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Lassa fever is an acute viral hemorrhagic disease that affects humans and is endemic in various West African nations. In this study,
a fractional-order model is constructed using the Caputo operator for SEIR-type Lassa fever transmission, including the control
strategy. The proposed model examines the dynamics of Lassa fever transmission from rodents to humans and from person to
person and in territories with infection in society. The model is analyzed both qualitatively and quantitatively. We examine the
positively invariant area and demonstrate positive, bounded solutions to the model. We also show the equilibrium states for the
occurrence and extinction of infection. The proposed nonlinear system is verified to be present, and a unique solution is shown to
exist using fixed point theorems. Using the Volterra-type Lyapunov function, we investigate the global stability of the suggested
system with a fractional Caputo derivative. To study the impact of the fractional operator through computational simulations,
results are generated employing a two-step Lagrange polynomial in the generalized version of the power law kernel. A graphical
evaluation is provided to show the simplicity and dependability of the model, and all rodents that could be source viruses are
important in ecological research. The findings with a value equal to 1 are stronger, according to the comparison of outcomes with
different fractional orders. The adverse effect of Lassa fever increases when all modes of transmission are taken into account,
according to the study, with fractional-order findings indicating less detrimental effects on specific transmission routes.

1. Introduction

Lassa fever (LF), also known as Lassa hemorrhagic fever
(LHF), is a severe viral infection that poses a serious threat to
the public’s health in sub-Saharan African nations. The Lassa
virus (LASV), which belongs to the Arenaviradae family, is
the virus that causes LF. The LASV is a bisegmented, linear,
ambisense, and single-stranded RNA virus, and it is
transmitted by the multimammate mouse (Mastomys
natalensis), which is located in sub-Saharan Africa [1]. All
age groups and both sexes are susceptible to Lassa fever.
People who live in remote locations with low sanitary
conditions are more vulnerable. The Lassa virus can be
spread from person to person by coming into contact with
its excretions, blood, tissues, or secretions. LASV does not

spread through common contact. However, when the wrong
personal protective equipment (PPE) is not employed,
human-to-human transfer and nosocomial infections are
frequent in healthcare environments. Additionally, com-
promised medical supplies like reused needles might spread
LASV [2]. A normal LF epidemic lasts seven months, from
November to May, with the majority of cases occurring in
the first three months and sporadic instances on certain
occasions throughout the year [2, 3]. In endemic African
regions, LF is a substantial cause of morbidity and mortality,
with 80% mild cases and 20% severe cases, as well as sporadic
epidemics with a 50% case-fatality rate. Fever, discomfort,
and neurological problems such as encephalitis, hearing loss,
and tremors are among the symptoms of LF. Due to the
overall nature of these symptoms, which often appear
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1-3weeks after contact, making a clinical diagnosis is
challenging [4]. According to recent estimates, LF kills 5000
to 10,000 people annually, mostly in West Africa, and causes
two million infections [5]. Several epidemiological models
have been developed and utilized to better understand the LF
transmission; for example, see [1, 6, 7]. The dynamics of LF
transmission were shown using a nonautonomous system of
nonlinear ordinary differential equations that took seasonal
fluctuation in the occurrence of Mastomys into account
[8, 9], as well as other mathematical studies connected to the
Lassa virus [10-12]. Pregnant women who have LHF disease
suffer harmful effects that first surfaced in Africa [13, 14].

In many scientific fields, particularly engineering and
physics, fractional calculus is employed extensively [15].
Because fractional-order models distinguish between genetic
and memory features of mathematical models, they are more
factual and empirical than conventional integer-order
models [16-19]. With the use of the Caputo fractional-
order derivative, the authors of [20] created a new
integer-order ordinary differential equation Lassa fever
model, from which the FODE that it corresponds to was
created. On the rodent population, a culling approach was
used to reduce disease. Even though this method lessens the
number of infected rats, it does not totally cure the illness in
people. A fractional-order model of Lassa illness is presented
in a different study [21]. Utilizing the Laplace Adomian
decomposition method, the answer was found. According to
the sensitivity analysis, the contact rate with exposed, in-
fected, and isolated people needs to be under control. The
authors of [22] present a fractional-order model for the
kinetics of Lassa fever transmission that takes into account
person-to-person, mastomy, rat-to-human, and polluted
surroundings. Numerical solutions to the problem were
found using the Adams-Bashforth-Moulton method. It was
discovered that self-protection strategies advised for those
with prior diseases identical to the one in question can
contain a potentially explosive outbreak. With a fatality rate
of roughly 80%, this lethal illness kills pregnant women more
frequently than the Ebola hemorrhagic fever. For patients
who were pregnant, a novel analysis using the time-
fractional Lassa hemorrhagic fever model that has been
suggested was conducted in [23]. The fractional variation
iteration approach was used to find the numerical solution to
this model. Researchers changed the derivative to a time-
fractional derivative with nonsingular and nonlocal kernels
in order to expand the model representing Lassa hemor-
rhagic fever [24]. Using the Banach fixed point theorem,
a thorough examination of the existence and uniqueness of
the exact solution was presented. Finally, it was demon-
strated how several numerical simulations supported the
efficiency of the employed derivative. Atangana [25] just
created the novel concept of fractal-fractional derivative. In
many circumstances, this novel concept is highly useful for
solving some challenging issues. The operator has two orders:
the fractional order, which is the first, and the fractal di-
mension, which is the second. The fractal-fractional derivative
is a new concept that is superior to fractional derivatives and
conventional ones. This is because working with fractal-
fractional derivatives allows us to simultaneously examine
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the fractional operator and fractal dimension. Using a fractal-
fractional derivative, Farman et al. [26] studied a sustainable
method to observe the dynamics of infection in the plant.
Solutions were produced using a two-step Lagrange poly-
nomial in the generalized form of the Mittag—Leftler kernel to
represent a time-fractional-order plant virus model with dis-
ease effects. Researchers employed fractal-fractional Atanga-
na-Baleanu derivatives and integrals in the sense of Caputo to
study the dynamics of Q fever transmission in livestock and
ticks as well as the bacterial load in the environment [27]. The
newly created Newton polynomial was used in a numerical
technique that was presented. Baleanu et al. [28] recently
developed constant-proportional Caputo (CPC), a hybrid
fractional operator that is more flexible than Caputo’s frac-
tional derivative operator. Using the CPC operator and
modified parameters, the new stochastic fractional coronavirus
model was successfully constructed in [29]. They developed
a novel method known as the CPC-Milstein approach to solve
the hybrid stochastic fractional-order system. The constant-
proportional Caputo (CPC) operator was used to analytically
assess a nonlinear fractional-order smoking problem, which is
a significant challenge in applied sciences, in [30]. Using the
Atangana-Baleanu technique, the dynamical behavior of the
fractal-fractional HBV model with modified vaccination effects
was investigated in [31]. They discovered that the fractal-
fractional operators produce more flexible results and gave
numerous graphical examples. In [32], a fractal-fractional
model for the syphilis disease was created using the Mit-
tag-Leftler kernel. The fractional-order system was analyzed
both qualitatively and quantitatively. In order to satisfy the
requirements for the existence and uniqueness of the exact
solution, fixed point theory and the Lipschitz condition were
also applied. Numerical simulations demonstrating the impact
of fractional-order derivatives on the fluctuations of syphilis
transmission within the human population provided re-
inforcement for the analytical solution. In a different work, the
mathematical model of the varicella-zoster virus was in-
vestigated using the Mittag-Leftler fractional operator [33]. To
test the well-posedness of the proposed fractional-order model,
the existence requirement, positive solution, Hyers-Ulam
stability, and boundedness of outcomes were obtained. In order
to demonstrate the validity of the discovered results, a few
numerical illustrations for the suggested model of different
fractional orders were provided using the generalized
Adams-Bashforth-Moulton technique.

As a result of the preceding discussion, this article
proposes a fractional-order model for modeling Lassa fever
transmission using the Caputo fractional operator. In
comparison to standard integer-order derivatives, the
Caputo fractional derivative concept performs better. This
makes our model and procedure different from the Lassa
fever model that has been published in the past up to this
point. Section “2” offers a generalized version of the model
and an analysis of the description of the suggested model.
Also, we describe the fundamentals of the proposed frac-
tional operator. Section “3” investigates the well-posedness
of the proposed model and qualitative aspects such as
equilibrium states, reproductive number, existence and
originality, and global stability. Section “4” contains the



Complexity

numerical solution to the fractional Lassa fever model with
a power law kernel. The numerical simulations, findings, and
conclusions will be covered in Sections “5” and “6”.

2. Lassa Fever (LF) Model

We take into account the model created in [2] that describes the
epidemiological dynamics of LF transmission by using a tra-
ditional SEIR-typed model to analyze the transmission dy-
namics and control strategies of the LF outbreak in Nigeria,
considering moderate and serious instances plus ecological
transmission. The entire human population at time t, N, (¢), is
separated into subpopulations of susceptible S, (t), exposed
E(t), symptomatically moderate infected persons I, (¢), and
symptomatically severe infected persons I (), and persons who
were hospitalized H (¢) and then recovered R, (), so that

N, (&) =S,() +E@®) + L, () + L,(t) + H(t) + R, (£). (1)

The two subpopulations of susceptible and infectious
rodents make up the entire rodent (reservoir) population at
time t, represented by N, (). Thus, we have

N, (t) =S, (t) + L (t). (2)

Additionally, let V (t) stands for the concentration of
LASV in the environment at time f, such that both human
beings and rodents are vulnerable to LF when coming into
touch with a polluted environment. The frequency of the
disease, reservoir population, human behaviors, and sea-
sonality all play a significant role in the spread of LF [2]. We
explain the model using the successive systems of ordinary
differential equations that are nonlinear and provided by

dsgt(t) _ 0, + oR _(flmlmN: & I + f‘f\\”)Sh = MuSh>
0 (L5000 5
dlrgt(t) = AE _(X +rp P+ Wh)lm’

% =By, L + B + BH = (9 + 13)R,

d\;Et) = ay (I, +1)+ a1 - 9V,

dSét(t) o, _<i:11rr + fz‘;)sr -1,8,,

dt N, c¢c+V

r

0O (6 BY)

(3)

The human recruitment rate is shown by ®,, and the
environment’s LASV pathogens’ decay rate is indicated by

®,. The pace of reversion from R to S, is represented by ¢.
&L &, & &, and &, represent transmission rates of
human-to-human, Mastomys rat-to-human, human-to-
infected surfaces or environments, Mastomys rat-to-
Mastomys rat, and Mastomys rat-to-infected surfaces or
environments, respectively. In the contaminated environ-
ment, the concentration of LASV pathogens is defined by c. A
indicates the progression of an exposed person who develops
symptoms of infection. y is the LF progression rate from I,
to I,. Hospitalization rate from I, is provided by x ,
whereas hospitalization rate from I is provided by «; . The
recovery rates for patients who are asymptomatic, éymp—
tomatic, and hospitalized are represented by the parameters
Bi, By > and 3, respectively. The death rates caused by LF are
/41:” and ;. The natural death rates for the populations of
humans and rodents are 7, and 7,, respectively. a;, repre-
sents the rate at which an infected human sheds the virus
into the environment, while «, represents the rate at which
an infected Mastomys rat sheds the virus into the envi-
ronment. The rodents’ maximum growth rate is shown by
the symbol 9.

A close connection exists between fractional calculus and
the dynamics of intricate real-world phenomena. We will
review some recent and practical results in fractional
calculus here.

Definition 1 (see [34]). The Caputo fractional derivative of
a differentiable function ¥ () to order p € (0,1) with starting
point t = 0 is defined as follows:

Cpp _¥t' _YyP
uzwm—ru_wjgvmxt¢>d¢ ()

Definition 2. If ¥ (t) is an integrable function with 0 <p <1,
the fractional integral is specified as follows [35]:

Crp _Lt _Pt
oawm—rwﬁga 0P (). 5)

Remark 3. A fixed point w* is perceived to be the equi-
librium point of the Caputo system

cDPY () =Y (t,w(®), pe(0) (6)
if and only if ¥ (¢, w*) = 0.
Lemma 4 (see [36]). Consider that the function o (t) € R* is
differentiable. Then, for p € (0,1),
o

* * ( * -
ng(a(t)—a -0 lngg*)>§[l—m]gl)f”(t)> vt20.
(7)

The order of fractional derivative regulates memory
strength, which is important in the gradual development of
human epidemiological functions. Greater comprehension
of the conduct of models is made possible by the in-
corporation of memory effects into epidemiological



investigations of real dynamical procedures, which improves
our knowledge of how diseases spread. To improve our
understanding of the dynamics of the models, we expand the
model (3) to the Caputo fractional operator.

EI Im + 51 Is Ev A%
OCDI;Sh (t) = @h + ([)R —< = Nh *—+ c :V)Sh - r]hSh,
&L, +&1 &V
C m S vh
ODfE(t):( oy s (e m)E,

oDIL, () =AE—(x+ & +By +1,)L,
OCDfIs (1) = X1, _(KIS + Py g+ ’7h)Is»
cDfH(t) = iy Ly + 1 Ly = (B, + gy, + 11,) H,
oDIR(#) = By L, + i L+ BH - (9 +7,)R,

SDPV (1) = a (L, + L) + o, I, — 9V,
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where ©DF represents the Caputo fractional derivative of
order 0<p<1, and the corresponding nonnegative initial

conditions are such that
$,,(0)=0,E(0)>0,1,, (0)>0, (0)>0,H(0)>0, ©)
R(0)>0,V(0)>0,S,(0)>0,I,(0)>0.

3. Analysis of the Proposed Model

3.1. Well-Posedness and Positively Invariant Region. We look
at the requirements essential to guarantee the favourable
outcomes of the system under examination, assuming that
they represent settings with realistic values in the real world.

In the case of integer-order derivative, we have for all
t>0:

E()>E(0)e 0 1 (1) =1 (0)e (o).
H(t)>H(0)e” (ﬁh*#h“ﬁ«)f; IL(t)>1, (O)e*("lﬁﬁlswlsﬂ?h)f;

R(£) >R (0)e ), V() >V (0)e

I v L () >1 (0)e ("),
(():Dfsr (1) = (Dr - Er - +£L Sr - ’/Irsr’
N, c+V (10)
Cprp o ﬁ+ £,V - Consider the norm
0T N, c+Vv)7 " [£lloo = sup I ()], (11)
teDg
(8)
where Dy is the domain of f.
We have for the function S, ()
G L, +&I &V
C I m I*s vh
DPS, (1) = R-| = : S, —nS
0 DSy (1) ht e ( N, +C+V>h Hnon
G L+& L &,V GL,+&L &,V
> - —= —+ 2 )S, -S> - 2 —+ 22—+, S
( N, c+v )on T N, cry )
flmsupteDlmllm| + flssupteDls l I EunSUPep, VI
> - + + T’Ih Sh
supteDNh|Nh| €+ SUPsep,|v| (12)

- (Bldor
NI

=S, (1)

> 8, (0)e~ (oot & ML Lo NGl SVl Ve )

Also, we have the function S, (t)

h
¢+ Vi

Lo, &Vl , )sh
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I \'%
(?D?sr (t) = q)r _(Et’r + Evr )Sr - ﬂrsr

N c+V

r

frlr fer ErIr fer
> - S, - 1,8,> - s
(N Teav o= TN, Teav T

r r

<£rsupteDI IIrl EvrsupteDV|V| >
> - - + +1, Sr

SupteDNTINrI €+ SUPsep, |v|

&L ] . €V,
y ( Nl eIVl ’”)S’

5, (028, (0 EILIIN Dt &lViies Wsn)e s

The positive solutions under fractional Caputo derivative

are

where E, represents Mittag-Leftler function.

p

bnlloo + &0 | EnlVIlG ) p]_
NI eV )"

S;, (£) =S, (0) Ep[—<
E(t)2E(0)E, [~ (A +1,)t"];

L, ()L, (0)E, [~ (x +x; +By +m)t’];
H(t)2H(0) E,[~ (B + iy + 1)t"];

L (6) 2L, (0) E, [~ (rey + By, +pir, + 1 ) ];
R(t)2R(0) E, [~ (¢ +1,)'];

V() 2V(0)E, [~ 9];

L (t) =L (0)E, [~ (1,)f"];

Erlllflloo ‘Evr"V”oo .
S, (t)=8,(0)E, [— ( ”Nr“m - FIVIL + qr>tp], vt >0,

Lemma 5. The feasible region U € R

We shall now show that system (8)’s feasibility region is

positively invariant.

0-{sE

o)
I,H,RV,S,1)eR): 0<N, (t) < V(t) <
T

a, (P /ny,) + a, (O, /1)
9

L,O0<N, (£)<—L

)
]1 b

r

(13)

(14)

(15)



attracts all solutions of system (8) and is positively invariant
subjected to nonnegative initial constraints for the proposed
system in RY.

Proof. We shall demonstrate the system’s (8) positive so-
lution, and the outcomes are given as follows:

[OCDfSh (t)]sh:O = (Dh + gDRO,

G L, +&L &,V
Cryp N I N N vh
[ DE®)],, _( N Teav S, >0,

[6DfL, (0], ,=1E>0,
[(DIL®)], , =xLu=0,
[fDH®]yco

=y L, + 1120, (16)

[(DIR(®)],y, =By L+ BI +BH=0,

[(DIV®O)]y, =, +L)+al 20,

rer —

[6 DS, (t)]srzo =, >0,

D71 0],
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The system (16) indicates that the vector field lies in the
region R} on each hyperplane enclosing the nonnegative
orthant with > 0.

We now take into account the rate of change in the total
populations of humans and rodents. We begin with the
human population as

SDEN, (1) = SDES, (1) + SDPE(t) + SDIL, () + SDYL (1) + SDPH(t) + SDER(1),
¢DIN, () = @, — I, - w,H -1, (S, +E+ L, + I, + H+R), (17)

C
ODho (t) > (Dh - ’7hNh-

Furthermore, this follows lim,_, sup [N, (#)]<
®,/n;,. Hence,
(o) ()
OsNh(t)sn—hforOSNh(O)sn—h, Vt>0. (18)
h h

Therefore, the region Uy,
6 @,
U, =4(S,,E 1, I, H,R) e R: 0<N, (1) <—¢, (19)

is a positively invariant region.
Now, we add the rodent population as

C o C
{ o DIN, ()= D{S,+; D}1,, (20)

f):DfNr (t) = (Dr — 1, (Sr + Ir) = q)r - rerr‘

We have lim, __, sup [N, (t)] < ®,/n,. Therefore,

() )
0<N,(f)s—Lfor 0<N, (0)<—, Vi=0. (21)
n

r r

Therefore, we can say that the region U,,

r

U, = {(Sr,lr) € R}: OSNr(f)S?}’ (22)

is a positively invariant region.
For the concentration of virus in the environment, we
have

SDEV(t) = (L, + L) + o, I, — 9V. (23)

From equations (18) and (21), we can write

() ()
SDfV(t) < ah<—h> + ocr(—r) - 9Vv. (24)
U My

This implies that lim, | _sup
(®,/n,)/9. Hence, the region U,,

° z{(v’eR 10SV<t>s"‘h(q’h”7h)*“f(q’f/”r)},

[V(t)] < (Xh ((Dh/f'lh)‘l' (XI’

9
(25)
is a positively invariant region.

Consequently, system (8)’s biologically feasible region is
given by
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U=0,x0,x0, e RS xR: xR,. (26)

Hence, for every t >0, every solution of the fractional
model (8) with initial constraints in U continues to exist in
O. Therefore, we can investigate our model (8) in the feasible
region U. O

3.2. Equilibrium Points Analysis. The two different kinds of
equilibrium points are disease-present equilibrium points
and complaint-free equilibrium points. To locate them, the
right-hand side of the system is set to zero.

(1) We have disease-free equilibrium points Z°:

F° ={s,, B’ 1), I,H’,R", V', 8], I}

r>or

o, o, (27)
=4—0,0,0,0,0,0,—,0¢.
fn r

5; =L

(2) We obtain an endemic equilibrium state after per-
forming certain algebraic calculations by setting the
vector field of system (8) to zero. The endemic
equilibrium point is

P ={S,,E", L, I., H,R",V",S , T'}. (28)
The endemic equilibrium points %" in terms of E*, I,
and M, as stated in [2], are

(E"pAB,, + ©,3,3,)ST; + E',,,0A]S; + E oA (B, + B S5)

313,353, (M, + 1)

L=c>L=gcH =K +< & &
I 1392 S SRR JENS
R* _ /\E*X(ﬁhks + /3553) + )LE*SZ (ﬁth + ﬁm‘c}3) (29)
B $3,5,3,8 ’
192394
V* — /\E*(xh (X + Sz)’h (r]r + m:) + “rq)rm:sl'sZ
3,351, (M, +1,)
S* _ (Dr * q)‘r‘mj
ToM " o (M +n,)
where
m* _ EImI:n + fISI: + Eth* * — SrI: + fer*
h N, c+VZTTT NS e VY (30)

& _ < — < — < —
Sy =x+uq, + Py, + M Sy =k + Py + 1S3 = Py + iy + 1, Sy = @ + 17,

3.3. Reproductive Number. The total number of subsequent
cases that a typical initial case generates within a susceptible
population throughout the infectious phase is known as the

reproductive number, and we calculate it by using the next-
generation matrix technique. We take into account the
following equations to determine the reproduction number:



L, +&I0 £V
C I, m I"s vl
CDPE(t) :( N, + :V>Sh —(A+n,)E,

OCDfIm (t) = AE _(X K+ Pyt nh)lm,

(?Dfls (1) = XIm _(KIS + ﬁls + Hr, + I/Ih)Is’
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Matrix F represents the terms that are new to infection,
and matrix V provides the other terms that are transferred.

Bntu,tn, 0 0

(31)
(?DfH(t) = KImIm + KIsIs - (ﬁh Tt ﬂh)H’
SDEV (t) = a, (L, + L) + o, 1, — 9V,
c &I, &,V
D1 (t)=( Ty M S, - .1,
0=t r Nr c+V r rer
0 glm’/]h 'flﬂh 0 th 0
q)h (Dh C
0 O 0 0 0 0
0 O 0 0 0 O
F= ,
0 O 0 0 0 O
0 O 0 0 0 O
0 0 o oo &
c O,
A+, 0 0 0
-A X+Klm+ﬁlm+’7h 0 0
0 X Ky, + Pr + 1y 0
V =
0 —Ky, —K,
0 —(Xh —(Xh 0
0 0 0 0

The reproductive number (%)) of our suggested model
is obtained from det |[F(E®)V-! —AI| = 0.

9 —a,,

0

ny

(32)
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Ro=R,+ Ry + R, (33)  Wwhere
1
Ha = 27,90’
951”71’ (xrfvr 95"’!’7 o fV 9€S’1 4 £V
!%b:®<Tr+ c +T7rA(KIS+ﬁIS+I7h) Thh-’_% +X1’]r/1 Thh"’% 5

%CZ \‘%bl—l—‘%bz_*—‘%lfg’

@=(1+ ’Yh)(X+ Ky, + P, + ﬂh)(KIS +fy + ’7h)’

] (34)
r/\ E'r r ?
=1 08+ 8, ) -0 |
h r
MASy Suetty | ( Mt &ty
‘%cz :29|:h(X+£m<KIs+ﬁIs+’7h))_® IZD (X€s+fm<KIs+ﬁIs+’7h))_® o /)
¢ ¢ h r
1A %8,
@53=[%(X+(Kls+ﬁls+qh))+@%] |
3.4. Existence and Uniqueness of Solutions. We show that
system (8) under examination has solutions by executing
fixed-point results. Think about the function:
EI Im + €I Is f hV
g, (tS,EL, I, HLRV,S,I)=0 R-| = S =—|S;, — 1,Sk;
1 (68, E L, pl) =@+ ¢ ( N, +C+V)h HnSh
& L, + &1 EnV
Z,(tS,EL,I,H,RV,S,,I)=(—= : z S, —-(A E;
2( h m> *s r r) ( Nh +C+V h ( +’1h)
G (68, B L, ILHR V.S, L) = AE—(y + 11 +By + 1)L
?4 (t’ Sh’ E, Im> Is’ H,R,V, Sr’ Ir) = XIm _(KIS + ﬁlx + ‘uIS + ﬂh)ls;
©s (68 E L, I H RV, S L) =g L, +# 1 = (B, +y, + 1, )H; (35)

g6 (t> Sh’ E, Im’ Is’ H,R,V, Sr’ Ir) = ﬁlmlm + ﬂlsls + ﬁhH - ((P + nh)R;

<, (65 E L, I HRV,S, L) = a, (I, + L) + a1, - 9V;

> Lim>

I \%
€ (6,8 E 1, I, H,R,V,S 1) = D, —(h o

N c+V

r

)Sr - nrsﬂ

&L &,V
G,(t,S,,E,1 I, LR, V,S I )= 2L+ 22— |S — 1.
9( h m>*s r r) (N c+V /)" Ay

r
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Establish a Banach space A[0,T] = &% under the norm

Complexity

Izl = tes[%?nﬂs’“ (O] +[B ()] +[L,, (6)] +[L (O] +IH (O] + IR (0] +V ()] +]S, (1)] + [T, (8)]], (36)
where
(S, (1), (S,(0, (% (tS,EL,I,HRV,S,1),
E(1), E(0), %,(t,S,,E1,,I,H,R,V,S L),
L, (1), L, (0), ©5(t.S,EL,I,HRYV,S, L),
L (1), L,(0), 9,(t,S,,E1,,I,H,R,V,S L),
@(t) =4 H(t), @, (t) =4 H(0), =1 &5(t.S,,E L, I,H, R V,S,1,), (37)
R(t), R(0), G (t,S,,E 1,1, H,R,V,S L),
V(t), V(0), %,(t,S,EL,I,HRYV,S, L),
S, (1), S, (0), G (t,S,,E 1,1, H,R,V,S ,L),
L L, (1). L (0). %y (t,S,,E L, I,HRV,S, L)

From the aforementioned collection, we can denote the
system (8) as

{ SDO (1)
¥(0) =

=o(t,¥Y(), tel0,T]

(38)

Equation (38) can be expressed as follows:

W)= j (t— O '@ ¥ ()AL e [0,T].

(39)

T

The following presumptions are made in order to
demonstrate that the solution exists:

{y:}: 3 constants Xy, X >0
@ (8, ¥ (D) < LY (D" + Lo
{y,}: for each ¥,¥ 3 constant 2 >0
@ (8, ¥ (1)) =l@ (£, ¥ () < LIV () = ¥ (1)l
(40)

Establish an operator ©: B —> RB as

P¥ () = ¥ j - oY) (41)

F()

Theorem 6. When both of the presumptions {y,} and {y,}
are correct, it is confirmed that the problem (33) contains
a minimum of one fixed point, which suggests that the system
under consideration also possesses a minimum of one
solution.

Proof. We proceed as follows:

(i) At first, pretend that g is continuous. Since @ is
continuous, hence, assume that @ ({, ¥ ({)) is also
continuous. Furthermore, if for V¥,¥, €G3
¥, — ¥, then we find p¥, — VY. For this, we
consider

v — 7] = max o [ 6= 07 @@ -5 [ 6 0 e v
- max rLj |t = 0P[5 (6 W, (0)dC - (8 W (O] de (42)
7]“9 ”(Dk - (D“ — 0 ask— oo



Complexity

As @ is continuous, hence, p¥, — V¥ implies that
g is also continuous.

v max
l¥l = max

< [¥y| + max *I (6= 07 10 (@)1 + o

telo,1] I'(p)

Here, we suppose that J is a bounded subset of G,
and we must demonstrate that @] has the same
property. In order to get where we are going, we
suppose that for any ¥ € J, J is bounded such that
there exists a constant 2, >0, where

I<Z,, VYel (44)

Additionally, considering the growth condition, we
have

o (t,) - 0¥(2.,)| =

1
L'(p)

~~

IA

~~

S}

T
<——
I(p+1)

As a result, p is compact according to the Arzela-
-Ascoli theorem.

(iv) We must demonstrate the boundedness of the set
specified below in this phase.

C={YeG: ¥Y=dpV¥}, de (01). (47)

Regarding this, assume that V t € [0, T], we have
Y € G, then

W] = dllp¥l < d[l%l tr (T st)].

(48)

()" '

lp¥ - p‘l’" < max J F

te[0,T]

We may, therefore, claim that the fixed point is unique
and that our solution is unique as a result. O

o [ (- O e v @ -

1 t p—1 —
om0

11

(ii) Here, we demonstrate that g is bounded for any
¥ ¢ G. For this purpose, assume that g satisfies the
growth requirement.

1
s [, 6= e v

(43)
T w
1)( Lol + L ur)-
¥l < || + oD (Zxl¥ol” + X u)
(45)
TP
<|¥,l +m (LT + X)-

Therefore, g is bounded.

(iii) Now, we try to prove that g is equicontinuous. In
this regard, consider ¢, <t, = [0,T], then

rINCS c)”‘lo(c,w))dc‘

1 1 ! p-1
—REJJ%—Q

(46)

(‘%‘K”\P”w + 'EZM) (tel - tsz)'

We can then assert that the set specified above is
bounded. The model we explored in this work has at
least one solution because, according to Schaefer’s
fixed point theorem, the operator we defined, g, has
at least one fixed point. O

Theorem 7. The problem (33) has a unique solution if

"
mﬁﬁK (49)
Proof. Suppose that ¥, ¥e G, then we find
JLAN
| (3 ¥ () - @ (g, ‘1’(())|d(_ 1)II‘I’ . (50)

3.5. Stability Analysis. We now present some findings
pertaining to the global stability.
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Theorem 8. In the case where t >0 and 0 < p <1, the model
(8) is said to be globally asymptotically stable at the disease-
free equilibrium  P° = {S),E°, 1, 1% H°, R®, V°, 8%, 1} =
{®,/1,,0, 0, 0, 0, 0, 0,D,/n,,0}, which is contained in the
region U if R, <1 and unstable otherwise.

Proof. Define a Volterra-kind Lyapunov function:

S
Q:<Sh—SZ—SglnS—g>+E+Im+IS+H+R+V
h

S
+(s, -8 -8 In §> +1,.

(51)

Complexity

Implementing Lemma 4, we get

SO
OCDst<1 —>CDPsh+ODPE+0DPI SDPI+5 DPH+S DIR
h

SO
+5 DIV +<1 - S—r>0CDfSr+OCD I
r

(52)
$DII,,

m> 0
I, from (8), we have

Putting the values of §{DIS,, SD/E, §D{1
§D/H, DR, §D{V, §D{S,, and §Df

S & Im"'fls
OCDfQS(l—S—:)[CDh+¢R—( " N,

I, A% L, +¢& 1 \Y%
+ Sun S, — xS | + 4, ! + Sun S,
c+V N, c+V

-(A+n,)E+AE —(X+ Ky, + B+ nh)Im +xL,

= (B + py + 1) H + Br, L+ B L + B H -

_(KIS + Py g+ ’7h)Is +xg L, + 5 I
(53)
(¢ +m)R+a, (I, +1) +aI -9V

s’ I % | %
+H1-2L)| o, - E”+§L S, -n,S, |+ f”+£L S, - 1,1,
S, N, ¢c+V N, ¢+V

where {D/Q<0 for ;<1 and D/Q =0 only when
S, =S, E=E, I, =1°, I,=1", H= H° R=R% V=V
S,=S),and I, = I? Hence, we conclude that a disease-free
equilibrium state Z° is globally asymptotically stable.

For the endemic Lyapunov function, we set all in-
dependent variables in the suggested model; in our case,
{S),Ep 1, 1, S,, 1, V, B, }, B <0 is the endemic equilibrium
(). O

s‘B(t) :u1{

+u4{15—1;‘—1j1

E
-S;In ’1} u{E E'-E'In }+u3{
h

Theorem 9. In the case where t >0 and 0 < p <1, the model
(8) is said to be globally asymptotically stable at the endemic
equilibrium P* = {S;,E*, 1}, 1:, H*,R*, V*, 8", I}, which is
contained in region O if R, > 1.

Proof. We can express Volterra-kind Lyapunov function as
follows:

A |
I -1 In —T}
Im

(} H H* HlnH}+u{R—R*—R*ln£*} (54)
S H R

+l[7{V—V*—V*1n }+u8{s -S; -8, lnS +l[9{1 -I'-I'ln r }»

where U;,i =1, 2,...9, are positive constants that we can
choose later. Substituting equation (54) into system (8) and
utilizing Lemma 4, we find



Complexity

S, - S E-E I -1
o= (S S eogs, oo (B oo (M oo,
-1 H-H R-R*
+ m(%)gpfls + u5< 0 )ng;H + 2, )ngR
S

vV-Vv* S, - S, I -1
+u7( v )OCDfV+u8(’S f)OCDfs,+u9 r ’)§DP1

r

writing their expressions for derivatives (8) as follows:

»

c S, -S; S L+ &L &,V
0Df213(t)£l[1< h ) h @, + gR - N, +C:V S, — 1,S,

E-FE E]mlm + EISIs EnV
_ )[( . +C+V)sh—(A+nh)E]

-1
- m)[AE—(X+KIm+ﬁIm+;1h)Im]

m

I -1
* I : ) [le _(KIS + Py g+ Uh)ls]

[ﬁlmlm + /31515 + BhH - ((P + ﬂh)R]

=

= |
=,
N———

v _VV ) [a, (T, + L) + &, 1, — 9V]

I
|:(Dr _<£r "+ EVrV )Sr - nrsr]
N, ¢c+V

r

(
(
(
+u5( _ >[Klmlm+KISIS—(ﬁh+‘uh+11h)H]
(
(
(
(

Putting

S,=S,-S,E=E-E'I,=1,-I' I =1, -I',H=H-H",
R=R-R,V=V-V"§ =§ -8 =L -1,

we have

13

(55)

(56)

(57)



DP‘B(t)<u< —S, [CDh+go(R—R*)—(

S . S .
SDYSB (1) <2, D, —uls—%h +Up(R-R )—ulq)s—h (R-R") - ul[
h h

Complexity

flm(lm_lm)-'—fls( I) 'fvh(v V) )(Sh_SZ)]

5 N V)
(B V(a0 YN o e

ot (B e - ) (e, ) 0 )

ot (B 1) (o 1) 0 -T)

(T o, (0 )+ (0 8 ) () )
(B B (-1, (05 BB (g ) (R

(Y - ) 1) 1) -9V - V)

R G e e O]

B, S

&1, (L — 1) + &, (L, - )

N,
Ea(V-VY) (S, —S:)’ b, (L — L) + & (L-1) £, (V-V7)
VoV h] S +u2[ N, c:(v )](S”'S")
_uz[flm(lm _Imi\;; EIS(IS_IS)+CEV:EXV:$:;]€ (Sy = Sy) — Uy (A +1y,) (E _EE )

* I; * Im_I:n 2 *
+ U;A(E-E )—H3I—A(E—E )_u3(X+Klm+ﬁlm+’7h)(l—)+u4X(Im_Im)

m

I \ I-I') . H*
- u4I_X(Im -1,) - u4("15 + ﬁls Tyt Wh)(sl—) + Uskp (L, -L,) - Usney — “H (L, -1L,)
* *\2

. H 59
+ Usip, (IS_IS)_HSKISH (59)

-1 -0, (8y+ ) T g, @, )
N 1,1 e (1) g S ) g, ) s S )

H-H " AY N "
— Uy (B, + pay, + ’I;,)%Jr Wa, (L, - 1) - u70¢h7 (L, — 1) + Wy, (L, - L)

\'a \'a V-V s’
W (I, - 17) + Wyar, (I, - 1) = Wy, — (I, -1:)-u79g+u8q> U D,
% v S,
§(L-1) &(V-V) (S, -8 §(L-1) & (V-V) :

T vr _ r T r r r vIr S _S
us[ N teavov) s TN ferwvov) |G S

E(I _I) gvr(v V) (Ir_I:)z
[ N, c+(V- V)](S_S) R T

r
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Let U=, =, =U, =U; =U, =U, =U; =  where
U, =1 and after simplifying (59), we can write
(DIP(H)<E, -5, (60)
— % £I (Im I:n)+£l (IS_I:) fv V_V* * * *
B, =®,+9(R-R )+[ n N, : +c:EV-V*))](S’“_Sh)”(E_E )+ x(L, - 1)
1, (L= 1)+ (L =10) + By (L, —1,) + By (I~ 10) + B, (H-H) + a, (T, - I,
* * 5, (Ir_I:) é’Vr(V V)
+‘Xh(Is_Is)+“r(1r_lr)+q)r+|: N, c+V V) (S,-S;)
- S S &, (L~ L) + & (L-L) &, (V-V") (S~ 83)’
B, =0 R-R" = . -
Y Sh h+¢s ( ) [ Nh +C+(V—V*) "Th Sh
EI (Im I:n)+£l (IS_I:) gh(V_V*) E" (E E’ )
m s Vi m E E
: . o) sms e B e
(61)
I,-1I) T, . I-17)°
+(X+Klm+ﬁlm+’7h)(l—)+l_)((lm_Im)+(KIS+ﬁIS+MIS+’7h)(17)
Loe B oy (-H)
e 0T e (1) 8 g ) g R,
Y LS RN KLt A SIS PO
R R H v
* *\2 * * * *\2
+“r1 (I,—I:)+9(V_V ) +q)rs Er(Ir_Ir)+£vr(V_V*) -1, (Sr_sr)
v v S, N, c+(V=V") S,
L -T -1
+ fr( )+£VY(V V) —(S _S) (7’ r).
N, c+(V-Vv)|I 1,

We observe that
(i) if B, <E, = SD{P () <0

y
(ii) However, when S, () =S;, E(t) =E*, L, (t) =1,
I(t)=1, H(t)=H*, R(t)=R*, V()=
S,(t) =S, and I, (t) = I, then
B,—E,=0=(D{B(t)=0. (62)

We find the proposed model’s largest compact invariant
set in

{(S;, B0, I, H', R, V", 8, 7)€ U: {D{B(t) =0},
(63)

is the point 9*, the endemic equilibrium of the proposed
model. From Lasalle’s invariance concept, therefore, we can
conclude that 9" is globally asymptotically stable in U if
B, <E,. O
4. Numerical Scheme

The literature has suggested that the Caputo derivative is the
best model to simulate power-law processes in practical
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problems. Our method of solving system (8) numerically is For ease of use, we will write the aforementioned system
based on Newton’s polynomial. as follows:
S, n + 6L £,V
c L,”m " 5L7s | Svh
ODfSh(t):q}h‘l’q’R—( Nh +C+V Sh—ﬂhsh,

S L, +&I £V
C I, m I*s V]
CDPE(t) =( N, +3 :V)Sh ~(A+1,)E,

0D, () =AE—(x+ & +By +m)L,
DL (1) = 1, _(KIS + Py + g+ ’114)15’
(D (1) = Ky, Ly + 1 Lo = (B + py + 1) H,
cDR(t) = By L, + B I + B, H — (¢ +1,,)R,

SDEV (1) = a, (L, + L) + o, I, — 9V,

£TIr erV
G DIS, (1) = O, —<F v S S

r

c 3 Y
DL (t)=( ZL+2X2— S —nl.
Otr() (N,+C+V r ~ Mely

(64)

G L+& L &,V
F(t,S,,E, I , I, H,R,V,S 1) =®, + pR - = A S, —n.S,,
1( h mdLs r r) nt e < Nh c+V h ~ Mrdn

L, +&1 &,V
F,(t,S,,E, I , I, H,R,V,S ,1.) = —= -4 S, —(A+#,)E,
2( h md LS r r) ( Nh c+V h ( ﬂh)

Ky (6,8, E L, ILLHRV,S L) =AE—(x+x_+p; +m,)L,,

L%4 (t’ Sh’ E, Im’ Is’ H,R,V, Sr’ Ir) = le _(KL + ﬁls + MIS + r]h)ls’

Hs (.8, E L, [GHR V.S, L) = & L, + i 1 = (B, + , + ) H, (65)
L%.6 (t’ Sh’ E, Im’ Is’ H,RV, Sr’ Ir) = IBImIm + ﬂISIs + ﬁhH - ((P + ﬂh)R’

Ho (6, B L, I,HR,V,S,,L) = a, (I, + 1) + &, I, — 9V,

N c+V

r

I \%
He (6,8, E L, I, H,R,V,S,,L) =@, —(& il )sr -1,

Erlr Eer
Ho(t,8,,E L, I, H,R,V,S 1) = ( P S

r

After applying fractional integral, we have the following:



Complexity
S, (ty +1) = sh(o)+r( ) Zj H, (6,8, B L ILH R V,S,, L) (t,, - ) 'd(,

k ti+l
E(t,+1)=E(0) +— ) J Hy (6,8 E L, L H R V,S,.L) (t - () 'dC,

Lp) 57

1 & _
L(t+1)=L,0+— Y |  #;(tS,EL,I,H,RV,S L) (t, - ()" 'd(,

1 k tin _
H(t, +1) = H(0) + —— ZJ Hs (6,8, B L, I,HRV,S, 1) (t,, - () 'd(,
; t

1 &t .
L(t+1) = 1,(0) + —— th Hy (B SpE L LR V,S, L) (b, - () dC,

1 & _
R(t,+1)=R(0) +—— Y | H(t,8,EL,I,HLRV,S, L) (t,, - () 'd(,

1 k iy _
V(tk+1)=V(0)+—ZJ T, (£, E L, L. H,RV,S,. L) (tr,, — () 'dC,

1 k i _
S, (t +1) =S, (0) + —— ZJ Hy(t.S E L L HRV,S,.L) (t,, - () 'dC,

1 k ti _
L(t+1)=1,(0) + —— ZI Ho (£, E L L HR,V,S,.L) (£, - () dC.

Here, we recall the Newton polynomial as follows:

(t Sh’ > m’ )H) R, V, SrIr)

~ P(tk,z) Sﬁ—Z’ Ek—Z) Ik—2’ Ik—2’ Hk— 2 Rk—2) Vk—2’ sk—2’ Ik—Z)

m s > r r

1

k-1 k-1 yk-1 tk-1 k-1 pk-1 k-1 k-1 yk-1
+E{I}3’(tk_1,sh ECLLL L LR L VE L s

_ I]:D(tk,z, SZ—Z’ Ek— 2’ Ik—2 Ik—Z’ Hk— 2’ Rk— 2’ Vk— 2’ Sk—Z Ik—Z)}

m >7s r >°r
1
X (-t )+ v {P(ti. Sy, BN 1, 15 HE RS VA SET)

_ 2[P’(tk,2, S B I I g R vl sk Ik—l)

m s r r

+ P(tk,z, Sﬁ—Z’ Ek—Z, Ik—2 Ik—Z) Hk—2, Rk—Z’ Vk— 2) Sk—Z) Ik—Z)}

m s r r

X (C=trn) (€= tiy)-

Replacing the Newton polynomial (75) into equations
(66)-(74), we have for class S;:

17

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)
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m>7s r

1 i—2 2 2 2 2 2 2 2 2
Sy = Sh(0)+r()Zzzt%l(ti_z,s;1 B2 2 H 2 R2 vV sz 11)

x Jtiﬂ (tk+1 - ()”"ldC

i

M»

{ (1 l’sh BT Iinl,I’ Ll Ryl gt Ii—l)

P :2 s 2 r 2%r
o ( o STLE AT Z,H';z,RiiZ,V’;z,sz,Iifz)}
76
[ @) -y 7o
+Lii{% (t, S, E. T, I,H,R, VST
r(p) i:22At2 1 PV >t md L5 > > >V Ay
—2%1(1'1',1,82_1,1:] 1 I:nl’Ils I,Hl 1 Rz 1 Vt 1 Si—l,li—l)
+7{1(ti,2,5;;2,Ei 2’11m2,lts Z,Hl 2 Rt 2 Vz 2 Sz 2 I;, 2)}
tin _
<[t ) (- 0
The following calculations can be made for the integral
mentioned in equation (76):
tisy _ At
[ 0710 =B iy i)
Fiat 14 (Al‘)pJr1
J (C—tiy) (ten - O (_ [(k—i+ 1) (k-i+3+2p)— (k-1 (k—i+3+3p)],
‘ p+1)
; (77)
r“((—t Y(C-ty)( —c)f"ldc—(“—wx[(k—n1)P{z(k—i)2+(3 +10) (k1) +2p” + 9p + 12}
X i-2 i-1) k1 T o+ D (p+2) P P P

= (k= iy {2(k - i)* + (5p + 10) (k — i) + 6p” + 18p + 12}.

Hence, we get finally
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Complexity
S, (tes1) =s,,(0)+(A—t)P i%l(t » S LE LT LI H LRV ST x A
+ r(P"’ 1) & i— m > s
(At) Zk:[ (t sUEL Pl gt R vl g Ii—l)
r(p+2)12 I\ti-1>Yh > m > ts r iy
~ (S, L E LA H LRV 871 x A, (78)
GO i[%(ts E,L,I,H,R,V,S,T)
2F(p+3) [REd /H] > Lo > Ly
% (t 1 gl gL R vl ¢! Ii—l)
1\%i-1>Yh » sty o ds o > > dVp > Ay
+g%’1(ti_2,S;,_2,Ei 2 IIMZ’IIS Z’Hz 2 Rl 2 Vz 2 Sz 2 Izr 2)] XA3,
where

Ay = (k—i+1)P = (k—i),

Ay =(k—i+1)f(k—i+3+2p)—(k—i)(k—i+3+3p),

Ay =(k—i+1)P[2(k—i)* + (3p +10) (k — i) + 2p” + 9p + 12]
= (k=) [2(k - i) + (5p + 10) (k — i) + 6p” + 18p + 12].

Similarly, we get

At & o o
E(ty,,) = E(0) + (A0 Y (i S HE AL AT H TRV ST ) A

Fp+1) 5
(At) d i-1 pi-1 yi-1 yi-1 i—-1 pi-1 y7i—-1 gi-1 yi-1
Z[ St Sy LETLL LT LR VL ST

F@+ﬂ

m 2>7s

_%z(ti_z)sz—Z’Ei 2 Iz 2 Iz 2 Hz 2 Rl 2 Vz 2 Sz 2 1 2)] XA2

k
+21f“)((pA:)P3)Z[%z(tl,sh,E,IWI HL R, VS, 1)

_ Z%Z(ti_l’SZ—I’Ei—l,I;1’Ii—1’Hi—1’Ri—l)Vi—l,Si—l’Ii—l)
m bl S bl

+5i’2(ti_2,S;,_2,Ei 2 Iz 2 Iz 2 Hz 2 Rz 2 Vz 2 Sz 2 Izr 2)] XA3,

Aty & N
I, (tp.) =1,,(0) + C) Y Hi(tp S LE AL AL H TRV ST x A
Fp+1) 5

(At)p < i—1 i11111 i—1 i—1 i—-1 oi—1 §i-1
oS

—%3(1'1;2,8;:2,[‘:1‘ 2 Iz 2 Iz 2 Hl 2 Rt 2 Vz 2 Sz 2 Iz 2)] XA2

shm o ts



20 Complexity

+Mi[% (t»8,,E, L, IL,H,R, VS, T,)
2r(P+3) & 3\ VR s Ay Lo > > > Vs Ay

m>7s r

_2%3(ti_1)sz_l>Ei 1 Iz 1 Iz 1 Hz 1 Rz 1 Vl 1 Sl 1 Il 1)

+%3(ti,2,SZ_2,Ei_2 Iz 2 Iz 2 Hz 2 Rz 2 Vz 2 Sz 2 Iz 2)] XA3,

r

Aty & T .
L (tes1) =Is(o)+¥ Y H(tinS BT AL H LRV STLT) x A
I(p+1) &

(At & L il i i Lo Lo
ez 2t STV ETLL LI TRV L)
~Hy(t Sy L E L L H LRV S 17| x A,

r

p(Aty i[% (t,8,,E,L,, I, H,R, V.S, T,)
Zr(p+3) 4\ ">V > L 5o > > > Vs Ay

_2(%4(&_1’8;1,151'71’11'71 I Hi—l,Ri—l’Vi—l’Sir—l,Iir—l)

m >7s

r

+ zq(rl._z,s;,‘z,Ei‘Z,Ij;Z,IQ‘Z,H”‘Z,R“,V"‘Z, si‘z,li‘z)] x A,

Atf & o o
H (t,1) =H(0)+% Y Hs(t S LE AL AL H LRV ST x A
i=2
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5. Numerical Simulation

Fractional differential equations were used in the mathe-
matical investigation of the dynamics of Lassa fever
transmission from rodents to people and from person to
person and in infected areas. Several p values are taken into
consideration in order to conduct a reliable study. For
solutions created using the Caputo fractional operator, we
give simulation using MATLAB in this section. The sug-
gested system’s parameter values and initial circumstances
from [2] are S,(0) =1.13 x 108, E(0) = 164, I, (0) =20
1,(0)=9, H(0) =6, R(0) =2, V(0) =10 x 10, S,(0) = S,

(80)

(0)x 1072, I,(0) =76, @, =2500, ®, =0.1, ¢ =0.0067,
£ =022, EI =019, & =012, & 0142, & =015,
AE052, x=0.32, f =00517, f; =0.031, B,’=0.035,
Ky, = 0.0123, 1. =0.012, u =02, wy, = 0.19, a, = 102— 10%,
and a, = 10° - 10°.

We address the simulation of susceptible people S, (t)
under various fractional orders p =0.85,0.90,0.95,1 as
shown in Figure 1. Humans who are susceptible are be-
coming more prevalent for lower fractional-order values.
We describe the simulation of the exposed humans E as
shown in Figure 2, which demonstrates how the exposed
individuals are growing faster as fractional-order values rise.
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The simulations of those with mild-to-moderate symptoms
I, and I, those with severe symptoms are shown in Figures 3
and 4, respectively. These infected classes increase in number
as fractional order increases. As seen in Figure 5, the number
of hospitalized individuals H (¢) is rising by lowering frac-
tional order and reducing by increasing fractional order.
Additionally, the number of people who have recovered, R,
is rising by high fractional orders, as illustrated in Figure 6.
As fractional order is increased, the concentration of LASV
in the environment V increases more quickly, as seen in
Figure 7. Figures 8 and 9 depict the simulation of susceptible
and infected rodents, respectively. While the number of
infected rats increases as fractional order increases, the
number of susceptible rodents swiftly decreases.

The significant chance of infection stems from the
availability of a large number of susceptible individuals,
which causes the initial quick rise of the disease. How-
ever, as a result of fewer contacts and fewer vulnerable
hosts or vectors, the disease’s self-limitation causes an
infection rate to go down. There will be fewer susceptible
people, which lowers the chance of new infections. The
memory effect increases in the epidemiological system as
the fractional order decreases, leading to a gradual in-
crease but significant long-term equilibrium value. Al-
though the fractional-order model forecasts smaller
epidemic peak levels, it also predicts a prolonged period
of elevated disease prevalence in the general population.
Simulations of the proposed design show that the total
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density of all the compartments suitable for analyzing
internal behavior will lie between 0 and 1. Graphical
results show how the fractional-order model works, with
protracted phrases greatly increasing its efficiency. The
fractional-order Lassa fever model is more flexible and

can be changed to get different answers from each of the
model’s compartments. Every compartment’s initial
zero-slope curve has a considerable increase. In un-
derstanding physical processes, fractional-order deriva-
tions outperform classical integer-order models.
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6. Conclusion

This study proposes a fractional-order model to study the
transmission of Lassa fever, considering both mild and
severe illness and the environment’s impact. The model uses
nine compartments and uses the Caputo fractional operator
to obtain solutions. The model addresses both qualitative
and quantitative concerns, satisfying biological feasibility. It
also includes global stability analysis using the Lyapunov
function and a singular solution discovered using fixed point
theory. A numerical approach based on Newton’s poly-
nomial interpolation solves the model. Results show sig-
nificant changes in the Lassa virus’s behavior, useful for
understanding the condition and developing effective

control measures. The Caputo fractional derivative allows
for more accurate and effective modeling of the Lassa fever
model, enabling a better understanding of the spread of
illness and transmission. Policymakers and public health
experts can use the study’s findings to prevent the spread of
the Lassa virus. When the results were compared with
different fractional orders, the study discovered that the
results were stronger when the order was equal to one. Every
propagation route has an impact on the development of
Lassa fever, according to our system modeling, with some
pathways having a noticeably greater impact than others.
Therefore, when creating health strategies, measures in these
fields should be avoided or disregarded. This research can be
expanded to examine the role that disease awareness plays in
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improving comprehension of the condition and facilitating
the widespread application of preventative measures.
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