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Central actors or opinion leaders are in the right structural position to spread relevant information or convince others about
adopting an innovation or behaviour change. Who is a central actor or opinion leader might be conceptualised in various ways.
Widely accepted centrality measures do not take into account that those in central positions in the social networkmay change over
time. A longitudinal comparison of the set and importance of opinion leaders is problematic with these measures and therefore
needs a novel approach. In this study, we investigate ways to compare the stability of the set of central actors over time. Using
longitudinal survey data from primary schools (where the members of the social networks do not change much over time) on
advice-seeking and friendship networks, we fnd a relatively poor stability of who is in the central positions anyhow we defne
centrality. We propose the application of combined indices in order to achieve more efcient targeting results. Our results suggest
that because opinion leaders may change over time, researchers should be careful about relying on simple centrality indices from
cross-sectional data to gain and interpret information (for example, in the design of prevention programs, network-based
interventions or infection control) and must rely on more diverse structural information instead.

1. Introduction

Social networks turn out to be crucial for adopting practices
that afect personal lives. Tis phenomenon was frst de-
scribed by [1–3], and the infuential persons were referred to
in the scientifc literature as opinion leaders [4–7]. Te role
of opinion leaders was analysed in very diferent life situ-
ations, like political orientation, marketing, fashion, movie-
going, consumer behaviour, family planning, science, and
agriculture [8]. Social network analysis investigating opinion
leaders teaches us that they are the most embedded persons
of a social group, the sociometric stars, with the most
connections [6, 7]. Te difusion of innovation [4] also
highlights the social network aspect of opinion leaders who
have an important role to play in spreading the innovations

among their multiple contacts. As Valente and Pumpuang
[9] describe, a wide range of research suggests that
community-based or health-related programs using opinion
leaders can be more efective, as seen in tobacco prevention
[10–12], medical practices [13], and HIV/STD risk reduction
[14, 15] or in the cases where opinion leaders or key actors
need to be removed from the network to avoid terrorist
actions [16]. Tere are many potential uses beyond these
examples, such as increasing cyber security awareness [17] or
spreading the ideas of sustainable development [18].
Opinion leaders and their infuence have been investigated
not only at the actor level but also between social groups and
institutions [19]. Scientifc research also investigated the role
of opinion leaders among classmates in schools. Some pa-
pers discuss diferences between lead users (innovators) and
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opinion leaders [20–23], but there seems to be a consensus
about the major role of opinion leaders in the difusion of
innovations and prevention programs [4, 24, 25].

Te structure of the network where innovations are
spread is also important: bridges or opinion brokers
between diferent social groups encourage innovation
[26]. Kratzer and Lettl [23] found that between school-
children, those whose betweenness centrality is higher are
more likely to be identifed as lead users (or in Burt’s
terms, opinion brokers), while those whose degree cen-
trality and closeness centrality are higher are more likely
to be identifed as opinion leaders. As we can see, there
seems to be a consensus referring to the central network
position of opinion leaders, although the identifcation of
opinion leaders is not always so obvious. Scientifc literature
specifes some methods to identify opinion leaders, such as
celebrities, self-selection, self-identifcation, staf-selection,
positional approach, judge’s rating, expert identifcation,
snowball method, sample sociometric, and sociometric [9].

A greater challenge to the literature on identifying
central actors and opinion leaders is posed by the difer-
entiation between simple and complex contagion [27–29].
Unlike for simple contagion, such as the spread of a viral
disease, multiple sources of exposure are required before an
individual adopts an innovation or behaviour in complex
contagion. Most social dissemination processes are believed
to be complex contagions that they require to reconsider
which nodes in the network should be considered as central
or infuential [30].

A general question of network intervention studies is
whom to target. Targeting is typically based on cross-
sectional network surveys. However, the stability of oc-
cupying key positions in the social network and the time
perspective of the intervention have not been taken into
account so far. Tere have been only few discussions in the
scientifc literature of instability regarding the central
network positions [31]. If it turns out that opinion
leaders’, key actors’, or top infuencers’ position is very
unstable, then the validity and efectiveness of social
network interventions might be questioned. Moreover,
depending on the intervention, the selection of opinion
leaders or key actors should always depend on their in-
dividual characteristics as well as on structural charac-
teristics (see, e.g., [32]).

To examine how a social network facilitates the fow of
information, commonly used and simple measures are de-
gree centrality [33], measuring the number of connections of
an actor; betweenness centrality [34], measuring the number
of shortest paths between all pairs of actors that pass through
a given actor in the network; and closeness centrality [33], or
the total graph-theoretic distance of an actor from all other
actors. Te difculty is caused by the fact that those actors
who are individually the most central are not necessarily
central at the group level due to the redundancy of their
connections. Tat is why Borgatti [35] and An and Liu [36]
diferentiate the centrality measures on the individual and
group levels. Individual (micro)-level measures (or bottom-
up measures) are as follows: degree centrality [37, 38] and
two-hop neighbourhood and the core [38, 39]. Top-down

measures [36] are as follows: fragmentation centrality [35]
and difusion centrality [40]. Network-level measures take
into account the entire network structure [41]: betweenness
centrality, closeness, and eigenvector centrality [39].

Te question of how network centrality can be better
measured arises not only in static networks but also when
networks change. Some networks, such as online social
networks, mobile phone networks, and multiplayer online
game networks, and centrality therein change rapidly.
Changes in these networks can be observed either with
precise time-stamps or at diferent time points. Timing of
how changes occur in the network and which individuals can
be reached from which node is crucial for problems such as
virus spread and the difusion of innovations [42]. It is
important not only who are the central actors but also when
they are in an infuential position. Temporal network
analysis recognizes that in these cases, “there is usually no
unique candidate for the temporal version of a static cen-
trality measure” [43, 44]. Based on the fndings of [45–48],
a new measure of temporal betweenness centrality is de-
veloped. Moreover, the changing role of a person in such
networks was also recognized [49]. If the interconnectivity of
social members is taken into consideration, a member can
play diferent roles in one or more communities [50–52].
Role detection is usually made with the blockmodelling,
which identifes nodes with structural equivalence [53, 54]
and could also be used to detect structural changes in
a network [50]. Tese methods are very convenient when
dynamic online communities [50] or social rating plat-
forms [55] are investigated. While in the highly volatile
online space the connections and community roles can be
very unstable, one can suppose that in networks with
relatively stable membership like workplaces or school
classes, the community role structure would be more stable
over time.

Recent studies draw attention to the fact that even in
static networks, no single centrality measure has a consistent
performance across diferent networks [56]. Bucur empir-
ically examined in 60 networks how well a selected subset of
classical centrality measures identifes super-spreaders. Te
super-spreaders of the networks were identifed by simulated
SIR (Susceptible-Infected-Recovered) spreading processes.
She found that none of the selected centrality measures
performed well on all the test networks. Applying supervised
learning, however she could identify 6 centrality pairs, and
using these pairs, she could fnd the super-spreaders with
high accuracy almost in all test networks. In the pairs, there
is a pattern. One of the participants is a local measure, and
the other is a global one. A local centrality measure, like the
degree, measures the density of the node’s extended
neighbourhood, while a global centrality such as PageRank
indicates the location importance of the node (core or pe-
riphery). A local centrality may give a high ranking to nodes
that are in a dense cluster but at a peripheral region of the
network. Te additional global centrality indicator gives
higher scores to the nodes of more central regions. Te
super-spreaders usually have high values of both centrality
types. Bucur used the supervised support vector machine
algorithm to learn the decision boundary in her study.
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However, there are unsupervised methods to aggregate
diferent centrality measures. Ibnoulouaf et al. [57] defned
m-centrality as the convex combination of two centrality
measures, the core number and ΔD, where ΔD is a local
measure calculating the degree variation in the neigh-
bourhood of the node. Te coefcients of each measure are
computed using the Shannon entropy. In their study [58],
Madotto and Liu applied the Borda count method to ag-
gregate the centrality measures and used a correlation and
entropy-based heuristic to prune the set of the possible
centralities.

In conclusion, although it is a common approach to
identify opinion leaders as the most central nodes of a given
network, centrality is defned in many diferent ways, from
diferent aspects, and no single centrality can properly
identify the opinion leaders in all possible network types,
particularly if networks change over time. In this study, we
develop a methodology to quantify the stability of key actors
over time. Instead of using a single centrality as an “opinion
leader measure,” we apply a selection of classical centrality
measures and observe the stability of the central actors. Te
centrality measures analyzed are in-degree, two-hop
neighbourhood, core, closeness, betweenness, eigenvector
centrality, and PageRank. In Section 2.1, we give an overview
of these centrality measures. Comparison of ranked lists has
a key role in our methodology; therefore, in Section 2.2, we
review the problem of comparing rankings. We apply three
methods to empirically quantify the diferences between the
centrality measures. Monotonicity, Kendall tau correlation,
and a comparison method focusing on the top infuencers
are discussed in Section 2.2. We improve the identifcation
performance of top infuencers by aggregating over the
centrality measures, using by the Borda count method
[58–60], discussed in Section 2.3. For measuring the stability
of key actors, we develop a method in Section 2.5. We il-
lustrate our methodology using fve waves of a longitudinal
social network survey from Hungarian primary schools
described in Section 3. Te empirical results are presented in
Section 4.

2. Methodology

Advice-seeking and friendship networks are examples of
diferent relationships; both are networks with relatively
stable membership, constituting directed graphs without
self-loops and multiple edges. Such a G directed graph is
given by a pair: G � (V, E), where V is the set of nodes and E

is the set of directed edges: E ⊂ V × V. Sometimes, we need
the undirected version of a directed graph. In this case, we
just omit the direction and defne an edge between the nodes
a and b as a {a, b} set rather than an ordered pair. We
consider the opinion leader as someone occupying a central
network position. In general, centrality measures describe
the importance of each node. Centrality can be measured in
many ways. Te C centrality measure can be viewed as
a ϕC: V⟶ R map, and ϕC(a)>ϕC(b) indicates that node
a is more important than node b (with respect to the C
measure). We sort the nodes according to their centrality
value in descending order. As a result, we get an ordered list

of the nodes. We call this ordered list the induced ranking of
the nodes by the centrality measure. Of course, ties occur
regularly. In this case, we handle the induced ranking as an
ordered list of sets rather than a list of nodes, where each set
contains nodes with the same score value. We discuss the
applied centrality measures in the next section. In our
calculations, we used the igraph package [61] to compute the
centrality measures.

2.1. Centrality Measures. Te simplest centrality measure is
degree centrality [33], which keeps track of the degree of the
given node. In a directed environment, we can defne the in-
degree and the out-degree of a node as the number of in-
coming and outgoing edges. We use in-degree centrality
because of the directed nature of the networks studied. A
related centrality measure is two-hop neighbourhood. Two-
hop neighbourhood is defned as the number of nodes that
are at distance 1 or 2 from the focal node. In this paper, we
use the “in” version of this centrality measure, understood as
the number of nodes from which the focal node can be
reached in maximum of 2 steps.

Te coreness or core number [62] is related to the core-
periphery structure of the graph. In a G � (V, E) graph,
a subgraph H � (􏽢V, E | 􏽢V) induced by the 􏽢V ⊂ V set is a k-
core or a core of order k if and only if for all v ∈􏽢V vertices, the
degree of v inH is at least k, andH is the maximum subgraph
with this property. From the defnition, it is clear that the
cores are nested. Te core number of vertex v is the highest
order of a core that contains this vertex. If the G graph is
directed, we can defne the in-degree and out-degree ver-
sions of the core number in a straightforward way. In our
study, we use the in-degree version of core centrality.

Te closeness centrality [33, 63] measures how close
a given node is to the other nodes. Te closeness of a node
a is the inverse of the average distance between a and any
other node:

closeness(a) �
n − 1

􏽐b∈V,a≠bl(a, b)
, (1)

where n is the number of nodes and l (a, b) is the number of
links in the shortest path between a and b. Tere are various
conventions for handling networks that are not connected.
In our work, if there is no path between a and b, we set l (a,
b)� n [61]. Te closeness centrality is defned both for di-
rected and undirected graphs. In this paper, we always apply
the undirected version; therefore, if we compute the
closeness centrality for a directed graph, we frst omit the
direction of the edges.

Betweenness centrality [34, 63] measures how well sit-
uated a node is in terms of the paths that it lies on. Denote
the number of geodesics (shortest paths) between the nodes
b and c by P (b, c) and the number of geodesics between
b and c that a lies on by Pa(b, c). If the ratio Pa(b, c)/P(b, c)

is close to 1, then a lies on most of the shortest paths between
b and c; therefore, a is important in terms of connecting
these nodes. Averaging across all pairs of nodes, we can get
a sense of how important a is in connecting the nodes:
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betweenness(a) �
2

(n − 1)(n − 2)
􏽘

b≠c: a∉ b,c{ }

Pa(b, c)

P(b, c)
. (2)

Similar to the closeness centrality, we always compute
the betweenness centrality on the undirected version of the
directed graphs.

Te idea behind the eigenvector centrality [39] is that the
centrality of a given node is proportional to the sum of the
centrality values of its neighbouring nodes. Mathematically,
the vector of the centrality values of the nodes is defned as
the eigenvector associated with the largest eigenvalue of the
adjacency matrix of the graph.Te eigenvector centrality can
be computed both for directed and undirected graphs.

Another classical centrality measure is defned by the
PageRank [64] algorithm. Tis method is a variant of ei-
genvector centrality that takes into account link direction
and was originally used to rank web pages resulting from
a web search.Te algorithm takes into consideration that the
relevance of a web page depends on the number of other web
pages that link to it, as well as the relevance of those linked
pages. We describe the algorithm in brief based on [65]. Let
G� (V� {1, 2, . . ., n}, E) denote a directed graph. Te
PageRank value of the node a is defned as pg (a)� πa, where
π � (πi)i∈V is the stationary distribution of a random walk
on G. Te random walk is defned in the following way:
denote the out-degree of vertex i by d

(out)
i and α ∈ (0, 1) is

a constant called dumping factor. If the random walker is at
time t on the node i, then at time t+ 1, it jumps to any
neighbour j of i with probability (1 − α)/d(out)

i and with
probability α to any uniform vertex in V. Tus, letting
(Xt)t≥ 0 denote the random walk, its transition probabilities
are given as follows:

P Xt+1 � j|Xt � i􏼂 􏼃 �
(1 − α)1 (i, j) ∈ E􏼈 􏼉

d
(out)
i

+
α
n

, (3)

where 1 {condition} is the indicator function, in which value
is 1 if the condition is true and zero otherwise. Since (Xt)t≥0
is an irreducible Markov chain, the stationary distribution π
exists. In our analysis, we fxed the α parameter to be 0.35, as
suggested in [65].

We will often use the abbreviations of the centrality
measures: betweenness: btw; closeness: cl; coreness: core; in-
degree: iDg; eigenvector centrality: eign; PageRank: pg; and
two-hop neighbourhood: 2Nbh.

2.2. Comparison of Ranked Lists. It is not easy to directly
compare centrality measures, but we can apply a data-
driven indirect way. If we compute a set of centrality
measures on a given dataset, we can calculate the induced
ranking lists to numerically describe the similarities and the
diferences between the centrality measures. In order to do
this, we need a suitable similarity measure or similarity
distance which compares ranked lists. We use rank distance
measures not only to compare centrality measures but we
use them also to quantify the temporal stability of top
infuencers.

In data science or information retrieval practice, the
need to compare ranked lists is very common. Te simplest
and clearest situation is when we need to compare per-
mutations of the same domain. In this case, each item has
a fxed unique rank, there are no ties, and every permutation
fully covers the domain. Tis ideal situation can be afected
due to the numerous factors and perspectives that need to be
taken into consideration [66]. One of them is the problem of
ties, when more items may have the same rank. We say that
two ranking lists are conjoint, if both lists consist of the same
items. However, sometimes the lists what we need to
compare are not conjoint. Tis is very common when we
would like to compare top-k lists [67]; when longer, conjoint
rankings are truncated to a fxed depth k.

Te most common permutation metrics [66–68] are the
Kendall tau metric, Spearman’s footrule, and Spearman’s
rho. Tere are also correlation measures: Kendall’s tau
correlation [66–68] or Spearman’s rho correlation [66–68].
Tese basic methods are often modifed or extended to
handle more complex cases. For example, Fagin et al. [67]
extend the Kendall tau metric and Spearman’s footrule to
compare nonconjoint top-k rankings by inserting missing
elements at rank k+ 1 and below. Tese extended top-k
measures are denoted by K(p) and F(l), respectively.

Tese distance measures may or may not be a metric. A
metric is defned as a bivariate function of a fxed domain,
where for all x, y, and z in the domain, the symmetry
(d(x,y)� d(y,x)), regularity (d(x,y)� 0 if and only if x� y),
and triangle inequality (d(x,z)≤ d(x,y) + d(y,z)) are satisfed.
If only the symmetry and regularity conditions are satisfed,
then d is a distancemeasure (for example, F(l) is a metric, but
K(p) is not a metric [67]).

Given r ranked lists W1, . . . , Wr (either full lists or top-k
lists), the rank aggregation problem [69] with a distance
measure d is to compute a list W such that 􏽐

r
j�1d(Wi, W) is

minimal. Dwork et al. [69] argued that Kendall tau and its
variants are good measures for the aggregation, and Fagin
et al. [67] have experimentally confrmed that. However,
computing an optimal aggregation of several full or top-k
lists is NP-hard for each of the measures from the Kendall
family. Fagin et al. [67] also showed that the rank aggre-
gation problem can be solved optimally in polynomial time
for the F(l) metric (top-k extension of Spearman’s footrule)
and there is a polynomial time constant-factor approxi-
mation for the rank aggregation problem with respect to the
Kendall measures.

2.2.1. Monotonicity of Rankings. A centrality measure in-
duces aW ranking list of the nodes. However, a ranking may
contain ties. To quantify the resolution of a ranking, we use
the monotonicity [70] value given as follows:

M(W) � 1 −
􏽐r∈Wnr nr − 1( 􏼁

n(n − 1)
􏼠 􏼡

2

, (4)

where n is the number of the nodes and nr is the number of
ties for the same rank.Tis measure quantifes the fraction of
ties in the ranking list. Te M (W) monotonicity of the
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ranking listW is equal to one if the ranking listW is perfectly
monotonic, and it is equal to zero if all nodes inW have the
same rank. We use monotonicity because it allows quan-
tifying the discrimination ability of a centrality measure.

2.2.2. Kendall’s Tau Correlation. Kendall’s tau correlation
[68] coefcient measures the correspondence between two
rankings. Consider two ranking lists that contain n elements:
X � (x1, x2, . . . , xn) andY � (y1, y2, . . . , yn). Any pair of
ranks (xi, yi) and (xj, yj) is said concordant if xi > xj and
yi >yj or if xi <xj and yi <yj. If xi > xj and yi <yj or if
xi < xj and yi >yj, then the pair is said to be discordant. In
the case of tied pair, when xi � xj or yi � yj, the pair is
neither concordant nor discordant. Kendall’s tau (τ) cor-
relation coefcient is defned as follows:

τ(X, Y) �
nc − nd���������������

n0 − n1( 􏼁 n0 − n2( 􏼁

􏽱 , τ(X, Y) ∈ [−1, 1],
(5)

where n0 � n(n − 1)/2, n1 � 􏽐iti(ti − 1)/2, n2 � 􏽐juj(uj −

1)/2, nc and nd denote the number of concordant and
discordant pairs, ti is the number of tied values in the i-th
group of ties for X, and uj is the number of tied values in the
j-th group of ties for Y. If x1 � x2 � . . . � xn or
y1 � y2 � . . . � yn, then τ (X, Y) is undefned. In this special
case, we set τ (X, Y) to be 1 if X�Y; otherwise, we set it to
zero (this rare situation occurs only in case of coreness
centrality measure).

2.2.3. Jaccard Similarity of Top Infuencers. Te Jaccard
similarity between two sets A and B is defned as follows:

J(A, B) �
|A∩B|

|A∪B|
. (6)

Te Jaccard distance of sets A and B is derived from
the Jaccard similarity: dJ(A, B) � 1 − J(A, B). We defne
J(∅,∅) as 1, so that dJ(∅,∅) � 0. It is well known that the
Jaccard distance is a metric function [71, 72]. We use Jaccard
similarity in several parts of the analyses: comparing cen-
trality measures in terms of top infuencers, tracking the
wave-to-wave structural change in networks (Section 2.4),
and describing the instability of top infuencers over time
when we care only the degree of overlap between the
rankings (Section 2.5).

In most empirical cases, we are not interested in the full
ranking of nodes but only in the ranking of top infuencers.
Tis is often the case in political competition, competition
for assets, or competition for other scarce resources, such as
social status or popularity in classrooms. Taking this into
consideration, we focus on top infuencers identifed by the
centrality measures.

In the beginning, we identify the set of top infuencers using
the following method: suppose we have a fxed N positive
integer number which we defne as the required minimum size
of the set of the top infuencers and initialize the T set of top
infuencers as empty, then we take the items with the highest
score and add them to T. If |T|≥N, then the identifcation was
successful. Otherwise, take the items with the second-highest
score and add them to T. We continue this procedure until |

T|≥N or every item is added to T. If there are no ties, this
method just returns the frst N items in the sorted list. We use
the Jaccard similarity to compare the set of top infuencers
induced by two centrality measures C1 and C2. Denote T1 and
T2 the set of top infuencers computed on a fxed network using
the above describedmethod induced by the centralitymeasures
C1 and C2.We can quantify the similarity between the induced
top infuencers by J(T1, T2). J(T1, T2) is between 0 and 1,
where 0 means that T1 and T2 do not have common elements,
while 1 asserts that the two sets are the same. In this way, we can
compare the set of opinion leaders of a network induced by
diferent centrality measures. We set N to be 5. If there are ties,
the size of T can be greater than N. For example, in case of in-
degree centrality, if the highest in-degree value is 4, the second
highest in-degree is 3, and there are 3 nodes with 4 in-degree
and 4 nodes with 3 in-degree, and then the set of the top
infuencers contains 7 items.

2.2.4. Spearman’s Footrule. A permutation σ is a bijection
from a set Dσ � Ɗ(σ) (which we call the domain of the
permutation) onto the set [n]� {1, . . ., n}, where n is the size
ofDσ . We interpret σ (a) as the position or rank of element a.
Spearman’s footrule [68] metric is the L1 distance between
two permutations. If σ1 and σ2 are permutations of the same
D domain, then

F σ1, σ2( 􏼁 � 􏽘
a∈D

σ1(a) − σ2(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (7)

Fagin et al. [67] extended the notation of Spearman’s
footrule for nonconjoint top-k lists. A top-k list W is a bi-
jection from a domain DW � Ɗ(W) (the members of the
top-k list) to [k]. Note that this defnition does not allow ties.
While calculating Spearman’s footrule of two non-conjoint
top-k lists W1 and W2, we do not assume that their domains
are the same. Let l be a real number greater than k. Te
footrule distance with location parameter l, denoted by F(l),
is obtained by placing all missing elements in each of the lists
at position l and computing the usual footrule distance
between them. More formally, given top-k lists W1 and W2,
defne functions W1′ and W2′ with domain DW1

∪DW2
by

letting W1′(a) � W1(a) for a ∈ DW1
and W1′(a) � l other-

wise and similarly defning W2′. Te distance F(l) is then
defned as follows:

F
(l)

W1, W2( 􏼁 � 􏽘

a∈ DW1 ∪DW2􏼐 􏼑

W1′(a) − W2′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(8)

Fagin et al. [67] showed that F(l) is a metric for every
choice of location parameter l. We set l to be k+ 1. It is easy
to see that F(k+1) reaches its maximum when DW1

and DW2
are disjoint, and in this case, F(k+1)(W1, W2) � k(k+1).
Using this, we can defne the normalized version of F(k+1):

f
∗

W1, W2( 􏼁 �
F

(k+1)
W1, W2( 􏼁

k(k + 1)
. (9)

Te f∗ normalized footrule distance with location pa-
rameter k+ 1 maps to the interval [0, 1], and it is also
a metric.

Complexity 5



2.3. Aggregation of the Centrality Measures. Te identifca-
tion of top infuencers can be improved by aggregation over
the centrality measures. We suppose that an aggregation of
centrality measures could be a straightforward way to refect
upon diverse advantages that single centrality indexes ofer
for network analysis and would give a more accurate esti-
mation about who the opinion leaders are in a network.
Tere aremany possible ways to do the aggregation. Since we
do not know the real opinion leaders or top infuencers, we
can do the aggregation only with an unsupervised method.
Furthermore, we aggregate centrality measures of diferent
network types (advice-seeking and friendship), so the
structure of the networks cannot be used for aggregation.
However, wemay aggregate the implied rankings rather than
the networks; therefore, we can consider the problem of
centrality measure aggregation as a rank aggregation
problem. One possible way to aggregate rankings is dis-
cussed in Section 2.2, where the aggregated ranked list is
constructed as aW ranking such that the sum of distances of
W from the constituent ranked lists is minimal. According to
Fagin et al. [67], this problem can be solved, or a solution can
be approximated in a reasonable time.

A second possible way for rank aggregation is the Borda
count [58–60] method. Te Borda count method consists of
a set of ordered lists Ը � l1, . . . , lm􏼈 􏼉, where each list has M
items in diferent orders. In the current context, each li in Ը is
an induced ranking list of the Ci centrality measure. Let us
denote l (z) the position of item z in the list l. We defne
a new B (C) centrality measure, the Borda count aggregation
of the centralities C � C1, . . . , Cm􏼈 􏼉, where the score of item
z is given as follows:

ϕB(C)(z) � 􏽘
l∈Ը

(N − l(z)). (10)

If we consider the centrality measures as experts, then we
get a simple intuitive interpretation, where each expert creates
its own ranking based on its own view, and then the experts
are voting to the items in each rank position.Tismethod was
further improved by Madotto and Liu [58]. Tey propose
a heuristic pruning method based on correlation and entropy,
where they select a Ը∗ subset of Ը and apply the Borda count
method to Ը∗. However, it is hard to intuitively interpret their
method; therefore, we decided to use the original Borda count
aggregation of centrality measures C � C1, . . . , Cm􏼈 􏼉 given in
equation (10). In Section 4, we show that according to the
empirical Kendall’s tau correlation values of B (C) with the
centrality measures in C, we can consider the Borda count
aggregation as a suitable method.

2.4. Jaccard Similarity-Based Network Comparison. Our
approach to identify opinion leaders is based on centrality
measures, which only depend on the structure of the ob-
served networks. Consequently, the source of the variability
of all the derived quantities is the structural change in the
networks.We use a Jaccard similarity-basedmethod in order
to quantify this structural network change over the waves,
measuring the similarity between two directed graphs G1
and G2.

Let us denote U � V (G1)∪V (G2); therefore, U con-
tains every vertex of G1 and G2. For a given a node of the G
graph, we defne the Nin(a, G) set as the set of neighbours of
a in G such that from every node in Nin(a, G), there is a link
to a in G. We use Nin(a, G) because, in our analysis, we
mostly use the in-degree version of the centrality measures.
Now, we defne the Jaccard network similarity measure
simply as the average Jaccard similarity of theNin(a, G1) and
Nin(a, G2) sets over all the nodes:

J G1, G2( 􏼁 �
1

|U|
􏽘
a∈U

J Nin a, G1( 􏼁, Nin a, G2( 􏼁( 􏼁. (11)

2.5. Stability Measure of Key Actors: Sequence Instability.
As we focus on the stability of key actors in time, in this
section, we describe the method that we use to measure the
change of observed and computed quantities over the waves.
Since we are interested in the temporal stability of the
opinion leaders of the empirical networks over time, we
identifed the top-k opinion leader ranks for each wave. Tis
method refects on the variability of the set of opinion
leaders and also shows the rearrangement of top-k actors
from wave to wave. Te following example would clarify our
methodological approach. If k is 5, then we consider the
students in the frst 5 ranking positions for each wave.
Suppose that the order of items in the top-5 positions in the
frst wave is W1 � ( A{ }, B, C{ }, D{ }, E{ }, F{ }).

We can see that W1 is an ordered list of sets, because we
allow ties in the list. Tis means, that in the frst wave,
student A is in the frst place, students B and C are tied for
second, D is third, E is forth, and F is ffth. We will use the
notation W1(A) for the rank of A, so that W1(A) � 1,
W1(B) � W1(C) � 2, W1(D) � 3, W1(E) � 4, and
W1(F) � 5. Suppose now that in the second wave, there is
rearrangement in the students of the top-5 list, and fur-
thermore student D falls out from the top-5, but student G is
included, and the order of the students in the top-5 list in the
second wave becomes W2 � ( C{ }, A{ }, B{ }, F{ }, E, G{ }). In
the remaining 3 waves, the order of the students is as follows:
W3 � ( C, B{ }, F{ }, A{ }, E{ }, G{ }), W4 � ( A, B{ }, E{ }, C{ }, D{ },

F{ }), and W5 � ( E{ }, A{ }, C, F{ }, G{ }, B{ }). From this ex-
ample, we can observe that between two waves, the set of the
top-k students are not necessary the same, so that the
rankings are nonconjoint. We can also observe that ties may
occur in the rankings. In each wave, we rank students against
a centrality measure and we restrict our attention only to the
top-k ranks.

Our goal is to quantitatively describe the variability of the
W1, W2, . . . , WN sequence with a single number. We present
the method in two steps. In the frst step, we look at the case,
when for each wave there is only a single top opinion leader
(set k� 1), and we suppose that there are no ties. Ten, in the
second step, we extend the method for the top-k case.

2.5.1. Sequence Instability for Unique Opinion Leaders.
When there is a single opinion leader (k� 1) for each wave
and there are no ties, then the sequence could be ABABC,
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whereAwas opinion leader in the frst wave, B in the second,
A in the third again, B in the fourth, and C in the ffth wave.
Suppose we have identifed the opinion leaders of each wave.
We also suppose that the opinion leader is unique in all
waves. Depending on combinations, sequences could be like
AAAAA and AABBB, and so on. We assign a v(S) number
for each S sequence, which describes the instability of the
sequence. One possible way to measure the instability of
a sequence is Shannon entropy [73]. Te drawback of using
Shannon entropy is that it does not distinguish the se-
quences like AAABBB and ABABAB; hence, it does not
satisfy requirement R3, formulated in (16).

Instead of using Shannon entropy, we postulate some
requirements for the instability number v(S) and we provide
a formula for v(s) which satisfes these requirements, using
the following notations. Suppose we have a fnite not empty
set A. An L-length sequence S over A is an item of the L-
factor Descartes-product AL � 􏽑LA. If S ∈ AL is an L-
length sequence, then we denote the length of S by |S|�
L, the i-th item of S by S(i), the set of items in S by Λ(S), and
the number of diferent items in S by λ(S)� |Λ(S)|. We
denote the number of occurrences when an item of the
sequence is diferent from its immediately preceding item by
B(S) � 􏽐

|S|
i�21 S(i)≠ S(i − 1){ }, and its normalized version is

b (S) given by B(S)/(|S|− 1). Consider the following example:
let the set A� {A, B, C, D, E, F}, L� 5, and an 5-length
sequence from A5 given as Q�AABCB. Using the in-
troduced notations, |Q|� 5, Λ(Q)� {A, B, C}, λ(Q)� 3, and
b(Q)� 3/4.

We formulate four requirements, supposing that S, S1,
and S2 are sequences over a fxed A.

(i) R1: If the sequence S consists of a single element (the
same student is the opinion leader in every wave),
then the instability should be 0.

v(S) � 0  if  and only  if  λ(S) � 1. (12)

(ii) R2: If the length of the sequences S1 and S2 is the
same and the S1 sequence contains more items than
the S2 sequence, then the instability of S1 should be
more than the instability of S2. For example,

v(AAAAAA)< v(AAABAA)< v(AABBAC)

< . . . < v(ABCDEF).
(13)

Formally,

If   S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 and

λ S1( 􏼁> λ S2( 􏼁  then v S1( 􏼁> v S2( 􏼁.
(14)

(iii) R3: If the length of the sequences S1 and S2 is the
same and S1 and S2 sequences contain the same
number of items, then the greater instability belongs
to the more alterable one:

v(AAABBB)< v(ABBBAA)< v(ABABAB). (15)

Formally,

If   S1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 and

λ S1( 􏼁 � λ S2( 􏼁 and

B S1( 􏼁>B S2( 􏼁  then v S1( 􏼁> v S2( 􏼁.

(16)

(iv) R4: v (S) should be between zero and one (0≤ v

(S)≤ 1) and v (S)� 1 if and only if the elements in S
are not repeated:

v(S) � 1  if  and only  if  λ(S) � |S|. (17)

Based on these requirements, we propose the following
formula to calculate the sequence instability of an L-length
sequence S (where L> 1):

v(S) �
λ(S) + σb(S) − 1
(|S| − 1)(1 + σ)

, (18)

where σ is a non-negative real constant, satisfying the
condition:

σ <
1

|S| − 1
. (19)

Te justifcation of formula (18) and condition (19) can
be found in Appendix A. In our work, we set σ to σ � (|S|−
1)−1 − ϵ with ϵ� 0.0001.

Ranges of v(S) instability measure for diferent values of
λ(S) calculated on our dataset are presented in Table 1. In our
empirical data set (see Section 3), there are 4 or 5 waves;
therefore, we compute the ranges (minimum and maximum
values) of v(S) for λ(S) ∈ {1, 2, 3, 4, 5}.

2.5.2. Sequence Instability of Top-k Infuencers. In the case of
top-k infuencers, we have a sequence S∗ � (W1, W2,

. . . , WL), where each Wi item of the S∗ sequence is a top-k
list with a possibility of ties. We have several options to trace
back this case to the method developed for unique opinion
leaders. One possible way is applying a suitable clustering
method to the rankings W1, W2, . . . , WL and using formula
(18) to the sequence C(W1), C(W2), . . . , C(WL), where
C(W) denotes the cluster to which W belongs. However,
difculty arises when the length of the sequence S∗ is small as
in our case (4 or 5 waves). Consequently, we implement
a heuristic method by reinterpreting formula (18).

We assume that Ω is a fnite nonempty set, which
represents the set of students appearing in the top-k lists, for
example, Ω� {A, B, C, D, E, F, G}. We can defne a W top-k
list with possible ties of items fromΩ as aW: DW⊆Ω⟶ [k]

surjective function, where k is a non-negative integer. A f:
X⟶Y function is surjective if for every y ∈Y, there exists at
least one x ∈X with f(x)� y. We will use the notations
Ɗ(W)� DW for the domain of W. In the example above,
Ɗ(W1) � A, B, C, D, E, F{ }. Since we enable ties, we changed
the bijective feature of the defnition of top-k lists given in
Section 2.2 to surjective, and we explicitly included the Ω
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universe of the rankings to the defnition. However, even
a not truncated ranked list does not necessarily contain all
the elements of Ω. We will denote the set of all top-k lists
with possible ties over the fnite nonempty Ω set with length
k> 0 by RΩ,k, where RΩ,k � W{ : DW ⊆Ω⟶ [k]: W is
a surjective function}.

We need a distance measure d(W1, W2) to calculate the
similarity between the items of RΩ,k.Tis distance measure is
a map d: RΩ,k × RΩ,k⟶ [0,1]. For any W1, W2, W3 ∈ RΩ,k,
the relation d(W1, W2)< d(W1, W3) indicates that W1 is
closer to W2 than W3, or in other words, W1 is more similar
to W2 than to W3. At this point, we suppose that such
a d distance measure is given.

We compute the instability of a S∗ L-length sequence of
items from RΩ,k using a similar formula as equation (18), but
we defne the functions λ (S) and b (S) diferently:

v
∗

S
∗

( 􏼁 �
λ∗ S
∗

( 􏼁 + σb
∗

S
∗

( 􏼁 − 1
S
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼐 􏼑(1 + σ)

. (20)

Function b (S) quantifes the amount of step-by-step
changes in the sequence S ∈ AL. We will do the same with
b∗(S∗). If we defne the distancemeasure between items ofA
as d1(x, y) � 1 x≠y􏼈 􏼉, then we can reformulate b (S) using
d1  as b(S) � 􏽐

|S|
i�2d1(S(i), S(i − 1)). We defne b∗(S∗) by

replacing d1 to d in this formula:

b
∗

S
∗

( 􏼁 � 􏽘

S∗| |

i�2
d S
∗
(i), S
∗
(i − 1)( 􏼁. (21)

Function λ(S) means the number of diferent items in S.
However, for the case when the sequence consists of top-k
lists, the meaning of “number of diferent items in S” is not
straightforward. Consider frst again the unique opinion
leader case. Suppose we have an L-length sequence S ∈ AL,
and for this sequence, defne the M similarity matrix with
size L× L of the items of S as Mij � 1 − d1(S(i), S(j)) for all
i, j ∈ [L]. Ten, M contains only zeros and ones, Mij � 1 if
and only if S(i)� S(j), and the diagonal elements are all equal
to one by defnition. If λ(S) is not known, we can calculate λ
(S) from the M similarity matrix. We start with the frst line
of M, which contains the similarity values of all S(i) items
(including S(1)) to the frst item in the sequence, S(1). If we
sum all items in the frst line, we get the number of oc-
currences of S (1) in S. Let us denote the sum of items in the
i-th row of M by si � 􏽐jMij so that si is the number of
occurrences of item S(i) in S. Because of the transitivity of
equivalence, for all later j positions in the sequence such
that S(j)� S(i), sj � si holds. We use si to calculate λ(S) by

counting the cases when si > 0. In order to avoid double
count, we need to adjust the rows of M corresponding to
these items. Hence, for all j> i such that Mij � 1, we subtract
1 from all items of row j and take its positive part, so that for
all l ∈ [L], set Mjl to be (Mjl − Mij)

+, where (x)+ is x if x> 0
and 0 otherwise. We start this method at the frst row, then
move to the second one, and repeat the process for all rows
of the matrix. Since si > 0 indicates that S(i) is a new item in
the sequence, we get λ(S)  as λ(S) � 􏽐

|S|
i�11(si > 0). We for-

mally present this method in Algorithm 1.
We can use this method for the case when S∗ is a L-length

sequence of top-k lists. To calculate λ∗(S∗), we use Algo-
rithm 1, modifying the calculation of the similarity matrix. In
this case, the similarity matrix is computed using the d rank
distance measure rather than d1, so that the M similarity
matrix is given as Mij � 1 − d(S∗(i), S∗(j)). Because of the
regularity of d, the diagonal elements ofM are one; therefore,
si ≥ 1 for all i row indices. Before executing Algorithm 1, the
value of si shows how similar S∗(i) to the other items. If si is
close to L, then S∗(i) is very similar to the other items of S∗.
On the other hand, if si is close to 1, then the degree of
similarity to the other items is low. After executing Algo-
rithm 1, s1 quantifes the similarity of the initial element S∗(1)

to the other items of S∗, whereas for subsequent elements with
indices i> 1, si characterizes how diferent the element S∗(i) is
compared to the preceding elements in S∗. If si (i> 1) is close
to zero, then S∗(i) is close to one or more items of P
(i)� S∗(1), . . . ,S∗(i − 1)}{ . If min(si, 1) is close to one, then
the distance of S∗(i) is high from all the items of P (i). Hence,
the sum min(s1, 1) + . . . + min(sL, 1) shows the degree to
which the elements are diferent.

For the unique opinion leader case, the transitivity
property guarantees the correctness of Algorithm 1. For any
a, b, c ∈A, if d1(a, b) � 0 and d1(b, c) � 0, then d1(a, c) � 0.
It is easy to see that d1 is a metric; in particular, it satisfes the
triangle inequality. If d is a rank distance measure of the
items of RΩ,k, then the regularity property guarantees its
transitivity: for any W1, W2, W3 ∈ RΩ,k, if d(W1, W2) � 0
and d(W2, W3) � 0, then d(W1, W3) � 0. If we require d to
be a metric, the triangle inequality is also satisfed. However,
in the context of heuristic methods, we refrain from
asserting correctness, but these properties of d support the
idea behind the heuristic.

Up to this point, we assumed that d is an arbitrary rank
distance metric of RΩ,k. In our study, we implemented the
sequence instability measure using two diferent distance
metrics.Te frst is the dJ Jaccard distance (Section 2.2), when
we do not care the order rearrangement in the top-k lists, just
the extent of the overlap. Te second is f∗, the normalized
Spearman’s footrule with location parameter l� k+1, when
we would like to take into consideration the change in order.
However, f∗ cannot handle ties; therefore, we combine f∗

with Hausdorf distance.We denote this new rank distance by
dSFH and discuss the details of dSFH in the next section.

2.5.3. Te Combination of Spearman’s Footrule f∗ with
Hausdorf Distance. Te rank similarity measure f∗ (de-
fned in Section 2.2), the normalized footrule distance with

Table 1: Sequence instability ranges for unique opinion leaders
depending on the number of diferent items in the sequence, when
the sequence length is 4 or 5.

Number of students Sequence length is 4 Sequence length is 5
1 [0, 0] [0, 0]
2 [0.33, 0.5) [0.25, 0.4)
3 [0.66, 0.75) [0.5, 0.6)
4 [1, 1] [0.75, 0.8)
5 — [1, 1]
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location parameter k+ 1, is a suitable metric to compare
nonconjoint top-k lists, but it cannot handle ties. However,
we need a similarity measure what is capable to compare
top-k lists with ties. In our approach, we extend the f∗

metric using the Hausdorf distance [67, 74]. Let Γ be
a nonempty set, d be a metric of distances between objects of
Γ, and A, B⊆ Γ are fnite sets. Te Hausdorf distance be-
tween sets A and B is given as follows:

dHaus(A, B) � max max
f∈A

min
g∈B

d(f, g),max
f∈B

min
g∈A

d(f, g)􏼨 􏼩. (22)

Te Hausdorf distance has an intuitive interpretation.
Te quantity ming∈B d(f, g) is the distance between g and
the set B. Terefore, the quantity maxf∈A ming∈B d(f, g) is
the maximal distance of a member of A from the set B.
Similarly, the quantity maxf∈B ming∈A d(f, g) is the
maximal distance of a member of B from the set A.
Terefore, dHaus(A, B) is the maximal distance of a member
of A or B from the other set. Tus, A and B are within
Hausdorf distance s of each other if every member of A and
B is within distance s of some member of the other set. Te
Hausdorf distance is a metric.

When using the Hausdorf distance to compare ranked
lists with ties, we need to express theW ranked list with ties
as a set. We do this by collecting all ranked lists without ties
determined by W. For example, if W� ({A, B}, {C}, {D}, {E,
F}), then we representW with the set t (W)� {ACDE, BCDE,
ACDF, BCDF}. To defne it formally, we introduce the
notation r (R, i), the set of items with rank i: r (R, i)� {a: R
(a)� i}. For example, r (W, 1)� {A, B}, r (W, 2)� {C}, r (W,
3)� {D}, and r (W, 4)� {E, F}, so thatW� (r (W, 1), r (W, 2),
r (W, 3), r (W, 4)). Using this, we defne the set represen-
tation of W ∈ RΩ,k as follows:

t(W) � r(W, 1) × r(W, 2) × . . . × r(W, k), (23)

where operator× denotes the Descartes-product. We defne
the distance of W1, W2 ∈ RΩ,k ranked lists with potential ties
as follows:

H W1, W2; d( 􏼁 � dHaus t W1( 􏼁, t W2( 􏼁; d( 􏼁, (24)

where d is a suitable metric on top-k lists, and fnally, we
defne dSFH, the Hausdorf distance with Spearman’s foot-
rule, as dSFH(W1, W2) � H(W1, W2; f∗). Since both f∗ and
dHaus are metrics, therefore dSFH is metric too.

We explain the instability calculation on a hypothetical
example in Appendix B.

3. Sample and Data

We illustrate the method using data collected on the stu-
dents’ social networks between 2013 and 2017 in Hungarian
primary school classes [75]. Primary school classes are very
similar to networks with relatively stable membership, like
workplace networks, where the members are working in the
same place or ofce and the membership of working group
does not change very much in time (for example, in public
administration or educational sector, research projects,
regular volunteering, and so on). Our dataset was consti-
tuted by a sample of 61 classes, which were selected for
longitudinal investigation. Te sampling procedure was
stratifed by the settlement location and type in the central
part of Hungary. We investigated primary school grades 5th,
6th, and 7th in fve data collection waves. Data has been
collected in the autumn and spring in the 5th and 6th grades.
Te ffth data collection wave was at 7th grade in spring. We
must note that in the Hungarian school system, some
secondary schools start in grade 7, while most secondary
schools start in grade 9. Tis means that some students, in
case of successful admission exam, can change their in-
stitution from primary school to secondary school.

λ� 0
for i� 1 to L do

si � 0
for j� i to L do

si � si + Mij

if (j> i) and (Mij > 0) then
for l� j to L do

Mjl � (Mjl − Mij)
+

end for
end if

end for
λ � λ + min(si, 1)

end for
return λ

ALGORITHM 1: λ∗ (M).
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In each wave, we asked the following network questions
with the same wording. Referring to the advice-seeking
network, the question was “Whose opinion do you listen
to?” According to the answers, we constructed a directed
network for each class in every data collection time (wave).
Te nodes of the network are the students of the class, and
the (A, B) directed link is part of the network if and only if
student A listens to the opinion of student B. In conse-
quence, we have advice-seeking networks and friendship
networks at most for 5 waves. From the entire sample of 61
classes, 9 classes had inconsistent data (not enough
mentions for opinion leaders and friends); for another 5
classes, we do not have data for at least four data collection
waves, and there were some cases (4 classes) where the
advice-seeking or friendship network was missing for
a given wave, so these classes were excluded from analysis.
Our analysis is limited to a total number of 44 classes, of
which 21 classes where we have advice-seeking and
friendship networks for 4 waves and 23 classes for 5 waves.
Te number of students included in advice-seeking net-
works was 1 166, the average network size was 20 persons,
the smallest network size was 11, the largest was 31, and the
standard deviation was 4.66. Referring to friendship net-
works, the question was “Who is your friend?” Te total
number of classes that have friendship data is 52, the
number of classes which has data in 5 waves is 37, and 11
which have data for 4 waves. Like in the case of advice-
seeking networks, we used only classes with data for at least
4 waves. Te number of students included in friendship
networks was 1138, the average network size was 19 per-
sons, the smallest network size was 10, the largest was 30,
and the standard deviation was 4.61. In this paper, we use
the abbreviations “as” for advice-seeking networks and “fr”
for friendship networks.

4. Results

Te goal of the empirical illustration is to see how stable the
opinion leaders’ position is in advice-seeking and friendship
networks in a network with relatively stable membership
over time, like in the case of primary school classes.

4.1. Jaccard Similarity of Networks. For quantifying the
wave-to-wave variability of the networks for a given T
network type (advice-seeking or friendship), we computed
the Jaccard similarity of the networks for given types be-
tween the consecutive waves. More precisely, for all S school
classes and all (y, y+ 1) pairs, if the given network type T
exists in the waves y and y+ 1 (denoted by GT

S,y and GT
S,y+1),

we computed all the J(GT
S,y, GT

S,y+1) Jaccard similarity values
discussed in Section 2.4. In the case of advice-seeking
networks, we got a mean value of 0.3005 with a variance
of 0.0139, and for the friendship networks, the mean was
0.3247 with a variance of 0.0197. Te wave-to-wave statistics
and the histogram of the Jaccard similarity values can be
found in the Supplementary material (S1–S3). Te analysis
shows us that there is a huge wave-to-wave rearrangement in
both network types, but in the case of friendship networks,

the rearrangement is more moderate, except between the 4
and 5 waves, where there is a signifcant drop in the mean
Jaccard similarity value. Tis drop can be explained by the
peculiarities of the Hungarian education system. In Hun-
gary, some secondary schools start in grade 7, while the
majority of secondary schools start in grade 9. Tis means
that some students, in case of successful admission exam,
can change their institution from primary school to sec-
ondary school. Terefore, in our target schools, the highest
composition change is between grade 6 and 7, that is, be-
tween waves 4 and 5. Tis is refected not only in compo-
sition change but also in the considerable drop in the Jaccard
similarity of the friendship network.

Based on the volume of the wave-to-wave network re-
organization in both network types, we can predict that
centrality might at least equally change; hence, the opinion
leader position will not be stable and derived stability
metrics will show low stability as well.

4.2. Centrality Measures Computed on the Advice-Seeking
Networks. If we interpret the opinion leader role as the
student who got the maximum number of nominations to
the question “Whose opinion do you listen to?”, then we get
the in-degree centrality measure. If we would like to take
into account not only the number of incoming nominations
but the wider environment of the nodes or the prestige of the
nominators, then we can try two-hop neighbourhood, core
number, eigenvector centrality, or PageRank. In the case of
betweenness and closeness centralities, it is hard to fnd
a meaningful interpretation for the advice-seeking networks;
therefore, we do not compute them. Nominations (links) in
advice-seeking networks are rarely symmetric; therefore, we
use the directed version of these measures. In addition to
these classical centrality measures, we also calculated the
Borda count aggregation (Bca; see Section 2.3) of these
measures (iDg, pg, 2Nbh, core, and eign) on the advice-
seeking networks.

We computed the average monotonicity of each cen-
trality measures for all school classes in every wave. Te
eigenvector and PageRank centralities have the best dis-
crimination ability. Teir average monotonicity values are
0.9841 and 0.9385, which means that ties are very rare for
these measures. On the other extreme, the average mono-
tonicity of the coreness is very low; it is 0.2616. Te average
monotonicity of the aggregated measure is also high: its
value is 0.9515. S4 in the Supplementary materials contains
the average monotonicity values and the variances for all the
centrality measures computed on the advice-seeking
networks.

We calculated the mean and the variance of the set of
opinion leader (top-1 ranking) sizes for each centrality
measure and collected the results in Table 2. If the size of
a top-1 set is one, then the opinion leader can be uniquely
identifed. We also added the number of cases when the
opinion leader is unique to Table 2. We can observe that the
opinion leaders induced by eigenvector centrality are always
unique, and opinion leaders induced by PageRank are
unique in the 95% of the cases, while coreness has the highest
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average opinion leader group size with value 11.6825. Tis is
not a surprise if we consider this group as the core of the
network and the remaining students as the periphery.

We compared the rankings generated over advice-
seeking networks by centrality measures with Kendall tau
correlation. Te mean Kendall tau correlation values
(Supplementary material S5) describe to what extend the
individual centralities agree on the order in average. Te
results show that the mean correlation of the Borda count
aggregation measure with the other centralities is between
0.64 and 0.8; therefore, we really can consider this measure
as the aggregation of the others. In order to test the con-
sistency of our data, we also made a wave-to-wave corre-
lation analysis. Te results (Supplementary material S21)
show that the mean of correlations is between 0.32 and 0.57.

Similarly to Kendall tau correlation, we compared the
centrality measures calculated over advice-seeking networks in
terms of Jaccard similarity of the top infuencers (Section 2.2).
Te results are summarised in Figure 1. Tese values show the
average degree to which the individual centralities agree in the
set of top infuencers. We can observe that the values are
between 0.31 and 0.68. Te minimum value belongs to the
eign—2Nbh pair, while the maximum belongs to iDg-Bca. We
can also observe that in every column of Figure 1, except of the
column of core, the Borda count aggregation value is the
highest. Tis indicates that in terms of top infuencers, the
aggregated centrality measure can predict the outcome of the
other centralities with the highest accuracy (in average), which
also leads to the conclusion that Borda count aggregation
methodology is appropriate for aggregating the other centrality
measures.

We counted the returning frequency of opinion leaders
(how many times a student becomes opinion leader) in Tables
3(a) and 3(b), separately for the school classes with available
data for 4 and 5 waves.We can see in the table that themajority
of the opinion leaders only hold their position once or twice.
For example, with 5 available waves, for the PageRank algo-
rithm, there are 49 students who become opinion leaders only
once, 18 who become opinion leaders twice, and only 9 stu-
dents who become opinion leaders more than twice. Only the
core shows some stability: with 5 available waves, there are 270
students who were part of the core at least 3 times and 165 at
least 4 times.

Te variability of the opinion leaders was also described
by using the sequence instability metric (Section 2.5).
Making the interpretation of the results easier, similarly to
the returning frequency of the opinion leaders, we separated

the classes into two groups: in the frst group, we have
observation data for 4 waves; in the second group, we have
observation data for 5 waves. First, we calculated the se-
quence instability only for the opinion leaders with equation
(20), setting k� 1 and the d rank distance measure to the dJ

Jaccad-distance. Using the dJ metric, we could properly
handle the ties appearing in the frst rank position. Aver-
aging the sequence instability over the classes, we could
grasp the variability (of a fxed centrality measure) with
a single number, presented in the Supplementary material
(S6 and S7). Second, we calculated the sequence instability
for the top-k infuencers, where k> 1. For each centrality
measure, we determined the value of k from the mean
observed monotonicity value. If the mean monotonicity is
high (more than 0.85), then we set k to 5. If the mean
monotonicity is moderate (between 0.5 and 0.85), then we
set k to 3, and for lowmean monotonicity (below 0.5), we set
k to 1. According to this, we set k to 5 for PageRank, ei-
genvector centrality, and Borda count aggregation measure,
3 for in-degree and two-hop neighbourhood, and 1 for core,
so that we do not calculate sequence instability for core when
k> 1. We calculated the top-k sequence instability for both
dJ and dSFH. Te average top-k sequence instability values
are given in Tables S8–S11 of Supplementary material. We
have presented the distribution of the sequence instability
values on box plots. Figure 2 shows the sequence instability
values of the Borda count aggregation for the cases when the
parameters are {k� 1, d � dJ}, {k� 5, d � dJ}, and {k� 5,
d � dSFH}. Te box plots for the other centrality measures
(iDg, pg, 2Nbh, core, and eign) are in the Supplementary
material (S12 and S13). In case of the sequence instability of
the opinion leaders (when k� 1 and d � dJ), the median
values are between 0.488 and 0.75. For example, the median
sequence instability of the Borda count aggregation measure
with available data in 5 waves is 0.674, the 25th percentile is
0.5, and the 75th percentile is 0.8. Tis covers the [0.5, 0.6)
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Figure 1: Te average Jaccard similarity values of the top infu-
encers computed on the advice-seeking networks, setting the N
parameter values to be 5. Te variance is between 0.0244 and
0.0601. iDg: in-degree, pg: PageRank, 2Nbh: two-hop neighbour-
hood, core: coreness, eign: eigenvector centrality, and Bca: Borda
count aggregation.

Table 2: Size statistics of opinion leaders (top-1 infuencers) for the
centrality measures computed on the advice-seeking networks (221
networks).

Centrality Mean Variance No. of unique cases
In-degree 1.5782 0.7557 128
PageRank 1.0047 0.0047 210
Two-hop
neighbourhood 1.9383 2.1621 114

Coreness 11.6825 29.193 0
Eigenvector 1.0 0 221
Borda count aggregation 1.085 0.0875 194
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interval which means that 3 students take turns as opinion
leaders and the [0.75, 0.8) interval that belongs to 4 students
(for the meaning of the intervals, see Table 1). Te minimum
and maximum values are 0.0 and 1.0; hence, the whole range
of possible values is covered.When k> 1, we can observe that
the median values do not change so much, but the range of
the values has shrunk. For the Borda count aggregation
measure with available data in 5 waves with k� 5 and d � dJ,
the 25th percentile is 0.55, the 75th percentile is 0.66, and the
minimal and the maximal values are 0.1667 and 0.8188. We
can observe similar efect for the case when we use the dSFH
distance metric.

4.3. Centrality Measures Computed on Friendship Networks.
Friendship networks difer from advice-seeking networks in
the sense that friendships are supposed to be more stable
relations over time [76]. Friendship is also depending on the
length and content of the connection (how much time they
spend together and the reason why), homophilia and
sympathy between them, socioeconomic background,
neighbourhood, common interests, activities, and so on. We

applied the analysis of centrality measures for friendship
networks in order to see the diferences compared with
advice-seeking networks.

Centrality in the case of friendship networks gives us
information about the infuence of the students in the class. In
this case, all the centrality measures discussed in Section 2.1
make sense and give us a diferent description of the node’s
position. However, in the case of the closeness and be-
tweenness centralities, we applied the measure to the un-
directed version of the friendship networks, because in
a school class, the friendship network is not a “who-knows-
who” question (since in such a small community everybody
knows everybody) but is more about cliques within the class.
Tat is why closeness and betweenness are related to the
information fow between the cliques, which were supposed to
be bidirectional. In contrast, for example, PageRank is much
more about prestige in this environment; therefore, we still
compute it on directed networks. We also applied the Borda
count aggregation (Section 2.3) method to aggregate these
centrality measures (iDg, pg, 2Nbh, core, eign, cl, and btw) in
a similar way as applied to the advice-seeking networks.

Table 3: (a) Returning frequency of the opinion leaders by diferent centrality measures for advice-seeking (as) and friendship (fr).
Observation data for 4 waves. (b) Returning frequency of the opinion leaders by diferent centrality measures for advice-seeking (as) and
friendship (fr). Observation data for 5 waves.

Type Centrality 1 2 3 4 5
(a)
as iDg 62 16 11 3
as pg 52 12 4 2
as 2Nbh 88 25 11 2
as Core 135 105 104 118
as eign 46 20 2 1
as Bca 52 12 2 5
fr iDg 44 13 4 0
fr pg 26 9 0 0
fr 2Nbh 54 16 2 0
fr Core 42 46 56 54
fr eign 17 6 5 0
fr cl 36 7 1 1
fr btw 27 5 1 1
fr Bca 20 6 2 2
as & fr Bca 46 11 7 0
(b)
as iDg 73 25 12 5 3
as pg 49 18 6 2 1
as 2Nbh 96 23 18 6 2
as Core 96 93 105 86 79
as eign 63 18 4 1 0
as Bca 59 19 4 2 2
fr iDg 163 37 18 5 0
fr pg 123 22 7 0 0
fr 2Nbh 230 83 27 4 1
fr Core 190 170 127 174 138
fr eign 128 16 7 1 0
fr cl 148 36 6 1 0
fr btw 117 21 8 1 0
fr Bca 122 26 7 1 0
as & fr Bca 70 20 5 0 0
iDg: in-degree, pg: PageRank, 2Nbh: two-hop neighbourhood, core: coreness, eign: eigenvector centrality, cl: closeness, btw: betweenness, and Bca: Borda
count aggregation.
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Te monotonicity of the centrality measures computed
on the friendship networks behaves similar to the mono-
tonicity computed on the advice-seeking networks. Eigen-
vector centrality has the highest monotonicity value of
0.9957, while coreness has the lowest value of 0.2433. Te
numerical details can be found in S14 of the Supplementary
material.

We computed the mean and variance of the set of
opinion leaders (top-1 rankings) sizes for each centrality
measures on the friendship networks. Te details can be
found in Table 4. Similar to the advice-seeking networks, the
opinion leaders are unique in almost all the cases for the
eigenvector, betweenness, and PageRank centralities.

Temean group size of the students with the highest core
number is 12.2926.

We compared the centrality measures using the Kendall
tau correlation in a similar way as we did for the advice-
seeking networks. Te mean correlation values can be found
in S15 of the Supplementary material. Te mean correlation
values are between 0.2 and 0.75, while the mean correlation
of the Borda count aggregation measure with the other
individual measures is between 0.49 and 0.71; therefore, we
can consider that the Borda count aggregation measure
covers well the other individual measures. We also made
a wave-to-wave correlation analysis for the friendship net-
works. Te results (S21) show that the means of correlations
are between 0.21 and 0.52 in each wave, except between the 4
and 5 waves, where the values are much smaller. Te results
are similar with those discussed in Section 2.4 (Jaccard
similarity).

According to the average Jaccard similarity values of the
top infuencers, presented in Figure 3, we can observe that
the mean Jaccard similarity of the Borda count aggregated
measure with the other centrality measures is relatively high.

Te returning frequency of opinion leaders in Tables 3(a)
and 3(b) shows that majority of the opinion leaders hold
their position once or twice; only the core of the networks
shows some stability.

Sequence instability measures for friendship networks were
computed in the same way as in the case of advice-seeking
networks. Te average sequence instability values for the
opinion leaders can be found in the Supplementary ma-
terial (S6 and S7), and the average top-k sequence in-
stability numbers are given in Tables S8–S11 of
Supplementary material. We provide the box plot of the
sequence instability values for the Borda count aggregation
of the other individual centrality measures on Figure 4
where the parameters are {k� 1, d � dJ}, {k� 5, d � dJ}, and
{k � 5, d � dSFH}. Te box plots of the other measures are in
the Supplementary material (S16–S18). We can observe
a similar behaviour as the case of advice-seeking networks.
Te median sequence instability of the Borda count ag-
gregation measure with available data in 5 waves is 0.75, the
25th percentile is 0.6 and the 75th percentile is 0.9. Tis
covers the [0.75, 0.8) interval that belongs to 4 students (for
the meaning of the intervals, see Table 1). Te minimum
and maximum values are 0.25 and 1.0. When k> 1, we can
observe that the median values do not change so much, but
the range of the values has shrunk. For the Borda count
aggregation measure with available data in 5 waves with
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Figure 2: Box plot of sequence instability values computed on the advice-seeking networks for the Borda count aggregated measure (Bca).
We separated the school classes into two groups: on the top plot, we have observation data for 4 waves, on the bottom for 5 waves. Bca:
sequence instability of Borda count aggregated measure with parameters {k� 1, d � dJ}, Bca-J-5: sequence instability of Borda count
aggregated measure with parameters {k� 5, d � dJ}, and Bca-S-5: sequence instability of Borda count aggregated measure with parameters
{k� 5, d � dSFH}.
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k� 5 and d � dJ, the 25th percentile is 0.58, the 75th
percentile is 0.71, and the minimal and the maximal values
are 0.3964 and 0.8119. We can observe similar efect for the
case when we use the dSFH distance metric.

4.4. Aggregation of CentralityMeasures Computed on Advice-
Seeking and Friendship Networks. Te Borda count aggre-
gation method can be used not only for aggregation the
centrality measures of the same network type but also for
aggregation the centrality measures of multiplex networks.
We illustrate this by examining the set of central actors with
aggregating friendship and advice-seeking networks. Al-
though the correlation between the two types of networks
(see Kendall tau correlation in S19 where the range varies
between [0.017, 0.097] is low, the centralities computed on
these diferent network types agree in the top infuencers
surprisingly frequently (see Jaccard similarity mean values in
Figure 5). Tis also shows that the cores of the two kinds of
networks highly overlap each other. After the Borda count
aggregation of all the centrality measures computed on the
advice-seeking networks and the friendship networks, we
got an aggregated centrality measure that can be considered
as the aggregation of the centrality measures over the
network types.

Let us examine how the aggregated measure behaves.
First, we discuss the monotonicity of the aggregated mea-
sure. Its mean value appears to be 0.9755 with a variance of
0.003. Tis shows that the discrimination power of the
aggregated centrality measure is high. Using the aggregated
measure, the mean size of the top performers is 1.075, with
a variance of 0.08. Te opinion leader role is unique in 185
out of 199 cases.

Comparing the aggregated centrality measure to the
other measures computed on both network types by the
Kendall tau correlation, the mean correlation values are in
S20 of the Supplementary material. Te mean correlations
are in the range [0.39, 0.65]. We can, therefore, interpret the
aggregated measure as a new centrality. In order to compare
the aggregated measure in terms of the top infuencers, we
computed the Jaccard similarity of the top infuencers with
parameter N� 5. Table 5 contains the results. In the case of
the advice-seeking networks, the mean similarity is between
0.35 and 0.43, while in the case of the friendship networks,
the values are in the range [0.39, 0.55].

Regarding the returning frequencies of the opinion
leaders (in Tables 3(a) and 3(b)), for the classes with 4
available waves, only 7 students were opinion leader at least 3
times, and for the classes with 5 available waves, only 5
students were opinion leader at least 3 times.

Te sequence instability values are in Figure 6. We can
observe a similar behaviour to the advice-seeking and
friendship networks.

4.5.Analysis of theCore. Te core centrality measure alone is
not suitable for fnding the top infuencers, but it provides
very important information about a node’s position and
embeddedness. Staying with our example of primary school
classes, one might question how exactly opinion leaders are
getting into central network position. If someone is not
necessarily opinion leader measured by centrality measures,
but is “almost” there, being member of a popularity group,
then maybe this person has bigger chances to become
opinion leader. Te analysis of the core is justifed from
a practical point of view, in order to be considered in the
research regarded stability of the opinion leaders.

Tables 2 and 4 show that the size of the core is very large
comparing with the average class size which is 20 for advice-
seeking networks and 19 for friendship networks. Te average
core size is 11.68 and 12.29 for the advice-seeking and
friendship networks, respectively. However, it seems that
(relative to the other centrality measures) the core shows some
level of stability (see Tables 3(a) and 3(b) and Figures S12 and
S16). In this section, we investigate the core in more detail to
have a better picture of the extent of the core, its stability, and
the connection with the other centrality measures.

We can get a more detailed picture if we observe the core
size for each wave. S22 of the Supplementary material
contains the mean core and the relative mean core size
values. We can see that, on average, the core is roughly 60%
of the class size for the advice-seeking networks and 67% of
the class size for the friendship networks in each wave.

Table 4: Size statistics of the opinion leaders (top-1 infuencers) for
the centrality measures computed on the friendship networks (229
networks).

Centrality Mean Variance No. of unique cases
In-degree 1.7162 1.2862 142
PageRank 1.0131 0.0129 226
Two-hop neighborhood 2.5764 4.7944 104
Coreness 12.2926 19.0541 0
Eigenvector 1.0087 0.0087 227
Closeness 1.3057 0.5092 192
Betweenness 1.0087 0.0087 227
Borda count aggregation 1.066 0.0699 215
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Figure 3:Te empirical mean of the Jaccard similarity values of the
top infuencers computed on the friendship networks, setting theN
parameter value to be 5. Te variance is between 0.012 and 0.076.
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Figure 4: Box plot of sequence instability values computed on the friendship networks for the Borda count aggregated measure (Bca). We
separated the school classes into two groups: on the top plot, we have observation data for 4 waves, on the bottom for 5 waves. Bca: sequence
instability of Borda count aggregated measure with parameters {k� 1, d � dJ}, Bca-J-5: sequence instability of Borda count aggregated
measure with parameters {k� 5, d � dJ}, and Bca-S-5: sequence instability of Borda count aggregated measure with parameters {k� 5,
d � dSFH}.
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Figure 5:Te empirical mean of the Jaccard similarity values of the top infuencers computed between the advice-seeking and the friendship
networks. Te variance is between 0.0142 and 0.0462. iDg: in-degree, pg: PageRank, 2Nbh: two-hop neighbourhood, core: coreness, eign:
eigenvector centrality, Bca: Borda count aggregation, cl: closeness, and btw: betweenness.

Table 5: Te empirical mean of the Jaccard similarity values computed between the aggregated measure over both advice-seeking and
friendship networks and the classical centrality measures.

Network
type iDg pg 2Nbh Core eign cl btw Bca

Advice-seeking 0.43 0.38 0.39 0.38 0.35 — — 0.43
Friendship 0.47 0.43 0.4 0.39 0.48 0.46 0.42 0.55
Te variance is between 0.0151 and 0.1081. iDg: in-degree, pg: PageRank, 2Nbh: two-hop neighbourhood, Core: coreness, eign: eigenvector centrality, cl:
closeness, btw: betweenness, and Bca: Borda count aggregation.
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Te fnding that the core stands out is not that surprising
as these networks might be quite segregated/clustered, e.g., by
gender or ethnicity, and the core would indicate centrality
within the cluster. We computed the mean of the number of
common items in the core for each school class and the

relative number of the common items of the core for each
school class summarised in S23 of the Supplementary ma-
terial. For the advice-seeking networks, the average rate of the
common items is 24% and 18% for 4 and 5waves, respectively,
while for friendship networks, these are 30% and 20%.
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Figure 6: Box plot of sequence instability values computed on both the advice-seeking and friendship networks for the Borda count
aggregated measure (Bca). We separated the school classes into two groups: on the top plot, we have observation data for 4 waves, on the
bottom for 5 waves. Bca: sequence instability of Borda count aggregated measure with parameters {k� 1, d � dJ}, Bca-J-5: sequence
instability of Borda count aggregated measure with parameters {k� 5, d � dJ}, and Bca-S-5: sequence instability of Borda count aggregated
measure with parameters {k� 5, d � dSFH}.

Table 6: Example sequence with full ranks.

— S (1) S (2) S (3) S (4) S (5)
1 A J F E G
2 B I G D A
3 C H H C E
4 D G I B B
5 E F J A C
6 F E A J I
7 G D B I D
8 H C C H F
9 I B D G H
10 J A E F J

Table 7: Example sequence instability values evaluated using the metrics dJ (frst column) and dSFH (second column) with k� 1, . . ., 10.

k dJ dSFH

1 1.0 1.0
2 0.8667 0.8667
3 0.86 0.85
4 0.6181 0.705
5 0.3611 0.5733
6 0.5069 0.5214
7 0.4736 0.4929
8 0.3644 0.4667
9 0.16 0.4089
10 0.0 0.3345
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Finally, we looked that the frequency of opinion
leaders induced by the other centrality measures is in the
core. For a given centrality measure and network type, we
refer to the fraction of opinion leader cases in the core
divided by the total number of opinion leaders as the in-
core rate. Tese numbers are collected separately for the
advice-seeking and the friendship networks in S24 and S25
of the Supplementary material. In the case of the advice-
seeking networks, the in-core rate computed on the same
network type is above 90%. When the centrality measures
are computed on the friendship networks, the in-core rate
is between 59% and 67%, and the in-core rate of the Borda
count aggregation computed on both network types is
90%. For the friendship networks, we got similar results.
Te in-core rate of the centrality measures computed on
the friendship networks is above 90%, except for the
closeness (71%) and betweenness (72%). Te in-core rate
of the Borda count aggregation computed on both network
types is 92%.

5. Conclusions and Discussion

Network interventions target central individuals who are
able to cause an intended difusion or spillover. Targeting in
these interventions is typically based on a single centrality
measure. Tis is problematic for at least two reasons. First,
who are the central actors in the network might signifcantly
change over time anyhow we defne centrality. Second,
a single centrality measure in addition to its instability is
unable to incorporate multiple structural characteristics that
might be important for initiating strong infuence and
a difusion process.

Terefore, in our research, we have developed a meth-
odology to track and quantify the stability of the set of in-
dividuals who are occupying central positions based on single
centrality measures. Furthermore, we proposed that an ag-
gregation of centrality measures could be a straightforward
way to refect upon diverse advantages that single centrality
indexes ofer for network interventions and, potentially, to
decrease temporal instability in comparison to single cen-
trality measures. We have illustrated that aggregation can be
carried out not only over diferent centralitymeasures but also
over diferent network types measured in the same context.

Te study introduced the methodology and illustrated its
use on a data set collected from Hungarian primary schools
(Section 3). Te identifcation of opinion leaders is based on
network structure: we rank individuals by their “impor-
tance,” where “importance” is quantifed by a centrality
measure. Importance can be defned from diferent points of
view, and each defnition refects upon a structural concept
that could be important for the identifcation of actors who
are important for strong infuence and dissemination.
Terefore, we used a selection of classical centrality measures
(Section 2.1) rather than picking one as the best.

We applied the Borda count method (Section 2.3) to
aggregate diferent centrality measures. Te Borda count
method [59, 60] consists of a set of ordered lists
Ը � l1, . . . , lm􏼈 􏼉, where each list has M items in diferent
orders. In this paper, each li in Ը is an induced ranking list of

the Ci centrality measure. We can interpret the Borda count
as a voting procedure, where the centrality measures can be
considered as experts who are voting to the items of the list
in each rank position.

An actor can be part of diferent networks, where each
network is built using a diferent relation, just like the
phenomenon described by [77] and later discussed by [78]
distinguishing “local leaders” (students popular as friends)
from “system leaders” (students popular as role models), the
latter having a larger impact on the school community as
a whole. Te study [78] shows that network items organised
into clusters overlap but did not fully coincide with the
network measures most often used in adolescent research,
such as friendship and dislike. In our data set, we used two
network types: advice-seeking and friendship networks. Te
question is self-evident: can we aggregate over the diferent
network types? Tere are multiple methods to do this, and
which is desirable depends on researcher needs and ques-
tions. When data from several diferent ties are available in
the same context, then researchers might want to condense
information with cluster analysis and fnd the latent di-
mensions that are measured by similar networks, such as
friendship and afection [78, 79]. Another way is to simply
add values up in diferent sparse networks or to use
thresholds for cell sums to create a composite network [75].
One possible way to do this is the Borda count aggregation
since this method worked on the induced ranking list rather
than the networks.

In order to capture the similarities and diferences be-
tween the centrality measures, we used three methods:
monotonicity of rankings (Section 2.2), Kendall tau corre-
lation (Section 2.2), and Jaccard similarity of the top
infuencers (Section 2.2). All these methods operate on the
ranking of the individuals induced by the centrality mea-
sures. Te monotonicity of the rankings quantifes the
fatness of the hierarchy defned by a given centrality
measure. Kendall’s tau correlation coefcient measured the
correspondence between two rankings of the same set of
items. In this paper, we focused on the top infuencers or key
actors; therefore, we separately examined the similarity of
the top infuencers induced by the diferent centrality
measures. Tis was what the “Jaccard similarity of the top
infuencers” tried to capture.

Since the infuence of an agent was determined by the
agent’s position in the network(s) defned by the agent’s
relations, the source of the variability of the top infuencers
was the temporal change of the underlying network struc-
ture. We used a Jaccard similarity-based network compar-
ison method (Section 2.4) to quantify the wave-to-wave
structural change in the networks.

In Section 2.5, we developed a measure to describe the
temporal (wave-to-wave) instability of the top infuencers
with a single number. We have made this in two steps: frst,
we supposed that the opinion leader is unique in all waves.
We postulated four intuitive requirements that our in-
stability measure should meet and proposed a simple for-
mula (equation (18)) that meets the requirements. We called
this measure the “sequence instability.” Second, we have
extended this method to handle sequences, where the
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elements of the sequence are top-k lists. Tis extended al-
gorithm requires a distance measure of top-k lists that can
handle ties. When we were only interested in the degree of
overlap between the rankings, we used the dJ Jaccard dis-
tance (Section 2.2), but when we wanted to take into account
the change in order between the rankings, we applied the
dSFH distance (Section 2.5). Te distance measure dSFH is the
combination of the normalized Spearman’s footrule distance
(Section 2.2) with the Hausdorf distance.

Temain lesson that we learnt from our data was that the
opinion leaders are quite unstable in time. Te returning
frequency of the opinion leaders was very rarely higher than
2 (Tables 3(a) and 3(b)), and for the vast majority of the
classes, for all centrality measures (except the core value), the
sequence instability (see Figures 2, 4, and 6 and Supple-
mentary material) was very high. Furthermore, the Borda
count aggregation of classical centrality measures did not
improve the stability.

We investigated these in both advice-seeking and friend-
ship networks which allowed us to compare the rankings and
especially the top infuencers or key actors of these networks.
We used Kendall’s tau correlation to compare the induced
rankings on the diferent network types.Temean values of the
Kendall tau correlations were in the range [0.017, 0.097] (S19 of
the Supplementary material). Hence, our conclusion was that
the centrality measures computed on the diferent network
types were inducing diferent rankings. Te mean values of the
Jaccard similarity of the top infuencers (with the parameter
value N� 5) shown in Figure 5 were mostly between 0.18 and
0.34, except between the core on friendship networks and the
core on advice-seeking networks, where we can observe
a higher value of 0.51. Although the correlation was low, the
centralities computed on the diferent network types agreed on
the top infuencers surprisingly frequently but not so frequently
to consider them identical.

In Section 4.5, we separately discussed the core. In
general, the relative size of the core (compared to the class
size) was very high: on average, this was about 60% for the
advice-seeking networks and 67% for the friendship net-
works. Tanks partly to being large, the core shows some
level of stability: lots of students were part of the core in all
the available waves (Tables 3(a) and 3(b)). For advice-
seeking networks, the average rates of the common
items were 24% and 18% for 4 and 5 waves, respectively,
while for friendship networks, these were 30% and 20%. It
remains an open question for the future if the common
items of the core can be considered as students with high
infuence and is it possible to characterise these students
somehow.

Te spread of opinions or the coolness of some friends in
a school class is particularly interesting for targeted pre-
vention programs [80] (see 80 for these data). As our results
suggest, long-time prevention programs should not be based
only on those students who have central positions in a school
class (often mentioned in many ways by scientifc literature,
like superhubs, key actors, opinion leaders, and infuencers)
because their central position is temporarily unstable.
However, for prevention and pedagogical programs, it is
useful to know that school classes have a relatively stable core

of students, in which the most central key actors can vary in
time. Our results suggest that targeted interventions must be
designed keeping this evolution into account.

5.1. Limitations of the Research

5.1.1. Limitations of Data. Our analysis is based on a sample
of Hungarian primary school classes that overrepresented
students from the Roma minority. Some classes were from
the rural area of Hungary, where the number of students was
lower than in major cities or the capital. Social relations in
a class can be very diferent depending on the number of
classmates or locality type (villages vs. bigger cities). Also,
the number of students in a class can vary from wave to
wave, especially in the 6th grade. In Hungary, students can
enroll in a 6-year high school if they achieve high admission
scores. Tis is a more popular phenomenon in cities. Tese
parameters can infuence the interpretation of our research.
Another limitation regarding to data is that the algorithm
was tested on survey dataset (name generation questions of
personal survey). Although this is the main strength of our
research (since similar research about stability of network
positions are focusing on online data, for example [81, 82] or
[31]), in our further work, we plan to test our methodology
and algorithms also on online datasets, such as social media
networks.

5.1.2. Limitations Due to the Focus on Central Actors.
Our research meant to discover the patterns of key actors
between opinion leaders and friends in time, so we do not
investigate the socio and economic status of the students. Of
course, opinion leaders can maintain or lose their social
network position for socio, economic, and demographic
reasons, too. Although, partly based on other relevant re-
search (for example), we suppose that peripherical positions
are muchmore infuenced by a student’s socio and economic
status or their family than opinion leadership, this aspect will
need further investigation. Another aspect that can be in-
vestigated is whether achievement infuences the stability of
opinion leaders. Our research did not take into consider-
ation the school results or even behaviour notes of the
students like. Tis also has to be explored in the next
research phase.

5.1.3. Limitation of Approach. Many scientifc studies
highlight that opinion leaders may difer depending on the
topic. For example, someone who is an opinion leader in
political questions may not be an opinion leader in
professional questions or technical innovation themes,
well summed up by. We did not take into consideration
the topic of opinion leadership; we only wanted to fnd
a good mechanism to identify the key actors in a network
and to describe their position’ stability in time. In our
approach, which is quite similar to the difusion of in-
novation sociological approach [9–16], the social net-
works were pathways along which “social contagion” can
spread, as defned by [28]. Guilbeault et al. also
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distinguished between simple contagions (like infectious
diseases, where a simple contact can be sufcient for
transmission) and complex contagions (like transmission
of behaviours, beliefs, or attitudes, where multiple con-
tacts are necessary for transmission). However, we did not
include the specifc behaviours, beliefs, and attitudes
transmitted in our analysis. We only measured the central
position of networks and their stability in time.

Appendix

A. Justification of Sequence Instability
Formula for Unique Opinion Leader

In our approach, we assign a non-negative penalty for each
element in Λ(S) and we defne the v(S) instability of
a S ∈ AL sequence as the normalized sum of the penalty
values:

v(S) �
V(S)

Vmax
�

1
Vmax

􏽘
a∈Λ(S)

penalty(S, a), (A.1)

where penalty (S, a) is the penalty assigned to item a and
Vmax is the maximum value of V (S) over all possible L-
length sequences:

Vmax � max
R∈AL

V(R). (A.2)

We introduce some further notations. We denote the
number of occurrences of element a ∈A in a sequence S ∈ AL

by c (S, a), and the relative frequency of a is S by f (S, a)� c (S,
a)/|S|. Furthermore, for any a ∈A, we defne the frequency of
case in which element a is diferent from the element im-
mediately preceding it in the sequence by B(S,a), so that
B(S,a) � 􏽐

|S|
i�21 S(i) � a{ }1 S(i)≠ S(i − 1){ }. Te normalized

version of B(S,a) is b(S,a), given by b(S,a)�B(S,a)/(|S|− 1). It
is clear that B(S) � 􏽐a∈Λ(S)B(S,a), and there is a similar
relationship between b(S) and b(S,a). For example if the
sequence Q is given by Q�AABCB, then c(Q,A)� c(Q,B)� 2,
c(Q,C)� 1, b(Q,A)� 0, b(Q,B)� 0.5, and b(Q,C)� 0.25.

We suppose that penalty (S,a) depends on the relative
frequency f(S,a) of a in S and the b(S,a) relative frequency of
cases when an a item is diferent from its immediate pre-
ceding item, and we also suppose that this dependence is
linear; therefore, we are looking for penalty (S, a) in the
following form:

penalty(S, a) � α + βf(S, a) + cb(S, a), (A.3)

where α, β, and c are nonzero real constants.
Consider now requirement R1. Suppose that λ(S)� 1. In

this case, Λ(S)� {a}; hence, the relative frequency of this
single item a is 1, and b(S,a)� 0. In order to satisfy (12),
consider frst the case λ(S)� 1, and we need V(S)� penalty
(S,a)� α+ β� 0. From this, we immediately get that β� −α
and penalty (S,a) has the form as follows:

penalty(S, a) � α − αf(S, a) + cb(S, a). (A.4)

Since α≠ 0, denoting σ � c/α, we can write

penalty(S, a) � α(1 − f(S, a) + σb(S, a)). (A.5)

Since the not normalized instability number is just the
sum of the penalties assigned to each item in S, we getV(S) as
follows:

V(S) � 􏽘
a∈Λ(S)

penalty(S, a) � α(λ(S) + σb(S) − 1). (A.6)

To get equation (A6), we have used that the sum of the f
(S,a) relative frequencies is 1, i.e., 􏽐a∈Λ(S)f(S, a) � 1 and
􏽐a∈Λ(S)b(S, a) � b(S). From equation (A6), we can also see
that if v(S)� 0, then λ(S)� 1. Indeed, v(S)�V(S)� 0 can be
true only if b(S)� 0 and λ(S)� 1.

Suppose now that the conditions of requirement R2
hold, so that |S1| � |S2| and λ(S1)> λ(S2). We denote the
maximal instability number if the number of items in an L-
length sequence is N by VN:

VN � max
R∈AL

V(R): λ(R) � N{ }, (A.7)

and similarly, we denote the minimal instability number if
the number of items in an L-length sequence is N by VN:

VN � min
R∈AL

V(R): λ(R) � N{ }. (A.8)

In order to ensure that (14) is met, we need VN+1 >VN

for all N ∈ {1, . . ., L − 1}. It is easy to see that VN � α(N + σ
(|S| − 1) − 1) and VN � α(N + σ(N − 1) − 1). From the
inequality VN+1 >VN, we get the following condition:

σ <
1

|S| − N + 2
. (A.9)

Since N≥ 1, this condition surly holds if

σ <
1

|S| − 1
. (A.10)

Let us continue with requirement R3. Suppose the
conditions of R3 are hold, so that |S1| � |S2|, λ(S1) � λ(S2),
and b(S1)> b(S2). From equation (A6), we can directly see
condition (16); therefore, requirement R3 is satisfed.

Finally, let us consider requirement R4. In order to scale
the instability measure to the [0, 1] interval, we need to fnd
Vmax. It is easy to see from equation (A6) that
Vmax � maxR∈AL V(R) � α(L + σ(L − 1) − 1) � α (L − 1)

(1 + σ). As a result, we get the formula for v(S) as follows:

v(S) �
λ(S) + σb(S) − 1
(|S| − 1)(1 + σ)

, (A.11)

and σ must satisfy condition (A10). From equation (A11),
we can directly get that v(S)� 1 can hold only if λ(S)� |S|, so
that we verifed that condition (17) is satisfed.

B. An Example Instability Calculation

We illustrate the sequence instability methodwith an example
calculation. Suppose that Ω� {A, B, C, D, E, F, G, H, I, J}, and
the S example sequence with full ranks is given in Table 6. We
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calculate the sequence instability using the distance measures:
Jaccard distance (dJ) and Spearman’s footrule combined with
Hausdorf distance (dSFH) for each k∈ {1, . . ., 10}. Te results
are collected in Table 7. We expect that for k� 1, the sequence
instability takes the maximal value for both distance measure
because the frst items of each lists of S are diferent. We also
expect a decreasing trend (but not monotonic) as k is in-
creasing for both distance measures. At k� 10, we see that the
instability becomes zero for the case of Jaccard distance, since
every item is identical with respect to the Jaccard distance;
however, the order of the items is diferent; therefore, v (S)> 0
for k� 10, when we use dSFH.
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