced interplay of
system parameters in shaping its dynamics. Te system’s
complexity is further underscored by the existence of in-
tricate basins of attraction, accommodating an infnite array
of coexisting attractors. Tis feature introduces a level of
richness and versatility in the dynamics of the QMO, sug-
gesting potential applications in scenarios requiring diverse
attractor landscapes.

A notable observation is the nonlocalized trajectory
behavior under specifc initial conditions, where trajectories
lead to distant destinations, evading the infuence of local
attractors. Tis phenomenon adds a layer of unpredictability
to the system’s behavior and highlights the unique char-
acteristics of the QMO compared to conventional mega-
stable oscillators. Te practical application of the QMO in
biometric fngerprint image encryption showcases its real-
world efcacy. Te statistical and attack analyses conducted
on the encryption design afrm the QMO’s success in
providing secure encryption within chaotic system-based
frameworks.Tis practical validation further emphasizes the
relevance and applicability of the QMO in encryption
applications.

NPCR, UACI, correlation coefcient, and entropy values
of the proposed method are compared with previous studies
in Table 5. Te proposed system is similar to [30, 46] and
gave better results than [48] for NPCR and UACI values.
According to the average correlation coefcient values, the
proposed system is slightly behind [45, 46], but gives better
results than [48]. According to the entropy value, the
proposed system achieved the best results in [30, 46, 48–50].
In totality, the quadratic megastable system-based

Table 4: Key sensitivity analysis calculation results for NPCR and
UACI.

Test Key sensitivity analysis
result (%)

Known/chosen image
analysis result (%)

NPCR 99.426 99.609
UACI 33.398 33.464
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encryption emerges as a robust and efective method for
securing fngerprint images.

While the study on the Quadratic Megastable Oscillator
(QMO) and its application in biometric fngerprint image
encryption ofers valuable insights, it is essential to ac-
knowledge certain limitations that could impact the gen-
eralization and applicability of the fndings:

(1) Teoretical Assumptions: Te study relies on certain
theoretical assumptions related to the behavior of the
QMO, and these assumptions may not perfectly align
with real-world conditions. Practical implementations

could be afected by factors not considered in the
theoretical model.

(2) Sensitivity to Initial Conditions: Chaotic systems,
such as the QMO, are known to be highly sensitive to
initial conditions. Small variations in the initial
conditions can lead to signifcantly diferent out-
comes. Tis sensitivity might pose challenges in real-
world applications where precise control over initial
conditions may be difcult.

(3) Computational Complexity: Te comprehensive
analysis involving attractors, phase portraits, and

(a)

(c) (d) (e)

(b)

Figure 11: Known/chosen image analysis result (a) completely white image and (b) its encrypted image (c) completely white image with
only one black pixel and (d) its encrypted image (e) diference image between (b and d).

Table 5: Te comparison of the proposed encryption design with similar research.

Encryption designs NPCR UACI Correlation coefcients Entropy

Yoosefan Dezfuli Nezhad et al. [30] 99.60% 33.46%
Horizontal: —

7.9882Vertical: —
Diagonal: —

Su et al. [45] — — 0.0019 (average) —

Li [46] 99.61% (average) 33.44% (average)
Horizontal: −0.0023

7.5310 (average)Vertical: −0.0044
Diagonal: −0.0007

Su et al. [47] — —
Horizontal: 0.0020

—Vertical: 0.0091
Diagonal: 0.0038

Umoh and Iloanusi [48] 99.59% (average) 99.41% (average)
Horizontal: —

7.5945 (average)Vertical: —
Diagonal: —

Proposed encryption design 99.609% 33.464%
Horizontal: −0.0025

7.9987Vertical: −0.0032
Diagonal: −0.0025
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parameter bifurcation plots necessitates computa-
tional resources. Te computational complexity of
the proposed encryption scheme might be a limita-
tion in scenarios with resource-constrained
environments.

(4) Robustness under Varying Image Characteristics:
Te efectiveness of the encryption scheme is dem-
onstrated through various analyses, but its robust-
ness may vary depending on the characteristics of
diferent fngerprint images. It is crucial to assess
performance across a diverse range of
biometric data.

7. Conclusion

In conclusion, this study ofers a comprehensive exploration
of the behavior of three-dimensional autonomous quadratic
megastable oscillators, shedding light on their characteristics
and dynamics in the absence of external stimulation. Te
analysis encompasses a thorough investigation of attractors,
phase portraits, parameter bifurcation plots, and the sus-
tainability of chaotic oscillation.

A key focus of this analysis is the examination of the
oscillators’ attractors, distinctive patterns that emerge over
time. Our fndings suggest that initializing the oscillators
with diferent initial conditions leads to the generation of
multiple attractors. Visual representation through phase
portraits facilitates a clearer understanding of the oscillators’
trajectories in their three-dimensional phase space. Addi-
tionally, parameter bifurcation plots are employed to vi-
sualize the impact of specifc parameter changes on the
system’s behavior, assessing the sustainability of chaotic
oscillations under varied parameter values.

Stability analysis and the concept of basins of attraction
are crucial aspects discussed in this study. Stability analysis
evaluates the system’s response to perturbations and its
convergence to specifc states over time, while the basin of
attraction identifes regions in phase space where specifc
attractors are achieved. Tese analyses collectively con-
tribute to a comprehensive understanding of the system’s
overall behavior.

Furthermore, the study extends the application of the
quadratic megastable oscillator system to biometric fn-
gerprint image encryption. Rigorous parameter analyses,
including NIST 800-22 tests, highlight the robust security
features of the quadratic megastable system. Histogram
analysis reveals a uniform distribution of encrypted pixel
values, resistant to statistical scrutiny. Correlation analysis
reinforces security, indicating a substantial deviation from
the original image’s correlation coefcients. Correlation
distribution maps illustrate the encrypted image’s resilience
against region-based attacks. Entropy analysis underscores
efective protection against statistical assaults, supported by
entropy values. Key sensitivity analysis emphasizes the en-
cryption’s strength, evidenced by high NPCR and UACI
values, along with a substantial key space size surpassing
established security thresholds, ensuring resistance to ex-
tensive attacks.Tese results collectively afrm the quadratic
megastable system’s efectiveness in biometric image

encryption, showcasing its potential in secure communi-
cation systems.
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