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Te uncertainty of parameters will have a signifcant impact on slope stability, where sensitivity analysis is a commonly used
method in uncertainty research. However, traditional sensitivity analysis method costs much computation time.When calculating
the sensitivity index of one parameter, all other parameters are taken as fxed values, and the uncertainty of all parameters cannot
be considered simultaneously. Terefore, the variance-based and the moment-independent global sensitivity analysis (GSA)
methods are both introduced to determine the infuence of geotechnical parameters on slope stability in this study. To solve the
importance index of GSA, the least angle regression algorithm, the kernel density estimation, and orthogonal polynomial es-
timation methods are developed to obtain variance-based importance index and the moment-independent importance index,
respectively. Te proposed methods allow all variables to change simultaneously within their variation range and have high
computational efciency. Te results are in good at with those obtained by the variance-based Monte Carlo simulation method,
which is considered as the exact solution forobtaining the importance index. Te infuence of the correlation between the shear
strength parameters (c and φ) on the importance index is also studied, which indicates that the negative correlation will have
a great impact on the importance index, which in turn afects the safety assessment of slope. Tree engineering cases have been
studied for engineering application, and the compared results indicate that the impact of the geotechnical parameters uncertainty
on the safety factor (Fs) and failure probability (pf) are diferent.Terefore, the approaches based on GSA which can integrate the
Fs with pf will be a promising approach for slope stability evaluation.

1. Introduction

It is well-known that the uncertainty of random variables
will greatly afect the output response. It is important for
engineering risk assessment to determine the infuence of
the uncertainty of random variables on output response [1].
Tere are many uncertainties in the actual slope engineering,
so it is important to study these uncertainties for slope
stability. For example, Cai et al. [2] proposed an adaptive
sampling method based on limit equilibrium model and
stochastic condition method in slope stability analysis to
reduce the uncertainty. In order to determine the availability
of qualitative and quantitative methods for uncertainty
analysis in rock slope stability, Abdulai and Sharifzadeh [3]

analyzed and summarized the uncertainty and uncertainty
analysis methods, problems, and development in geo-
technical engineering modeling. Zhao and Li [4] used ar-
tifcial bee colony and relevance vector machine to establish
a model to describe the relationship between displacement
increments and geomechanical parameters so as to predict
rock mass deformation and related uncertainties. Under the
combined action of continuous rainfall and water level
fuctuation, Su et al. [5] studied the stability of reservoir
slope using the deterministic method and uncertain method
(theMonte Carlo simulationmethod). It is worth noting that
although there are many studies focusing on the uncertainty
of geological parameters, while the sensitivity analysis
method costs much computation time.When calculating the
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sensitivity index of one parameter, all other parameters are
taken as fxed values, and the uncertainty of all parameters
cannot be considered simultaneously. Further research is
needed to quantify and distinguish the impact of this un-
certainty on the slope stability [6, 7].

Sensitivity analysis is a commonly used method in un-
certainty research, and the global sensitivity analysis (GSA)
method has got more and more attention in recent years.
GSA, also known as importance measurement analysis,
considers changes in geotechnical parameters simulta-
neously and allows them to change over their entire range of
distribution (i.e., uncertainty range). According to the im-
portance index of each variable, the relatively important and
unimportant parameters can be distinguished, and the
relative contribution of the uncertainty of each random
variable to the uncertainty of the model output response can
be quantifed. In slope engineering activities, focusing on the
uncertainty of parameters with high importance index can
greatly reduce the uncertainty of output response, thus ef-
fectively improving the efciency of slope engineering de-
sign and optimization.

Among the global sensitivity analysis methods, the
variance-based method and the moment-independent
method are widely used, and the frst method is usually
considered to be an exact solution, which is often used to
verify other methods. A large amount of literature has
conducted in-depth research on these two methods. For
example, Alexanderian et al. [8] developed a variance-based
sensitivity analysis method that uses the correlation struc-
ture of the problem under study and uses alternative models
to speed up the calculation. Subramanian and Mahadevan
[9] proposed a semianalytical method based on variance-
based sensitivity analysis for calculating the sensitivity index
of linear systems with Gaussian random process inputs and
nonlinear systems with non-Gaussian random process
outputs. Yun et al. [10] proposed a new method to calculate
moment-independent importance index based on the law of
total expectation in the successive intervals without over-
lapping and Bayes theorem. Xu et al. [11] proposed a mo-
ment-independent method combined with the kernel
density estimate to analysis the uncertainty of the geo-
technical parameters for slope stability. Khan et al. [12]
proposed and tested a method for accelerating global sen-
sitivity analysis in the context of free-form shape
optimization.

Terefore, considering the uncertainty of the
impact factor of the slope stability, the variance-based
global sensitivity analysis method combined with the
least angle regression algorithm and the moment-
independent global sensitivity analysis method com-
bined with kernel density estimation and orthogonal
polynomial estimation are developed to determine the
infuence of the uncertainty of the infuence parameters
of slope stability.

2. Methods of the Global Sensitivity Analysis

2.1. Least Angle Regression (LARS)Algorithm. Te essence of
GSA of geotechnical parameters in slope stability is data
mining, and feature selection techniques can be used to
evaluate the importance of these parameters under a certain
standard. Among feature selection methods, supervised
feature selection algorithms have been increasingly used,
such as the forward selection algorithm and the forward
gradient algorithm. Combining the advantages of the for-
ward selection algorithm and the forward gradient algo-
rithm, Efron et al. [13] proposed the LARS algorithm. LARS
improves the disadvantage that the forward gradient algo-
rithm only advances a small step in each ftting and re-
gression process and improves the operation efciency.
However, its step size is less than the step size of the forward
selection algorithm to ensure the accuracy of the results.

Te main operation process of LARS algorithm is as
follows: frst, all the coefcients in the regression model are
set to 0, and the input variable with the greatest correlation
with the output response is found. Second, fnd a second
input variable in the direction of this input variable that
maximizes the correlation coefcient with the current re-
sidual vector. Finally, follow the direction of the angle bi-
sector of the abovementioned two input variables to fnd the
third variable in the same way, and so on until all input
variables are selected into the regression model or reach the
set threshold, and fnally, all regression coefcient vectors
and predicted value are obtained. Te predicted value of the
response can be obtained by the LARS algorithm in n steps
(n represents the number of input variables), which is much
smaller than the forward gradient algorithm (it needs
thousands of steps). Terefore, the computational efciency
has been signifcantly improved.Te regression model of the
LARS algorithm can be expressed as follows [14]:

min S(􏽢β) � ‖y − 􏽢μ‖
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where (xi1, xi1, · · · , xim) and yi are the input variables and
output response corresponding to the ith sample, re-
spectively; 􏽢μi is the predictive value of the output response;
and βj is the regression coefcient of xij. To make S(􏽢β) reach
the minimum value, it is necessary to continuously adjust βj

through the LARS algorithm, and the following conditions
are met:
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􏼌􏼌􏼌􏼌􏼌≤ tc, (2)

where tc is the constraint value, and tc ≥ 0.
Ten, the variance-based importance measure index Si

can be expressed as follows:
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Si �
Var(􏽢Y)

Var(Y)
(3)

where i � 1, 2, · · · , n, and Var(Y) and Var(􏽢Y) are expressed
as follows, respectively:
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where y is the mean of the output response Y, 􏽢μk is the
predictive value, which can be obtained by LARS, and 􏽢μk is
the mean value of 􏽢μk.

According to the abovementioned principles, the
function of Y needs to run N times to obtain the importance
index, where N is the sample size of the random variables.

Si obtained by Monte Carlo simulation is considered to
be an exact solution and is usually used to verify the results of
other methods in the global sensitivity analysis. Terefore, Si

was used for the comparative analysis in this study, which is
expressed as follows [15]:

S
v
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where E(Y xi)
􏼌􏼌􏼌􏼌 is the conditional mean value of Y.

It is well-known that the function of Y needs to run
(nN+ 1)N times to obtain the importance index, where n is
the number of the random variables, and N is the same as
abovementioned.

2.2.Moment-IndependentMethod. It is pointed out that the
variance-based GSA method only considers variance, and
Si will inevitably lead to the loss of parameter information
and lack of moment independence. In view of this,
Borgonovo [16] proposed a moment-independent im-
portance index based on the comprehensive consideration
of the requirements of Satelli, Helton, and Davis for the
importance index (i.e., globality, universality, quantif-
cation, and moment independence). Te principle of
moment-independent method is to study the average
infuence of the uncertainty of the input parameters on the
probability density function or cumulative distribution
function of the model output response, so as to determine
the infuence of the input parameters on the output re-
sponse. It can obtain a global estimate of the importance
of the input parameters in the model, and its computa-
tional efciency is much higher than that of variance-
based GSA methods.

Te process of the moment-independent method is as
follows: Substitute the random variables X1, X2, · · · , Xn into
the function Y � G(X1, X2, · · · , Xn) to calculate the actual
value of the output response Y. When Xi takes each realized
value, the cumulative infuence of Xi on the probability
density or probability distribution of Y is expressed as
follows:

s Xi( 􏼁 � 􏽚
+∞

− ∞
fY(y) − fYXi| (y)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dy, (7)

where s(Xi) is the shift between fY(y) and fY Xi(y)| , and
fY(y) and fY Xi(y)| are, respectively, the unconditional
probability density function and the conditional probability
density function of Y.

Te moment-independent importance index δi is de-
fned as follows:

δi �
1
2
EXi

s Xi( 􏼁􏼂 􏼃, (8)

where EXi
[s(Xi)] is the expectation of s(Xi), which can be

obtained by
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It can be seen from equations (4) and (5) that the key to
obtain δi is to determine fY(y) and fY Xi(y)| of Y, which is
also the difculty of moment-independent GSA. Te kernel
density estimation (KDE) method and orthogonal poly-
nomial estimation (OPE) can directly ft the probability
distribution according to the characteristics of the data
samples themselves, and the accuracy is high, which are
more representative methods among the nonparametric
estimation methods.

Te kernel density estimate of fY(y) and fY Xi(y)| can be
expressed as follows:

􏽢fY(y) �
1

Nh
􏽘

N

i�1
K

y − yi

h
􏼒 􏼓, (10)

where 􏽢fY(y) is the kernel density estimation offY(y), h is the
bandwidth parameter, N and yi are, respectively, the sample
size and function value of Y, and K(·) is the kernel density
function, which needs to satisfy the following condition:

K(y)≥ 0, 􏽚
+∞

− ∞
K(y)dy � 1. (11)

Te Gaussian kernel function is adopted to estimate
􏽢fY(y) in this study, which is expressed as follows:

K
y − yi

h
􏼒 􏼓 �
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In order to avoid large errors caused by a single non-
parametric estimation method, an orthogonal polynomial
estimation method is introduced in this study. Considering
that Hermite polynomial is simple and easy to implement,
this study chooses it to approximate fY(y). Te main
process is listed as follows: the probability density function
f(x) can be estimated by the expansion of the higher-order
moment, which means f(x) is nearly equal to the product of
the orthogonal polynomial function and the weight function
according to the principle of the Hermite orthogonal
polynomial, which is expressed as follows:

Complexity 3



􏽢f(x) � ρ(x) 􏽘
n

i�0
aiHi(x), (13)

where ρ(x) � (1/
���
2π

√
σ)e[− ((x− μ)2/2σ2)], μ and σ are the mean

and standard deviation, respectively, ai is the undetermined
coefcient, which is determined by ai � 􏽐

i
j�0aijuj(x)/hi,

where aij is a constant, uj(x) is the jth order central moment
of the distribution function, and hi � 2ii!

��
π

√
.

Ten, fY(y) is estimated by

􏽢fY(Y) � ρ(y) 􏽘
n

i�0
aiHi(y). (14)

Te calculation process of fY Xi(y)| is similar to that
of fY(y).

Set δp
i as the moment-independent importance measure

index of failure probability, which is expressed as follows [17]:
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where E(·) is expectation; pfY and pfY Xi| are, respectively,
the unconditional failure probability and conditional failure
probability of Y; F � X: G(X)≤ cs􏼈 􏼉, in which X is the
random variable and X= (X1, X2, . . ., Xn); G(X) is the
function of Y; cs is a constant; and fXi

(xi) is the probability
density function of Xi.

Figure 1 shows the fowchart, and the function of Y needs
to run (n+ 1)N times to obtain the importance index, where
n and N are the same as abovementioned.

3. Case Study

3.1. GSA of the Landslide Stability along PR303. Te
landslides caused by the Wenchuan earthquake are
widely distributed in the southwest of China, and some of
the landslide debris accumulates on the steep terrain,
which is easily afected by external factors (such as af-
tershocks and rainfall infltration) and leads to instability
and damage again. For example, the landslides induced
by the Wenchuan earthquake distributed from K1 to K18
of the province road (PR) 303 are prone to redestruction
under the action of heavy rainfall (as shown in
Figure 2(a)). With the help of site survey and GIS
technology, 53 loose deposits landslides have been
identifed between K2 and K7 along PR303 (as shown in
Figure 2(b)). Tese loose deposits landslides are con-
sidered as the representative instability slope. According
to statistics, there were many landslides during the rainy
season from 2009 to 2011, resulting in a large number of
casualties and property losses. Tang and Zhang [18]
predicted that slope failure would continue to occur in
the next few years.

According to reference [18], the stability of the above-
mentioned landslides can be analyzed by the infnite slope
model. Te safety factor (Fs) of an infnite slope can be
calculated by equation (13) as follows [19, 20]:

Fs �
cL + Nt tanφ

1 − kv( 􏼁 Wn + Wsat( 􏼁 sin ξ + Fw + kh Wn + Wsat( 􏼁 cos ξ
,

(16)

where c and φ are, respectively, the cohesion and internal
friction angle; L and ξ are the length of a slice and the slope
angle, respectively; kv and kh are, respectively, the vertical
and horizontal seismic acceleration coefcients; Fw and Nt

are, respectively, the seepage force and the normal force on
the sliding surface; Wsat and Wn are, respectively, the sat-
urated zone and the weights of slices associated with the
natural zone, and these forces are expressed as follows:
Wn � cL(H − h)cos ξ, Wsat � csatLh cos ξ, Nt � (1 ± kv)

(Wn + Wsat)cos ξ − kh(Wn + Wsat)sin ξ and Fw � cwLh

sin ξ cos ξ, where H and h are, respectively, the thicknesses
of the whole soil and saturated part of the soil, and h � mH
(m is the saturation index); and cn, csat, and cw are, re-
spectively, the natural unit weight, saturated unit weight of
soil, and the unit weight of water.

In order to evaluate the infuence of the parameters on
the stability of the abovementioned loose deposit landslides,
c, φ, c, csat, kh, kv, ξ, H, andm are taken as random variables
for GSA in this study. Tere are 53 statistical data for c, csat,
ξ, and H according to reference [18]. c and csat follow
lognormal distribution, and ξ and H follow normal distri-
bution based on the statistical analysis of these data. Tere is
no statistical data for random variable c, φ, m, kh, and kv.
Only the mean value of c and φ are known. Te probability
density distributions of c and φ are considered to follow
normal or lognormal distributions [21, 22]. Wang et al. [23]
suggested that the lognormal distribution is more suitable
for simulating c and φ because of their physical meaning.
Hence, c and φ are considered to follow the lognormal
distribution in this case study. According to Li et al. [24], the
negative correlation between c and φ varies from − 0.20 to
− 0.92 based on the statistical information. Due to the lack of
experimental data, the negative correlation coefcient be-
tween c and φ is assumed to be − 0.5 in this case study. Form,
kh, and kv, they vary equally between [0, 1], [0.1, 0.6], and
[0.05, 0.45], respectively, according to reference [20], so this
paper assumes that they all follow uniform distribution. In
summary, the statistical information of random variables is
shown in Table 1. Other parameter values are as follows:
cW � 9.81 kN/m3 and the sample size N� 1× 103.

Taking Fs as the output response, the importance index
of the nine random variables calculated by MC, LARS, KDE,
and OPE are shown in Figure 3. It can be seen from
Figure 3(a) that the importance indexes of ξ, kh, and m are
much larger than other random variables, which means that
ξ and kh have a greater impact on the stability of the loose
deposit landslides when the correlation between c and φ is
ignored. Te importance indices of m and φ are slightly
smaller than ξ and kh, which indicates that their infuence on
slope stability is also very important. Te importance indices
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Figure 1: Calculation process of the importance index.
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Table 1: Random variables of the loose deposits landslides.

Random variables Distribution Probability density function
(PDF) Statistical information Unit

c

Lognormal
f(x) � (1/qx

���
2π

√
)exp[− ((lnx − p)2/2q2)]

μ � 8, σ � 2.56 kPa
φ μ � 32.7, σ � 4.578 °

c μ � exp(p + 0.5q
2
),

σ2 � [exp(q
2
) − 1] × exp(2p + q

2
)

μ � 17, σ � 1.7 kN/m3

csat μ � 22, σ � 2.2 kN/m3

ξ Normal f(x) � (1/
���
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σ)exp(− (x − μ)2/2σ2) μ � 27.4, σ � 7.69 °

H μ � 374.72, σ � 161.11 m
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Uniform f(x) �
1/(b − a), a<x< b

0, other􏼨
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Figure 3: Importance indices of random variables for the loose deposits landslides along PR303: (a) c and φ are independent and (b) c and φ
are negatively correlated.
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(b)

Figure 2: Landslides along PR303: (a) landslides between K1 and K18 and (b) loose deposits landslides between K2 and K7 [18].
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of c and H are small, which means that c and H have little
impact on the stability of these landslides. Te orders of the
importance index calculated by MC, LARS, KDE, and OPE
are ξ > kh >m>φ> kv > csat > c> c>H, ξ > kh >m> kv >
φ> c> csat > c>H, ξ > kh >m>φ> kv > csat > c>H> c and
ξ > kh >m>φ> kv > csat > c> c>H, respectively.

As shown in Figure 3(a), the importance index calculated
by MC and LARS are very close, and the importance orders
are basically the same, which means the accuracy and val-
idity of LARS have been verifed. Te values of the im-
portance index obtained by KDE and OPE are diferent from
those obtained by MC and LARS because the calculation
principle of the variance-based GSA is diferent from that of
the moment independence-based GSA. However, the im-
portance orders calculated by KDE and OPE are almost
exactly identical to that of MC. It is pointed out that if the
importance orders calculated by other methods are the same
as or similar to that of the variance-based MC method, then
the results of these methods are accurate and reliable [25].
Terefore, the accuracy and validity of KDE and OPE have
also been verifed in this study.

It can be seen from Figure 3(b) that kh and m have
a greater impact on the stability of the loose deposit land-
slides when c and φ are negatively correlated, then followed
by ξ, φ, kv, and c, while H, csat, and c have little impact. Te
orders of the importance index calculated by MC, LARS,
KDE, and OPE are kh >m> ξ >φ> kv > c>H> csat > c,
kh >m> ξ >φ> kv > c> csat >H> c, kh >m> ξ >φ> kv > c>
csat > c>H and kh >m> ξ >φ> kv > c> csat > c>H, re-
spectively. Te importance orders of the nine random
variables obtained by these four methods are basically the
same, which also indicates that the accuracy and validity of
the proposed methods are verifed.

Comparing Figure 3(a) and 3(b), when c and φ are
independent, the importance orders are signifcantly dif-
ferent from that of when c and φ are negatively correlated.
For example, the importance order obtained by MC when c
and φ are independent is ξ > kh >m>φ> kv > csat > c> c>H,
while it is kh >m> ξ >φ> kv > c>H> csat > c when c and φ
are negatively correlated. Similar results were obtained by
the other three methods. Terefore, it can be derived from
this that the correlation between c and φ will have an im-
portant infuence on the importance index, which cannot be
ignored in the sensitivity analysis of slope stability.

3.2. GSA of the Typical Section of Xiaolangdi Dam. Te
Xiaolangdi Dam is an earth-rock dam with a loam inclined
core wall. Te elevation of the dam crest is 281m, and the
normal water storage level of the reservoir is 275m. Te
dam crest is 1,667m long, and the dam bottom width is
864m. Te dam site is mainly composed of calcareous
siliceous sandstone and calcareous cementitious sand-
stone. Te base layer of the dam is composed of sandy
pebble and bedrock from top to bottom, and the deepest
part of sandy pebble overburden can reach 80m. Te core
wall of the dam is made of clay, and both sides of the core
wall are flled with enrockment. Te antiseepage material
of the inclined core wall is mainly composed of silty clay,

and a high plastic soil zone is set at the top of the
antiseepage wall.

As shown in Figure 4, the inclined wall (the clay area) has
an important role in Xiaolangdi Dam. Considering that the
D0 + 387.50 section is the largest one in the Xiaolangdi Dam,
so it is very meaningful to perform the stability analysis in
this study. According to Xu et al. [11], Fs can be obtained by
the following equation set:

F1 α, β, Fs, t( 􏼁 � 􏽘 Mx � 0,

F2 α, β, Fs, t( 􏼁 � 􏽘 My � 0,

F3 α, β, Fs, t( 􏼁 � 􏽘 Mz � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

where α and β are the inclinations of intercolumn forces;
Mx, My, and Mz are, respectively, the moments along the x,
y, and z axes; and t is any time within the seismic wave
period. For more details of the equations and the solution
process, please refer to Zhou and Cheng [26] and Xu
et al. [11].

For simplifying the calculation, c, φ, kh, t, and f are
considered as random variables in this case study, where f is
the amplifcation factor. Other symbols have the same
meaning as above. Te experimental data of c and φ are
obtained by the consolidated-undrained triaxial compres-
sion test, and both c and φ follow normal distribution
[27, 28]. In addition, the correlation coefcient between c
and φ is − 0.544. Other random variables, kh, t, and f, are
assumed to follow a uniform distribution which is similar to
those of case study 1. Te information of these fve random
variables is listed in Table 2.

Figure 5(a) shows that among the 5 random variables,
the random variable φ has the greatest impact on the stability
of section D0+ 387.50 slope, while f has the least impact
when the correlation between c and φ is ignored. Te im-
portance orders obtained by MC, LARS, KDE, and OPE are
consistent, which are φ> t> c> kh > f. Terefore, the results
calculated by LARS, KDE, and OPE are accurate. As shown
in Figure 5(b), when c and φ are negatively correlated, the
importance orders obtained by MC, LARS, KDE, and OPE
are consistent, which are φ> t> kh > c> f. It is worth noting
that the value of the importance index of the 5 random
variables are signifcantly diferent when the relationship
between c and φ are diferent, and the importance orders are
also diferent. Terefore, the correlation of c and φ takes an
important role in stability analysis of the section
D0+ 387.50 slope.

3.3. GSAof theHighwayRock Slope. According to Chen [29],
the highway slope is a homogeneous rock slope whose failure
mode is plane shear sliding failure. Te slope height and
slope angle are, respectively, 150m and 45°, and the shear
strength parameters c and φ are 20 kPa and 20°. Te rock
mass density is 27 kN/m3. Ten, Fs is expressed as follows
[30]:

Fs �
c tanφHx0 x0 − cot ξ( 􏼁 + 2c H

2
+ x

2
0􏼐 􏼑

cH
2

x0 − H cot ξ( 􏼁
, (18)
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where x0 is the projection of the starting point of the slipping
surface on the abscissa, and H is the height of the slope.
Other symbols have the same meanings as above.

Te parameters c, φ, c, H, and ξ are taken as the random
variables for this case study, but there is no experiment data
of them. Only the mean value of c and φ are known. As
abovementioned in case study 1, c and φ are considered to
follow the lognormal distribution, and the correlation co-
efcient between c and φ is assumed to be − 0.5. Te
probability distributions of H and ξ are rarely reported,
while their infuence on slope stability should not be
neglected. It is generally assumed that they vary equally
within a certain interval; therefore, H and ξ are assumed to
follow a uniform distribution. Terefore, the statistical in-
formation of the fve random variables is listed in Table 3.
Te importance analysis results obtained by MC, LARS,
KDE, and OPE are shown in Figure 6.

As shown in Figure 6, the importance index of each
variable obtained by LARS algorithm is close to that of MC
algorithm, which shows that LARS algorithm is efective.Te
value of the importance index of each variable calculated by
KDE and OPE are nearly consistent, while diferent from
those calculated by MC and LARS. Te reason has been
expressed in the abovementioned case study, so it will not be
repeated here. It can be clearly seen from Figure 6(a) that the
importance index value of ξ is obviously the largest and then
followed by φ. Te importance index of c and H is relatively
small, and it is the smallest for c. Te importance orders
obtained by MC, LARS, KDE, and OPE are the same, which
is ξ >φ>H> c> c. Terefore, the accuracy of KDE and OPE
have also been verifed.

When c and φ are negatively correlated, as shown in
Figure 6(b), the importance orders obtained by MC, LARS,
KDE, and OPE are consistent, which are ξ >φ> c>H> c.

Table 2: Random variables of the typical section D0+ 387.50 slope.

Random variables Distribution PDF Parameters Unit
c Normal f(x) � 1/

���
2π

√
σ exp(− (x − μ)2/2σ2) μ � 66.48, σ � 28.59 kPa

φ μ � 21.99, σ � 3.30 °

kh

Uniform f(x) �
1/(b − a), a<x< b

0, other􏼨

[a, b] � [0.1, 0.6] —
t [a, b] � [0, 0.2] s
f [a, b] � [1, 2] —
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Figure 5: Importance indices of random variables for the section D0 + 387.50: (a) c and φ are independent and (b) c and φ are negatively
correlated.
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Figure 4: D0+ 387.50 section diagram of the Xiaolangdi dam [11] (EL unit: m).
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Compared to Figure 6(a) and 6(b), the importance orders are
diferent when the relationship between c and φ are diferent.
Terefore, the correlation between c and φ has important
infuence on slope stability, which should not be neglected.

4. Global Sensitivity Analysis Based on Failure
Probability (pf)

Take pf as the output response; pf is defned as pf �Nu/N,
where Nu is the number of Fs< F, F is the critical value of Fs,
and N is the total number of Fs. Te slope stability analysis
model of case study 1 and 2 are relatively simple, so Nu is set
to 1 as usual. Nu in Case 2 is set to 1.2 according to Yu [27].
Ten, the results obtained by MC, LARS, KDE, and OPE are
shown in Figures 7–9, respectively.

It can be seen from Figure 7(a) that when c and φ are
independent, the importance orders based on failure
probability obtained by MC, LARS, KDE, and OPE are
ξ > kh >φ>m> kv > csat > c> c>H, ξ > kh >m>φ> kv >
csat > c> c>H, ξ > kh >φ>m> kv > c> csat > c>H and
ξ > kh >φ>m> kv > c> c> csat >H, respectively. Obviously,
the importance orders of failure probability obtained by the
four methods are not completely the same. However, only c,
c, and csat are diferent, and the orders of the three variables
are ranked lower. In addition, the importance index values of
c, c, and csat are very close. Terefore, the results of GSA
based on failure probability obtained by these four methods
are still efective and accurate.

When c and φ are negatively correlated, the importance
orders of the random variables based on failure probability

calculated by MC, LARS, KDE, and OPE are
kh >m> ξ >φ> kv > c>H> csat > c, kh >m> ξ >φ> kv > c>
csat >H> c, kh >m> ξ > kv >φ> c>H> csat > c and
kh >m> ξ > kv >φ> c>H> csat > c, respectively. It is clear
that the importance orders of failure probability obtained by
the four methods are not completely consistent. However,
only the last three ranking c, csat, and H are diferent, and
their importance index values are very close, which are all
close to 0. Terefore, the results of GSA based on failure
probability calculated by these fourmethods are still efective
and accurate.

Compared with Figure 7(a) and 7(b), when c and φ are
independent, the infuence of ξ on the failure probability is
the largest, and H has the smallest infuence on the failure
probability; while when c and φ are negatively correlated, kh

has the greatest impact on the failure probability and c or H
has the least efect on the failure probability. Te correlation
between c and φ must be given more attention when
studying the impact of the uncertainty of random variables
on the pf for the loose deposits landslides along PR303.

As shown in Figure 8(a), the impact of random variables’
uncertainty on pf is obviously diferent. When c and φ are
independent, the importance orders obtained by the four
methods are, respectively, φ> t> kh > c> f, φ> kh > t> c> f,
φ> t> c> kh > f and φ> t> c> kh > f. Although the impor-
tance orders are not exactly the same, the greatest impact on
the failure probability is always φ, and the smallest is f. When
c and φ are negatively correlated, the importance orders
obtained by the four methods are, respectively,
φ> c> t> kh > f, φ> c> t> kh > f, φ> c> t> f> kh and
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Figure 6: Importance indices of random variables for the expressway rock slope: (a) c and φ are independent and (b) c and φ are negatively
correlated.

Table 3: Random variables of the expressway rock slope.

Random variables Distribution PDF Parameters Unit
c

Lognormal
f(x) � (1/qx

���
2π

√
)exp[− ((lnx − p)2/2q2)] μ� 20, σ � 6 kPa

φ μ � exp(p + 0.5q
2
),

σ2 � [exp(q
2
) − 1] × exp(2p + q

2
)

μ� 20, σ � 4 °

c μ� 27, σ � 2.7 kN/m3

H
Uniform f(x) �

1/(b − a), a<x< b

0, other􏼨

[a, b]� [50, 250] m

ξ [a, b]� [15, 75]
°
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φ> c> t> f> kh (shown in Figure 8(b)). Obviously, the
importance orders of the random variables are diferent
when the relationship between c and φ are diferent for the
slope of the section D0+ 387.50.

Te infuence of the uncertainty of the random variables
on the expressway rock slope is shown in Figure 9. When c
and φ are independent, the importance orders obtained by
MC and LARS are consistent and those obtained by KDE
and OPE are the same, while there are some diferences
between MC and KDE, i.e., the importance orders are
ξ >φ> c>H> c, ξ > c>φ>H> c, ξ >φ>H> c> c and
ξ >φ>H> c> c, respectively. In general, ξ and φ have more
impact on pf, while H, c, and c have less impact on pf. As
shown in Figure 9(b), when c and φ are negatively correlated,
the importance orders are ξ >H>φ> c> c, ξ >φ> c>H> c,
ξ >φ>H> c> c and ξ >φ>H> c> c, respectively. Com-
pared to Figure 9(a) and 9(b), the importance orders ob-
tained by the four methods still have some diferences when
the relationship between c and φ are diferent for the rock
slope of expressway.

5. Discussion

In order to compare the diferences in the infuence of the
uncertainty of random variables on Fs and pf, the impor-
tance orders of each random variable to Fs and pf are,
respectively, listed in Tables 4 and 5.

As shown in Table 4, the importance ranking of the
cumulative infuence of each variable on Fs and pf is not
exactly the same. For the loose accumulation landslides
along PR303 (case study 1), when c and φ are independent,
the importance orders based on Fs and pf obtained by MC
are, respectively, ξ > kh >m>φ> kv > csat > c> c>H and
ξ > kh >φ>m> kv > csat > c> c>H. Where those are, re-
spectively, ξ > kh >m> kv >φ> c> csat > c>H and ξ > kh >
m>φ> kv > csat > c> c>H obtained by LARS ξ > kh >
m>φ> kv > csat > c>H> c and ξ > kh >φ>m> kv > c>
csat > c>H obtained by KDE, ξ > kh >m>φ> kv >
csat > c> c>H and ξ > kh >φ>m> kv > c> c> csat >H ob-
tained by OPE. Obviously, the importance ranking of each
variable based on pf is diferent from that based on Fs.Tus,
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Figure 7: Importance indices of the loose deposits landslides along PR303: (a) c and φ are independent and (b) c and φ are negatively
correlated.
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Figure 8: Importance indices of the section D0+ 387.50: (a) c and φ are independent and (b) c and φ are negatively correlated.
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the infuence of the same variable on the importance of Fs
and pf is not consistent.

For the Xiaolangdi Dam slope, when c and φ are in-
dependent, the importance orders based on Fs obtained by
the four methods are consistent, which are φ> t> c> kh > f,
while those are φ> t> kh > c> f (obtained by MC),

φ> kh > t> c> f (obtained by LARS), and φ> t> c> kh > f
(obtained by KDE and OPE) based on pf. For the ex-
pressway rock slope, when c and φ are independent, the
importance orders based on Fs obtained by the fourmethods
are consistent, which are ξ >φ>H> c> c, while those are,
respectively, ξ >φ> c>H> c, ξ > c>φ>H> c, ξ >φ>H

Table 5: Ranking of the infuence of random variables on Fs and pf when c and φ are negatively correlated.

Methods
c and φ are negatively correlated

Case study
Fs pf

MC kh >m> ξ >φ> kv > c>H> csat > c kh >m> ξ >φ> kv > c>H> csat > c

Case study 1LARS kh >m> ξ >φ> kv > c> csat >H> c kh >m> ξ >φ> kv > c> csat >H> c

KDE kh >m> ξ >φ> kv > c> csat > c>H kh >m> ξ > kv >φ> c>H> csat > c

OPE kh >m> ξ >φ> kv > c> csat > c>H kh >m> ξ > kv >φ> c>H> csat > c

MC φ> t> kh > c> f φ> c> t> kh > f

Case study 2LARS φ> t> kh > c> f φ> c> t> kh > f
KDE φ> t> kh > c> f φ> c> t> f> kh

OPE φ> t> kh > c> f φ> c> t> f> kh

MC ξ >φ> c>H> c ξ >H>φ> c> c

Case study 3LARS ξ >φ> c>H> c ξ >φ> c>H> c

KDE ξ >φ> c>H> c ξ >φ>H> c> c

OPE ξ >φ> c>H> c ξ >φ>H> c> c

Table 4: Ranking of the infuence of random variables on Fs and pf when c and φ are independent.

Methods
c and φ are independent

Case study
Fs pf

MC ξ > kh >m>φ> kv > csat > c> c>H ξ > kh >φ>m> kv > csat > c> c>H

Case study 1LARS ξ > kh >m> kv >φ> c> csat > c>H ξ > kh >m>φ> kv > csat > c> c>H
KDE ξ > kh >m>φ> kv > csat > c>H> c ξ > kh >φ>m> kv > c> csat > c>H
OPE ξ > kh >m>φ> kv > csat > c> c>H ξ > kh >φ>m> kv > c> c> csat >H
MC φ> t> c> kh > f φ> t> kh > c> f

Case study 2LARS φ> t> c> kh > f φ> kh > t> c> f
KDE φ> t> c> kh > f φ> t> c> kh > f
OPE φ> t> c> kh > f φ> t> c> kh > f
MC ξ >φ>H> c> c ξ >φ> c>H> c

Case study 3LARS ξ >φ>H> c> c ξ > c>φ>H> c
KDE ξ >φ>H> c> c ξ >φ>H> c> c

OPE ξ >φ>H> c> c ξ >φ>H> c> c
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Figure 9: Importance indices of the expressway rock slope: (a) c and φ are independent and (b) c and φ are negatively correlated.
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> c> c and ξ >φ>H> c> c based on pf. Te results of these
two case studies indicate that the infuence of the random
variable on Fs and pf is diferent.

As shown in Table 5, when c and φ are negatively
correlated, the importance orders based on Fs and pf ob-
tained by MC and LARS are consistent, while those are
diferent obtained by KDE and OPE for the case study 1.
Specifcally, the orders based on Fs and pf obtained by KDE
are, respectively, kh >m> ξ >φ> kv > c> csat > c>H and
kh >m> ξ > kv >φ> c>H> csat > c. Te results of OPE are
the same as KDE. It can be seen that the impact of the
uncertainty of each random variable on Fs and pf are
diferent for the loose deposits landslides along PR303.

For case study 2, the importance orders for Fs and pf are
also diferent. For example, the importance orders for Fs
obtained by the four methods are consistent, which is
φ> t> kh > c> f, while those are φ> c> t> kh > f (obtained by
MC and LARS), φ> c> t> f> kh (obtained by KDE and
OPE) when c and φ are negatively correlated. Terefore, it
can be drawn that the infuence of random variables on pf

and Fs is diferent for the slope of the section D0+ 387.50
slope of Xiaolangdi Dam.

For case study 3, the importance orders for Fs obtained
by the fourmethods are consistent, which is ξ >φ> c>H> c,
while those are ξ >H>φ> c> c (obtained by MC),
ξ >φ> c>H> c (obtained by LARS), and ξ >φ>H> c> c

(obtained by KDE and OPE) when c and φ are negatively
correlated. Terefore, it indicates that the infuence of
random variables on pf and Fs is diferent for the slope of
the expressway rock slope.

In summary, the infuence of random variables on pf

and Fs is diferent whether the relationship between c and φ
is considered or not. Te results obtained by the other three
methods have similar characteristics. Terefore, Fs should
not be the only criterion for slope stability.

In addition, while comparing Tables 4 and 5, the im-
portance orders of the random variables are diferent when
the relationship between c and φ is diferent. For example,
the importance order-based Fs obtained by MC is
ξ > kh >m>φ> kv > csat > c> c>H when c and φ are in-
dependent in case study 1, while it is kh >m> ξ >
φ> kv > c>H> csat > c when c and φ are negatively corre-
lated. In case study 2, those are, respectively, φ> t> c> kh > f
and φ> t> kh > c> f (obtained byMC). In case study 3, those
are, respectively, ξ >φ>H> c> c and ξ >φ> c>H> c (ob-
tained by MC). Te results obtained by the other three
methods are generally consistent, which shows that the
relationship between c and φ will impact the importance of
the random variables, and the correlation between c and φ
should not be neglected.

It is pointed out that the probabilistic approaches which
can integrate the Fs with advanced failure probability pre-
diction have seen fast development in recent years. For ex-
ample, Ji et al. [31] proposed a simplifed iterative algorithm
for forward/inverse frst-order reliability method to perform
the geotechnical reliability-based designs of a strip footing and
an earth slope. Ji et al. [32] studied the seismic slope failure
mechanism of a rotating sliding body to clarify the mecha-
nism of slope movement triggered by earthquake and the

criteria of seismic performance or failure state and proposed
a reliability-based design of the allowable displacement
method for slope stability analysis. Ji et al. [33] established
a modifed rotational sliding block model considering depth-
dependent shear strength and dynamic yield acceleration, and
investigated the infuence of slope parameters on the failure
probability of seismic slope. In order to improve the efciency
and accuracy of reliability analysis, Ji and Wang [34] de-
veloped a modifed weighted uniform simulation method for
reliability analysis involving nonnormal random variables by
adopting Nataf transformation. Tis paper currently only
analyzes the impact of parameter uncertainty on Fs and pf. In
the future, further research will be conducted on the impact of
other reliability indicators of slope stability.

In addition, more and more computer technologies are
used in slope risk assessment, such as machine learning,
intelligent optimization algorithms, etc. For example, Ma
et al. [35] developed an automated machine learning-based
landslide susceptibility mapping (LSM), which provides
a high performance solution for machine learning-based
LSM. Liu et al. [36] proposed an earthworm optimization
algorithm-optimized support vector regression to predict
reservoir landslide displacement. Jia et al. [37] developed
a multilevel, comprehensive method based on the analytic
hierarchy process to evaluate the hazards of ground fssures.
Long et al. [38] studied the landslide evolution in the worst-
afected area (Mianyuan River Basin) based on supervised
classifcation methods and multitemporal remote sensing
images during the decade from 2007 to 2018. Tese tech-
niques provide more efcient and more convenient methods
for slope stability assessment. Te follow-up work of this
paper will try to introduce machine learning algorithm to
analyze the infuence of parameter uncertainty on reliability
index, in order to provide a more practical method for
landslide risk assessment.

6. Conclusions

In this paper, the variance-based methods (LARS and MC)
and the moment-independent-based methods (KDE and
OPE) are, respectively, used to study the impact of random
variables on Fs and pf. Tree engineering cases have been
applied to verify the accuracy and efcacy of those proposed
methods. Te results obtained by LARS, KDE, and OPE are
in good sync with those calculated by the variance-basedMC
method, which is considered to be an exact solution and is
often used to verify other methods. Terefore, the proposed
methods are accurate and efective. When c and φ are in-
dependent or correlated, the infuence of parameters on Fs
and pf are very diferent, and the importance orders are also
obviously diferent, which indicates that the correlation
between c and φ has a nonnegligible impact on the im-
portance analysis for slope stability. Te importance orders
based on Fs and pf difer greatly, which indicates that the
infuence of each random variable on Fs and pf is diferent.
Te impact of variables with large value of the importance
index should be emphatically considered in the risk as-
sessment of slope stability. Fs should not be the only cri-
terion in the uncertainty analysis.

12 Complexity



Data Availability

Te datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by Suqian Sci & Tech Program
(Grant nos. K202308 and K202142), Jiangsu Province In-
dustry University Research Cooperation Project (no.
BY20231207), Basic Science Research (Natural Science) of
Colleges and Universities in Jiangsu Province (General
Project, Grant no. 23KJB410002), and High-Level Talent
Introduction Scientifc Research Start-Up Project of Suqian
University (Grant no. 2022XRC007 and Grant no.
2022XRC022).

References

[1] J. Jin, C. Yan, Y. Tang, and Y. Yin, “Mine geological envi-
ronment monitoring and risk assessment in arid and semiarid
areas,” Complexity, vol. 2021, Article ID 3896130, 10 pages,
2021.

[2] J. Cai, T. C. J. Yeh, E. Yan, R. Tang, J. Wen, and S. Huang, “An
adaptive sampling approach to reduce uncertainty in slope
stability analysis,” Landslides, vol. 15, no. 6, pp. 1193–1204,
2018.

[3] M. Abdulai and M. Sharifzadeh, “Uncertainty and reliability
analysis of open pit rock slopes: a critical review of methods of
analysis,” Geotechnical & Geological Engineering, vol. 37,
no. 3, pp. 1223–1247, 2019.

[4] H. Zhao and S. Li, “Determining geomechanical parameters
and a deformation uncertainty analysis of the Longtan Hy-
dropower Station slope, China,” Bulletin of Engineering Ge-
ology and the Environment, vol. 80, no. 8, pp. 6429–6443, 2021.

[5] Z. Su, Y.Wang, and H. Zhang, “Deterministic and uncertainty
analysis of a reservoir slope stability and failure mechanism
under combined action of multi-hazards,” Geotechnical &
Geological Engineering, vol. 40, no. 4, pp. 2187–2199, 2022.

[6] Q. Ren and X. Meng, “Study on mechanical response and
stability algorithm of soft and hard rock interbedded slope
excavation,” Complexity, vol. 2022, Article ID 3331097,
26 pages, 2022.

[7] F. Li and H. Zhang, “Stability evaluation of rock slope in
hydraulic engineering based on improved support vector
machine algorithm,” Complexity, vol. 2021, Article ID
8516525, 13 pages, 2021.

[8] A. Alexanderian, P. A. Gremaud, and R. C. Smith, “Variance-
based sensitivity analysis for time-dependent processes,”
Reliability Engineering & System Safety, vol. 196, 2020.

[9] A. Subramanian and S. Mahadevan, “Variance-based sensi-
tivity analysis of dynamic systems with both input and model
uncertainty,” Mechanical Systems and Signal Processing,
vol. 166, 2022.

[10] W. Yun, Z. Lu, K. Feng, and L. Li, “An elaborate algorithm for
analyzing the Borgonovo moment-independent sensitivity by
replacing the probability density function estimation with the

probability estimation,” Reliability Engineering & System
Safety, vol. 189, pp. 99–108, 2019.

[11] Z. Xu, X. Zhou, and Q. Qian, “Te uncertainty importance
measure of slope stability based on the moment-independent
method,” Stochastic Environmental Research and Risk As-
sessment, vol. 34, no. 1, pp. 51–65, 2020.

[12] S. Khan, P. Kaklis, A. Serani, and M. Diez, “Geometric
moment-dependent global sensitivity analysis without sim-
ulation data: application to ship hull form optimisation,”
Computer-Aided Design, vol. 151, 2022.

[13] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least
angle regression,” Annals of Statistics, vol. 32, no. 2,
pp. 407–451, 2004.

[14] Z. Xu, X. Zhou, and Q. Qian, “Te global sensitivity analysis of
slope stability based on the Least Angle Regression,” Natural
Hazards, vol. 105, no. 3, pp. 2361–2379, 2021.

[15] I. Sobol, “Global sensitivity indices for nonlinear mathe-
matical models and their Monte Carlo estimates,” Mathe-
matics and Computers in Simulation, vol. 55, no. 1-3,
pp. 271–280, 2001.

[16] E. Borgonovo, “A new uncertainty importance measure,”
Reliability Engineering & System Safety, vol. 92, no. 6,
pp. 771–784, 2007.
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