
Research Article
A Probabilistic Approach for Missing Data Imputation

Muhammed Nazmul Arefn 1 and Abdul Kadar Muhammad Masum 2

1Department of Computer Science and Engineering, International Islamic University Chittagong, Chattogram 4318, Bangladesh
2Department of Software Engineering, Dafodil International University, Dhaka 1216, Savar, Bangladesh

Correspondence should be addressed to Muhammed Nazmul Arefn; nazmul.arefn@iiuc.ac.bd

Received 21 February 2023; Revised 10 November 2023; Accepted 3 January 2024; Published 19 January 2024

Academic Editor: Hassan Zargarzadeh

Copyright © 2024 Muhammed Nazmul Arefn and Abdul Kadar Muhammad Masum. Tis is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

In the context of data analysis, missing data imputation is a vital issue due to the typically large scale and complexity of the
datasets. It often results in a higher incidence of missing data. So, addressing missing data through the imputation technique is
essential to ensure the integrity and completeness of the data. It will ultimately improve the accuracy and validity of the data
analysis. Te prime objective of this study is to propose an imputation model. Tis paper presents a method for imputing missing
employee data through a combination of features and probability calculations. Te study utilized employee datasets that were
collected from the Kaggle along with primary data collected from RMG factories located in Chittagong. Te suggested algorithm
demonstrated a notable level of accuracy on the datasets, and the average accuracy for each identifed technique was also quite
satisfactory. Tis study contributes to the existing body of research on missing data imputation in big data analysis and ofers
practical implications for handling missing data in diferent datasets. Usage of this technique will enhance the accuracy of data
analysis and decision-making in organizations.

1. Introduction

Missing data refer to the absence of values in one or more
attributes within the dataset. Te reasons for missing data
can vary, including clerical errors during data entry, system
malfunctions, voluntary employee nondisclosure, or data
corruption during storage and transmission. Regardless of
the underlying cause, missing data can lead to signifcant
issues and hinder the organization’s ability to draw accurate
and reliable conclusions from the dataset. In today’s data-
driven business landscape, organizations heavily rely on
employee datasets to gain valuable insights into their
workforce, optimize operations, and make informed de-
cisions. Tese datasets encompass a wide range of in-
formation, including employee demographics, performance
metrics, job roles, salary details, attendance records, and
other essential attributes. However, one common challenge
that plagues these datasets is the presence of missing data. To
forecast results from massive datasets, several machine
learning and data mining methods are frequently utilized.
Tese algorithms often produce accurate predictions unless

the data used to train them are incorrect. One of the most
important parts of the data analysis is data purifcation also
known as data preprocessing. Also, missing data handling is
one of the signifcant parts of it. Without proper pre-
processing, machine learning algorithms are not able to
perform excellent predictions which creates a situation
where decisions are frequently erroneous. Hence, missing
values are one of the biggest problems with data integrity
which creates a big issue for a good data analysis. A dataset
with missing values may result in skewed results and
drastically higher processing costs [1]. Avoiding missing
records can be an easy resolution for a dataset with fewer
data. On the other hand, deletingmissing entries could result
in a large information loss for larger datasets [2]. Terefore,
trustworthy imputation methods are required to address this
problem. Many statistical techniques, such as replacing by
mean, median, or mode, are frequently employed to handle
missing values in datasets. However, for the employee
dataset, we need an appropriate missing data handling
technique. In this paper, we introduced combinational
probabilistic analysis, a novel method for imputation of

Hindawi
Complexity
Volume 2024, Article ID 4737963, 15 pages
https://doi.org/10.1155/2024/4737963

https://orcid.org/0000-0001-9869-3981
https://orcid.org/0000-0002-8642-5688
mailto:nazmul.arefin@iiuc.ac.bd
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/4737963

missing data. Additionally, we implemented a number of
well-known single imputation, multiple imputations, and
machine learning-based imputation techniques. We have
performed comparisons with all of the implemented ap-
proaches with the proposed algorithm in terms of accuracy
and f1 score. In contrast to previous methods, the com-
parison demonstrates better results for the suggested
method.

Te second section of the paper has literature reviews.
Te third section contains the proposed approach. Te
fourth and ffth sections present the result analysis and
discussion. Also, fnally, the conclusion part, along with the
contribution, is in the sixth section.

2. Literature Review

In this section, we have presented a brief description of
diferent types of missing data as long as the necessary prior
work and literature. In any dataset, two types of missing can
occur: variable missing and value missing [3]. Missing
variable is the worst case for a dataset if the variable plays
a vital role in the analysis. Mr. Nikolas mentioned two ways
to handle missing variables in [4]. First is precluding the
entire variable. Te second is inferring missing variables
from any other dataset where relevant variables exist, such as
in the current dataset. Tis method requires more in-
vestigation before inference, since, in many circumstances,
imputing from another dataset will not provide the correct
value for the missing variable. To investigate, the calculation
is required to fnd whether there is any bias in the case of
omitted variables or in the case of imputed variables. If the
bias created for excluding missing variables in the dataset is
larger than the bias created for imputation, then imputation
is considered as the improvement [4].

In terms of “value missing,” there are three kinds in most
cases [5]. First is the missing completely at random (MCAR),
then, missing at random (MAR), and fnally, missing not at
random (MNAR). Before we go into the specifcs of those
types, it is important to understand the terms ”observed
data” and ”unobserved data.” Observed data are data of
observed variables. Te observed variable is one that can be
measured in the dataset, e.g., elements such as survey replies,
performance assessment scales, duration on task, and job
completion, and unobserved variables or latent variables, on
the other hand, are those that cannot be assessed directly in
the dataset, or even exist. Although latent variables cannot be
measured directly, they can be indirectly measured by
employing seen ones. For instance, an unobserved variable
of intelligence lies behind a couple of observed variables such
as performance and presentation.

When data missing is not dependent on observed and
unobserved data, it is called missing completely at random
(MCAR) [5]. Tis form of missing data does not introduce
bias into the dataset, but it does reduce the number of
populations that can be analyzed. As this is independent of
observed and unobserved, there is less chance to get any
pattern to use for further imputation. For example, if
a survey result has 6% missing responses arbitrarily, it is

MCAR. In the case of missing at random (MAR), other
variables in the dataset have the ability to impute the missing
values. In MAR, missing data are related to the observed but
not the unobserved data. For instance, in a survey of “the
intention for leaving my current job,” male employees
participated less than females would be MAR. Another
explanation for beingMAR is that the survey is more focused
on gender (observed variable) than on intention (latent
variable). If the dataset’s only complete data are used for
analysis while there existsMAR in the dataset, then the result
will not be biased [6].

When missing data are related to unobserved variables,
then it is called missing not at random (MNAR), i.e., those
missing values are not directly related to any measurable
variables. As an illustration, some respondents refused to
take part in a survey that was designed to investigate
a nonmeasurable fact, e.g., cigarette addiction (hidden
variable). So, as many participants who are already addicted
refused to participate in the survey, this is MNAR. Te
reason for themissing data in this case is well recognized, but
imputing that data is not that simple. Having MNAR in the
dataset, inference by only complete data can bring biased
results.

In the domain of missing data imputation, numerous
research studies have been documented. In this context, we
are compiling a selection of signifcant works and sum-
marizing their key fndings in Table 1.

After studying them, we found that there are some al-
gorithms that are less sensitive to the interconnectedness of
variables in an employee dataset. Imputing missing values in
isolation [21] can break the relationships between variables
and lead to inconsistent or implausible imputed data.

(i) Employee data typically include a variety of vari-
ables, such as age, gender, job title, salary, perfor-
mance rating, years of experience, educational
qualifcations, training history, and skills and
competencies. Tese variables are often inter-
connected, and imputing missing values for one
variable in isolation can lead to inconsistent or
implausible imputed values for other variables. For
example, suppose we have a dataset of employee data
with a missing value for an employee’s salary. If we
impute the missing value for salary in isolation, we
may end up with an imputed value that is in-
consistent with the employee’s other characteristics,
such as their job title, experience, and performance
rating. For example, we may impute a high salary for
an employee with a low-level job title and a low-
performance rating. Tis is unlikely to be a realistic
scenario.

(ii) Another problem with imputing missing values in
isolation is that it can lead to implausible imputed
data. For example, we may impute a value for an
employee’s age that is outside of the possible range of
ages for humans.

While substantial research has been conducted on
missing data imputation techniques in various domains,

2 Complexity

Ta
bl

e
1:

Li
te
ra
tu
re

re
vi
ew

of
M
L
al
go
ri
th
m
s
an
d
hi
gh

lig
ht
s.

M
L
ca
te
go
ry

M
et
ho

d
H
ig
hl
ig
ht
s

C
lu
st
er
in
g

Be
st

ft
m
iss

in
g
va
lu
e
im

pu
ta
tio

n
U
se
d
fo
r
th
e
Io
T
da
ta
se
ts
.T

e
pa
pe
r
pr
ov
id
es

a
co
m
pa
ri
so
n
of

BF
M
V
Iw

ith
ot
he
r

ex
ist
in
g
al
go
ri
th
m
sa

nd
sh
ow

st
ha
tB

FM
V
Io

ut
pe
rf
or
m
st
he
m

in
te
rm

so
fa
cc
ur
ac
y

an
d
ef

ci
en
cy

[7
]

C
lu
st
er
-d
ir
ec
te
d
fr
am

ew
or
k
fo
r
ne
ig
hb

or
-b
as
ed

im
pu

ta
tio

n

A
br
an
d-
ne
w
cl
us
te
r-
di
re
ct
ed

fr
am

ew
or
k
is
su
gg
es
te
d
by

th
ea

ut
ho

rs
.C

FN
I:
cl
us
te
r-

di
re
ct
ed

fr
am

ew
or
k
fo
r
ne
ig
hb

or
-b
as
ed

im
pu

ta
tio

n,
w
hi
ch

us
es

da
ta

cl
us
te
ri
ng

al
on

e
to

le
ad

th
e
id
en
tif

ca
tio

n
of

cl
os
es
tn

ei
gh

bo
rs

in
or
de
r
to

ge
ta

m
or
e
pr
ec
ise

im
pu

te
d
va
lu
e
[8
]

C
-m

ea
ns

U
se
d
to

im
pu

te
th
e
va
lu
e
in

m
iss

in
g
pl
ac
es

by
sim

ila
r
en
tr
ie
s
in

th
e
co
m
pl
et
e

da
ta
se
ts

[9
].
U
se
d
in

di
st
ri
bu

te
d
da
ta
se
ts

[1
0]

K
-m

ea
ns

Pa
til

et
al
.u

se
d
it
to

im
pu

te
m
iss

in
g
va
lu
e
in

th
ei
r
w
or
k
[1
1]

D
ee
p
le
ar
ni
ng

D
ee
p
ne
ur
al

ne
tw
or
k

A
bl
e
to

ft
th
e
da
ta

cl
os
el
y,

an
d
ca
n
ac
cu
ra
te
ly

pr
ed
ic
t
ne
w

da
ta

po
in
ts

[1
2]

Lo
ng

-s
ho

rt
-t
er
m

m
em

or
y

D
em

on
st
ra
te
s
go
od

pe
rf
or
m
an
ce

fo
r
tim

e
se
ri
es

m
iss

in
g
va
lu
es

[1
3]

En
se
m
bl
e

A
da
Bo

os
t

In
[1
4]
,a
ut
ho

rs
sh
ow

ed
th
at
th
e
m
et
ho

d
is
go
od

en
ou

gh
to

re
sil
ie
nt

m
iss

in
g
da
ta
to

id
en
tif
y
he
m
od

yn
am

ic
in
st
ab
ili
ty

in
IC

U
pa
tie
nt
s
ea
rly

on
eX

tr
em

e
gr
ad
ie
nt

bo
os
tin

g
Em

pl
oy
s
fe
at
ur
e
se
le
ct
io
n
an
d
su
pe
ri
or

ac
cu
ra
cy

[1
5,

16
]

Ra
nd

om
fo
re
st

In
[1
7]
,a
ut
ho

rs
us
ed

ra
nd

om
fo
re
st
to

es
tim

at
e
ca
te
go
ri
es

fo
rs
im

ila
ri
ty

m
ea
su
ri
ng

to
im

pu
te

m
iss

in
g
da
ta

N
eu
ra
ln

et
w
or
k

M
ul
til
ay
er

pe
rc
ep
tr
on

(M
LP

)
In

[1
8]
,a

ut
ho

rs
sh
ow

ed
th
e
go
od

re
su
lts

in
ca
te
go
ri
ca
lv

ar
ia
bl
es

us
in
g
M
LP

In
st
an
ce

ba
se
d

k-
ne
ar
es
t
ne
ig
hb

or
s
(k
N
N
)

Pa
n
et

al
.[
19
]
co
ns
id
er
ed

th
e
fe
at
ur
e
re
le
va
nc
e
w
hi
ch

w
as

m
ea
su
re
d
by

th
ei
r

m
od

if
ed

K
N
N

Su
pp

or
t
ve
ct
or

m
ac
hi
ne

(S
V
M
)

It
w
as

us
ed

to
im

pu
te

m
iss

in
g
da
ta

fo
r
ac
tiv

ity
-b
as
ed

tr
an
sp
or
ta
tio

n
m
od

el
[2
0]

Complexity 3

there exists a notable research gap concerning the specifc
challenges and efective solutions for handling missing data
in employee datasets. Although organizations increasingly
rely on employee datasets to drive data-driven decision-
making and enhance human resource management, limited
research has been dedicated to comprehensively addressing
missing data issues in this context.

Employee datasets possess unique characteristics, in-
cluding diverse employee attributes, hierarchical structures,
and temporal dependencies. Existing missing data impu-
tation techniques often treat missing values generically,
without considering the specifc nature of employee-related
attributes. Tere is a need for research that tailors impu-
tation methods to the characteristics of employee datasets,
ensuring more accurate and context-aware results.

3. Methodology

We are introducing a method called combination proba-
bilistic analysis, where, by creating combinations of im-
portant features existing in the dataset, selecting which class
of target attribute gives the highest probability for each node
of those combinations. In addition, the results obtained with
the methods used in various researches have also been
analyzed.

Troughout this section, we explicitly defne our
problem domain and detail each step in the process of
achieving the study goal.

3.1. Dataset Description. For our experiments, we employed
four datasets as shown in Table 2. One of them is the
employee dataset, which was obtained from a handful of
RMG factories in Chittagong. Another is the Kaggle
employee-attrition dataset [22]. In the primary dataset
around 1500 employees, data under 20 attributes were
extracted. Many of those attributes are categorical, and
some of them are numerical. Te dataset from Kaggle has
similar properties. Te Kaggle dataset has 1050 training
data and 442 testing data in separate fles within 34 at-
tributes. Also, the IBM employee dataset [23] has 1470
employee records with 35 attributes. All of the datasets
contain categorical key attributes, for instance, designation,
department, and employee type. Some of the categorical
attributes are ordinal, and some of them are nominal. So,
we have decided to encode ordinal attributes into ordered
numerical attributes and nominal attributes into dummy
encoded attributes. Some other numerical attributes such
as salary and age are encoded using intervals as those values
are scattered.We also used the hair-eye color dataset [24] to
assess how well the proposed imputation technique
functions.

3.2. Data Preprocessing. Each of the datasets contains cat-
egorical key attributes, for instance, designation, de-
partment, and employee type. Some of the categorical
attributes are ordinal, and some of them are nominal. So, we
have encoded ordinal attributes into ordered numerical
attributes and nominal attributes into dummy encoded

attributes. Some other numerical attributes such as salary
and age are encoded using intervals as those values are
scattered. We encoded “AgeLevel” by classifying it as
“Children,” “Young,” “Adult,” and “Senior,” as per the
National Statistical Ofce of Canada’s age
classifcations [25].

In forming a model, the procedure of feature selection
includes minimizing the number of attributes. In certain
situations, dropping the number of input variables might
enhance the profciency of the model while also decreasing
the computing cost of modeling. In this work, we selected
signifcant features from a large set of attributes using
a variety of feature selection techniques. Te test statistic
used to determine the relationship or statistical link between
two continuous variables is called Pearson’s correlation
coefcient [26]. We utilized the scikit-learn scoring function
named “r_regression,” that can calculate Pearson’s r for
every attribute and the target. Another popular feature se-
lection approach is univariate feature selection. In this
method, the most efective attributes are preferred using
univariate statistical tests. We disregard the other charac-
teristics while examining the link between a single feature
and the target variable. Tat is, why it is referred to as
“univariate.” In this approach, scikit-learn provides a func-
tion called “SelectKBest,” that eliminates all features except
for the top k scoring ones. In this study, we utilized
“SelectKBest” function.

3.3. Multiple Imputations

3.3.1. Multiple Imputations by Chained Equations (MICE).
MICE is a statistical method used for handling missing data
by imputing (flling in) missing values with plausible es-
timates [27]. MICE is a fexible imputation method that
iteratively imputes missing values in a dataset multiple
times to generate multiple complete datasets with imputed
values. Tese datasets can then be used for subsequent
analyses. Te key idea behind MICE is to impute missing
data for each variable by modeling it as a function of other
variables with observed values. Tis is achieved through
a series of conditional imputations, often using regression
models.

3.3.2. Mathematical Representation

(i) Dataset: consider a dataset with n observations
and p variables. Te dataset can be represented as
a matrix Y, where each row i represents an ob-
servation and each column j represents
a variable:

Table 2: Dataset description.

Datasets #Records #Attributes
Local employee dataset 1500 20
Employee-attrition dataset [22] 1492 34
IBM HR analytics attrition dataset [23] 1470 35
Hair-eye color dataset [24] 592 5

4 Complexity

Y �

y11 y12 . . . y1p

y21 y22 . . . y2p

⋮ ⋮ ⋱ ⋮

yn1 yn2 . . . ynp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

(ii) Missing data indicators: we introduce binary in-
dicator variables (Rij) to indicate whether a value is
observed (Rij � 1) or missing (Rij � 0):

Rij �
1, if  yij   is observed,

0, if  yij   is missing.

⎧⎨

⎩ (2)

(iii) Imputation process: the MICE algorithm imputes
missing values for each variable j in an iterative
manner. For variable j, we model its missing values
(Yij) as a function of other variables (Y−j) in the
dataset. Tis is carried out using regression models,
and the imputed values are denoted as 􏽢Yij. Te
imputation model can be represented as follows:

Yij � fj Y−j􏼐 􏼑 + ϵij, (3)

where Yij is the missing value to be imputed, fj is
a regression model for variable j, Y−j represents all
other variables except j, and ϵij represents the
error term.

(iv) Multiple imputations.TeMICE process is repeated
multiple times (usually m times) to create m

complete datasets with imputed values. Tis gen-
erates a set of imputed datasets Y(1), Y(2), . . . , Y(m).

3.4. Machine Learning-Based Imputation. In the evaluation
of machine learning algorithms, several prominent ap-
proaches were explored. Tese approaches fall into distinct
categories, each ofering its own set of advantages and
characteristics. First, decision tree-based classifers were
investigated, providing a transparent and interpretable way
to make predictions. Next, deep learning-based ap-
proaches, specifcally artifcial neural networks, and mul-
tilayer perceptrons were applied to the datasets, harnessing
the power of complex neural architectures for pattern
recognition. Ensemble methods, including AdaBoost and
eXtreme gradient boosting, were also considered, which
combine multiple models to enhance predictive perfor-
mance. Finally, in the instance-based approach, K-nearest
neighbors (KNN) and support vector machine (SVM)
classifers were tested, relying on the proximity of data
points to make predictions. Each of these algorithmic
categories was thoroughly assessed to determine their ef-
fectiveness in solving the given problem.

3.4.1. Decision Tree Classifer (DTC). DTC is a popular
supervised learning algorithm used for classifcation and
regression tasks. It is a nonparametric model that predicts
the value of a target variable based on a set of input features

[28]. Te algorithm works by recursively partitioning the
data into subsets based on the values of the input features,
until each subset contains only instances of a single class or
has reached a maximum depth or minimum number of
instances.

In decision tree classifcation, one common criterion
used for making decisions at each node is Gini impurity.
Gini impurity measures the impurity or disorder in a dataset.
For a binary classifcation problem (two classes, typically
denoted as 0 and 1), the Gini impurity for a node is cal-
culated as follows:

GiniImpurity � 1 −
p0

p0 + p1
􏼠 􏼡

2

−
p1

p0 + p1
􏼠 􏼡

2

, (4)

where (i) p0 is the proportion of samples in the node be-
longing to class 0 and (ii) p1 is the proportion of samples in
the node belonging to class 1.

Now, let us use Gini impurity to understand how a de-
cision tree is built.

(i) Step 1: Root node selection

(1) At the root node, we have the entire dataset, and
we consider all available features.

(2) For each feature, we calculate the Gini impurity
for diferent possible splits (using diferent
thresholds). Te feature and threshold that re-
sult in the lowest Gini impurity are chosen. Tis
split maximizes class separation at the
root node.

(ii) Step 2: Recursive splitting

(1) After selecting the root split, we repeat the
process for each child node.

(2) We consider the subset of data that fall into
a node and evaluate Gini impurity for diferent
feature thresholds. Te best split is chosen to
minimize Gini impurity.

(3) Tis recursive process continues until we reach
a stopping condition, such as reaching a maxi-
mum tree depth or having a minimum number
of samples per leaf.

(iii) Step 3: Leaf node assignment

(1) Once the splitting is complete, the leaf nodes
represent subsets of data with relatively pure
class labels

(2) Te predicted class for each leaf node is de-
termined based on the majority class of the
samples in that node

When we want to classify a new data point using the
decision tree:

(i) We start at the root node and evaluate the feature
value of the data point.

(ii) We follow the path down the tree by comparing the
feature value to the threshold in each internal node,
as determined during the tree-building process.

Complexity 5

(iii) Tis process continues until we reach a leaf node.
Te class label associated with that leaf node be-
comes the predicted class for the new data point.

3.4.2. Artifcial Neural Network (ANN). ANN [29] is a type
of machine learning algorithm inspired by the structure and
function of the human brain. It consists of a network of
artifcial neurons that are interconnected to process in-
formation and make predictions. An ANN typically consists
of three types of layers: input layer, hidden layer (s), and
output layer. Each layer contains a certain number of
neurons, which are responsible for processing the input data,
transforming it through a set of weights and biases, and
generating an output. During training, the ANN learns by
adjusting the weights and biases of the neurons to mini-
mize the diference between the predicted output and the
actual output. Tis process is achieved through back-
propagation, which involves calculating the error of the
predicted output and propagating it back through the
layers to adjust the weights and biases. ANNs can be used
for various tasks, such as classifcation, regression, and
clustering, and have achieved remarkable success in felds
such as computer vision, speech recognition, and natural
language processing. Tey are known for their ability to
learn from complex and large datasets and generalize well
to new data. Let us break down ANNs into some intuitive
components:

(1) Neurons (artifcial neurons): in an ANN, the basic
building blocks are artifcial neurons. Tese neurons
are similar to the neurons in our brain, which receive
signals, process them, and produce an output. Each
artifcial neuron takes multiple inputs, processes
them, and produces an output. Tink of these
neurons as tiny decision-makers.

(2) Layers: neurons are organized into layers. ANNs
typically consist of an input layer, one or more
hidden layers, and an output layer. Information
fows from the input layer through the hidden layers
to the output layer. Each layer contains a set of
neurons that perform specifc tasks.

(3) Weights and connections: the strength of the con-
nections between neurons is represented by weights.
Tese weights determine howmuch importance each
input has on the neuron’s decision. Weights are
adjusted during the learning process, allowing the
network to adapt and improve its performance.
Activation Function. Neurons use an activation
function to determine their output. Tis function
introduces nonlinearity into the network, enabling it
to model complex relationships in the data. Com-
mon activation functions include the sigmoid, ReLU
(rectifed linear unit), and tanh (hyperbolic tangent).

(4) Learning and training: ANNs learn from data
through a process called training. During training,
the network is presented with input data along with
the correct or expected output (supervised learning).
Te network makes predictions, and the diference

between its predictions and the correct output is
measured using a loss function. Te network then
adjusts its weights to minimize this loss, making it
better at making predictions.

(5) Backpropagation: the mechanism by which ANNs
adjust their weights during training is called back-
propagation. It is like the network learning from its
mistakes. If the prediction is wrong, the network
“learns” how to change its weights to improve future
predictions.

(6) Deep learning: when ANNs have multiple hidden
layers (deep neural networks), they become capable
of learning intricate, hierarchical patterns in data.
Deep learning has been revolutionary in tasks such as
image recognition, natural language processing, and
game playing.

(7) Applications: ANNs fnd applications in a wide range
of felds, from image and speech recognition to
autonomous vehicles, medical diagnosis, recom-
mendation systems, and more. Tey excel in tasks
where patterns or relationships are complex and
difcult to express with traditional programming.

In essence, ANNs are mathematical models that can
automatically learn and adapt to solve complex problems by
processing data through interconnected artifcial neurons.
Tey have proven to be incredibly versatile and powerful,
leading to signifcant advancements in various areas of
technology and science.

3.4.3. Ensemble Learning-Based Imputation

(1) AdaBoost, short for adaptive boosting [30], is
a popular ensemble learning algorithm used in
machine learning. It works by combining multiple
weak classifers (classifers that perform only slightly
better than random guessing) into a strong classifer
that can make accurate predictions. Te AdaBoost
algorithm works as follows:

(a) Initialization: each instance in the training
dataset is assigned an equal weight.

(b) Training weak classifers: a weak classifer is
trained on the training data, and its performance
is evaluated. Te instances that are misclassifed
by the weak classifer are assigned a higher
weight to give them more importance in sub-
sequent iterations.

(c) Combining weak classifers: the weak classifers
are combined into a strong classifer by assigning
a weight to each weak classifer based on its
performance. Te better a weak classifer per-
forms, the higher its weight will be in the fnal
ensemble.

(d) Final classifcation: the ensemble of weak clas-
sifers is used to classify new instances. Each
weak classifer votes on the classifcation of the
instance, and the fnal classifcation is de-
termined by the weighted sum of the votes.

6 Complexity

AdaBoost is known for its ability to improve the
accuracy of weak classifers and its resistance to
overftting. It has been successfully applied to a wide
range of problems, including face detection, speech
recognition, and text classifcation. However, it can
be sensitive to noisy data and outliers and may re-
quire careful tuning of hyperparameters.

(2) eXtreme gradient boosting (XGBoost) [31] is
a powerful ensemble learning algorithm that uses
a gradient boosting framework to produce a highly
accurate prediction model. XGBoost was developed
to overcome some of the limitations of traditional
gradient boosting methods, such as overftting and
slow training times. Te XGBoost algorithm works
by building an ensemble of decision trees, where
each tree is trained to correct the errors of the
previous tree. It uses a combination of regularization
techniques, such as L1 and L2 regularization, and
early stopping to prevent overftting and improve
generalization performance. XGBoost also uses
a novel optimization technique called gradient-based
one-side sampling (GOSS) to speed up training by
selecting a subset of instances for each tree. Te key
features of XGBoost are as follows:

(a) Regularization: XGBoost uses L1 and L2 regu-
larization to control overftting and improve
model generalization

(b) Tree pruning: XGBoost uses early stopping and
maximum depth constraints to prune the de-
cision trees, which helps to prevent overftting

(c) Ensemble learning: XGBoost combines multiple
decision trees to create a more accurate
prediction model

(d) Parallel processing: XGBoost can use parallel
processing to speed up the training process

XGBoost is widely used in a variety of applications,
including classifcation, regression, and ranking problems. It
has won numerous machine learning competitions and is
considered one of the best-performing machine learning
algorithms available today.

For doing the above-mentioned experiments, we have
implemented each algorithm in Python.Te primary dataset
was collected from RMG factories, and the secondary two
employee datasets were from Kaggle. A brief description of
those datasets was provided in Section 3.1.

3.5. Proposed Method. In this study, a new approach has
been introduced called combinational probabilistic analysis.
It has the following steps:

(1) Combine attributes: create combinations of two or
three attributes from the dataset. For example, if the
dataset has attributes A, B, and C, combinations
could be AB, AC, or BC.

(2) Create nodes: for each attribute combination XY,
where X and Y are attributes, create a node with the
class value of the attributes used in it. For example, if

attribute A has classes 1 and 2, and attribute B has
classes 1, 2, and 3, then the nodes for the AB 7
combination would be 11, 12, 13, 21, 22, 23.

(3) Calculate probability: calculate the probability
P(Ck), where Ck is the class value of the target at-
tribute, for each node XYij. Also, record the number
of records N(XYij) against that node.

(4) Select class:

(a) Select the class Ck for a node XYij based on the
highest probability

(b) If the probability of any two target attribute
classes Ca and Cb for a node XYij is close or
equal (|P(Ca) − P(Cb)|≤ ϵ) and the number of
records N(XYij) against that node is not ex-
tremely low (N(XYij)> δ), classify that node
using nodes of a new combination to ensure that
signifcant records are not omitted

(c) If the probability of both classes is equal
(|P(Ca) � P(Cb)|) and the number of records
N(XYij) against that node is negligible, select
the class Ck with the higher probability of the
target attribute

In this way, the target classes that have been set for all the
nodes in each combination must be stored, which will be
used to fnd the missing value later. Figure 1shows the
fowchart of the proposed method. Algorithm 1 refers to the
algorithm for combining features, and Algorithm 2 refers to
the algorithm for calculating probabilities.

3.5.1. Illustration. Figure 2 shows attributes A, B, and C and
a target attribute T. Each node in the diagram represents
a combination of attributes A and B and shows the prob-
ability of the target class for that node. If the probability of
a target class is higher for a node, that class is chosen for that
node. If the probabilities are equal, the node is reclassifed
using the AC combination.

For example, in node 11, the chance of target class 1 is
higher, so class 1 is chosen for that node. However, in node
12, the probabilities of target classes 1 and 2 are equal, so the
node is reclassifed using the AC combination. Node 12 of
AB combination exists in 2 nodes of AC combination, i.e., 11
and 12. Te probability of target classes 1 and 2 is found for
both 11 and 12. Within the AC combination, node 11 has
a higher probability of target class 1. Terefore, if AB and
AC’s nodes are 12 and 11, class 1 can be chosen. And, if AB
and AC’s nodes are 12 and 12, respectively, then class 2 can
be selected.

In node 23 of the AB combination, the probability of
class 1 is 33% and the probability of class 2 is 66%. Normally,
class 2 should be selected for this node, but node 23 appears
6 times in the dataset, which is 80% of the total records. So,
the node needs to be reclassifed. To do this, we fnd the
nodes available for 23 of AB in the AC combination. As can
be seen for nodes 21 and 22 of AC, the probability of class 2 is
higher, so they are selected. All these results are stored in the
following 2 separate tables. Table 3 is for target class one, and
Table 4 is for target class two.

Complexity 7

(1) functionCOMBINATION (attribute x, attribute y)
(2) ⊳ Tis function creates combinations
(3) Pass In: attribute x, attribute y

(4) ⊳ Here, attributes are selected features from the dataset
(5) combinations � empty  list
(6) for each class i of attribute x do
(7) for each class j of attribute y do
(8) combination ij � (i, j)

(9) add combination ij to combinations list
(10) end for
(11) end for
(12) Pass Out: combinations
(13) end function

ALGORITHM 1: Combination.

Start

Input Data set

Combine attributes

Create nodes with class
value for each
combination

Calculate probability and
number of records for

each node

Probabilities
are equal

Number of
records are

low

Classify with new
combination

Select class with
highest probability

End

No

Yes

Yes

No

Figure 1: Flowchart of proposed model.

8 Complexity

Based on the data of these three attributes A, B, and C for
any missing data of T attribute of this dataset, we can make
a missing imputation. For example, we have to impute the
missing data in Table 5.

Here, we get node 12 in the frst combination AB. As we
can see from Table 3, no classifcation is carried out based on
node 12 of the AB combination.Tis node is again divided by

(1) functionPROBABILITIES (dataset, combinations)
(2) ⊳ Tis function calculates the probability of a combination within the dataset
(3) Pass In: dataset, combinations
(4) probabilities � empty dictionary
(5) for each class i of target attribute do
(6) for each combination j in combinations do
(7) count combination i � 0
(8) count target i � 0
(9) for each row r in dataset do
(10) ifr has combination j then
(11) count combination i � count combination i + 1
(12) ifr has target class value i then
(13) count target i � count target i + 1
(14) end if
(15) end if
(16) end for
(17) probability ij i � count target i/count combination i

(18) probabilities[(i, j)] � probability ij i

(19) end for
(20) end for
(21) Pass Out: probabilities
(22) end function

ALGORITHM 2: Probability calculation.

A

1

2

2

2

2

1

2

2

1

2

B

2

1

3

3

3

1

3

3

2

3

C

2

2

1

1

1

2

1

2

1

1

T

2

2

1

1

2

1

2

2

1

2

AB T1 T2

11 1 0

12 0.5 0.5

13 0 0

21 0 1

22 0 0

23 0.334 0.664

AB AC T1 T2

12 11 1 0

12 0 1

23 21 0.4 0.6

22 0 1

COMBINATION 2

COMBINATION 1

PROBABILITY

Figure 2: Illustration of combinational probability of attributes.

Table 3: Target class 1 prediction table.

AB AC Decision
11 1
12 11 1

Table 4: Target class 2 prediction table.

AB AC Decision
21 — 2
12 12 2
23 21 2
23 22 2

Complexity 9

AC combination. In the frst row of test data, the AC
combination has node 11. From prediction Table 4, we get
target class 2 for nodes 12 (AB) to 11 (AC). Hence, for the frst
row, we impute 2 in the missing place of T. In the second row,
the AB combination has node 21. From prediction Table 4,
node 21 for AB combination has target class 2, so we impute
themissing place using 2. In this way, we have Table 6 with the
imputed values in the missing places of Table 5.

3.5.2. Justifcation of Combining Features and Performing
Probability. Te method here provided, which involves
combining features and performing probability calculations
for imputing missing values in an employee dataset, can be
justifed based on several key principles and considerations:

(i) Employee datasets are often rich and multifaceted,
with various attributes that can infuence one
another. Combining features allows for the crea-
tion of composite attributes [32] that may capture
complex relationships more accurately. By creat-
ing feature combinations, this method aims to
represent the data distribution more efectively.
Probability calculations then allow us to estimate
the likelihood of a particular class or value for the
target attribute based on the observed feature
combinations.
For instance, the job performance rating likely

depends on a combination of factors, including an
employee’s education, training, and experience. By
combining these features (e.g., creating a composite
feature like Education x Experience x Training),
nuanced relationships can be captured that impact
job performance. Te imputation method leverages
the information in these feature combinations to
makemore accurate predictions about an employee’s
job performance rating.

(ii) Many employee-related decisions require trans-
parency and interpretability [33]. Feature combi-
nations and probability calculations can lead to more
interpretable imputations compared to black-box
methods [34]. Te method’s use of conditional
probabilities allows us to understand how imputed
values are derived from observed data, making it
easier to explain the imputation process to
stakeholders.

For illustration, the use of feature combinations and
probability calculations allows HR to explain that some-
one’s high-performance rating is based on his education,
training, and supervisor’s assessment. As a result, the
transparency in the imputation process fosters trust in HR
decisions.

3.5.3. Time Complexity Analysis. Te time complexity of the
combination function is O(n2), where n is the number of
classes in attribute_x. Tis is because the function needs to
iterate over all possible combinations of the classes in
attribute_x and attribute_y.

Te time complexity of the probabilities function is
O(mn2), where m is the number of classes in the target
attribute.Tis is because the function needs to iterate over all
possible combinations of the classes in attribute_x and
attribute_y, and for each combination, it needs to iterate
over all rows in the dataset.

Te overall time complexity of the two functions is
O(mn2), which is dominated by the time complexity of the
probabilities function.

Here is a breakdown of the time complexity of each
function:

(i) Combination function:

(1) Iterate over all classes in attribute_x: O(n)

(2) Iterate over all classes in attribute_y: O(n)

(3) Add each combination to the list of combina-
tions: O(1)

(4) Total time complexity: O(n2)

(ii) Probabilities function:

(1) Iterate over all classes in the target attribute:
O(m)

(2) Iterate over all combinations of the classes in
attribute_x and attribute_y: O(n2)

(3) Iterate over all rows in the dataset: O(n)

(4) Calculate the probability of each combination:
O(1)

(5) Add the probability to the dictionary: O(1)
(6) Total time complexity: O(mn2)

Te overall complexity of the two functions is O(mn2),
which is dominated by the time complexity of the “prob-
abilities” function. Tis means that the time it takes to run
the two functions will be proportional to the product of the
number of classes in the target attribute,m, and the square of
the number of classes in attribute_x, n.

For example, if there are 10 classes in the target attribute
and 5 classes in attribute_x, then the overall complexity of
the two functions will be O(10∗ 52) � O(250). Tis means
that it would take at least 250 steps to run the two
functions.

Te overall complexity can be reduced by using a more
efcient algorithm to calculate the probabilities of the
combinations. For example, we could use a hash table to
store the probabilities of the combinations, so that we do not
have to recalculate them for each row in the dataset. Tis
would reduce the time complexity of the “probabilities”

Table 5: Sample missing data table.

SL A B C Missing
1 1 2 1 —
2 2 1 2 —
3 1 2 2 —

Table 6: Sample table after imputation.

SL A B C Imputed
1 1 2 1 1
2 2 1 2 2
3 1 2 2 2

10 Complexity

function to O(mn), which is still quadratic, but it would be
a signifcant improvement over the original O(mn2)

complexity.

3.6. Model Evaluation. We obtained accuracy and F1 scores
to assess performance for all of the algorithms across all
datasets. Te basic categorization metric is accuracy. It only
quantifes the proportion of accurate predictions a machine
learning model has produced. Accuracy, however, is a weak
statistic when dealing with imbalanced data since it cannot
diferentiate between diferent sorts of errors. Due to the
ability of precision and recall to take into consideration the
diferent types of errors that the model can produce, they are
performance metrics that are better suited when the data are
unbalanced. Precision and recall are combined into a single
metric called the F1 score [35]. Having just one performance
statistic instead of several is often considerably more
practical. For the F1 score, the precision and recall mean
should be calculated. It is sensible to choose the symmetrical
average as they are both rates. Equation (5) shows the ac-
curacy formula. Also, equation (6) shows the F1 score
calculation formula.

accuracy �
number of   correct predictions
number of   total predictions

, (5)

F1  score �
2 · (precision · recall)
precision + recall

. (6)

4. Result Analysis

In this section, we discuss the results found from the ex-
periments we conducted. Several algorithms were imple-
mented and tested. Among them, machine learning-based
algorithms are available in diferent packages of Python
including deep learning-based algorithms. We used datasets
for imputation model testing purposes. We used “Gender”
and “Age” attribute as target in all datasets. In “Gender”
attribute, only binary (male/female) values were taken into
consideration [25].

4.1. Single Imputation. In the frst experimental setup, we
found the following result as shown in Table 7. Tis table
shows the result of diferent datasets for the single impu-
tation method and the comparison with the proposed al-
gorithm for “Gender” target attribute.

Te table provides a comparison of diferent single
imputation techniques, namely mean imputation and
CPA imputation, on four datasets: “Local,” “Kaggle,”
“IBM,” and “HEC.” Te evaluation metrics used to assess
the performance of these techniques are accuracy (Acc)
and F1 score.

Te mean imputation technique resulted in accuracies
ranging from 0.40 to 0.50 across the datasets. It achieved
relatively moderate F1 scores, ranging from 0.57 to 0.60.
Mean imputation replaces missing values with the mean of

the available data, providing a simple and straightforward
approach.

On the other hand, the CPA (combinational probability
analysis) imputation technique showed higher accuracies,
ranging from 0.54 to 0.72 across the datasets. It also yielded
higher F1 scores, ranging from 0.65 to 0.75. CPA imputation
takes into account the probabilities of missing values based
on other variables, allowing for a more informed imputation
process.

Tese results suggest that CPA imputation outperformed
mean imputation in terms of both accuracy and F1 score (as
shown in Figure 3). However, it is important to note that the
choice of imputation technique may depend on the specifc
characteristics of the dataset and the nature of the missing
values. Further analysis and experimentation may be re-
quired to determine the most appropriate imputation
technique for a given scenario.

4.2. Multiple Imputations. Te comparative result of the
MICE and the proposed algorithm is given below in Table 8
for “Gender” target attribute in all datasets.

Figure 4 illustrates the comparative results of two im-
putation methods, MICE and CPA, on four diferent
datasets (Local, Kaggle, IBM, and HEC). Te evaluation
metrics used are accuracy (Acc) and F1 score. Here is the
result analysis:

(i) Mice imputation:

(1) Accuracy: MICE achieves an average accuracy of
0.49 across all datasets, with the highest accuracy
of 0.5 achieved on the IBM dataset

(2) F1 score: the F1 scores for MICE range from 0 to
0.6, with the highest score of 0.6 observed on the
IBM dataset

(ii) CPA imputation:

(1) Accuracy: CPA demonstrates an average accu-
racy of 0.62 across all datasets, with the highest
accuracy of 0.72 achieved on the HEC dataset

(2) F1 score: the F1 scores for CPA range from 0.65
to 0.75, with the highest score of 0.75 observed
on the IBM dataset

Overall, the results indicate that both MICE and CPA
imputation methods perform reasonably well. CPA gener-
ally outperforms MICE in terms of accuracy and F1 score,
achieving higher values on most datasets. However, it is
important to note that the performance varies across
datasets, with IBM consistently yielding higher accuracy and
F1 scores for both imputation methods.

Table 7: Result comparison with single imputation.

Local Kaggle IBM HEC

Mean Acc 0.44 0.4 0.5 0.42
F1 score 0.585 0.57 0.6 0

Proposed (CPA) Acc 0.62 0.54 0.6 0.72
F1 score 0.7 0.65 0.75 0.68

Complexity 11

Tese results provide insights into the efectiveness of the
two imputation techniques on the given datasets, high-
lighting the importance of choosing the appropriate method
based on the specifc dataset characteristics and the desired
evaluation metrics.

4.3. Machine Learning-Based Imputation. For the third ex-
perimental setup, several machine learning approaches were
used. Results from those experiments are as shown in the
following fgures and tables.

Figure 5 displays the predicted accuracy and f1 score
for the “Age” attribute from both the primary dataset and
the IBM dataset. Table 9 presents the results of diferent
classifcation algorithms, including proposed, SVM, LDA,
and DTC, applied to the IBM and local datasets for age
prediction. Two evaluation metrics, namely accuracy and

F1 score, are used to assess the performance of these
algorithms.

Comparing the performance of the algorithms on the
local dataset, the proposed algorithm demonstrates a high
accuracy of 0.92 and an F1 score of 0.9474, indicating its
ability to predict age efectively. Te SVM algorithm
achieves an accuracy of 0.88 and an F1 score of 0.9081,
showing its competence in age prediction. Te LDA al-
gorithm also performs reasonably well with an accuracy of
0.87 and an F1 score of 0.8978. Lastly, the DTC algorithm
exhibits an accuracy of 0.91 and an F1 score of 0.9387,
suggesting its reliability in age prediction for the local
dataset.

Overall, the proposed algorithm performs consistently
well across both the IBM and local datasets, demonstrating
its robustness and suitability for age prediction. Te SVM
and DTC algorithms also exhibit strong performance, while
the LDA algorithm shows slightly lower accuracy and F1
scores but still maintains acceptable predictive capabilities.

4.4. Deep Learning- and Ensemble Learning-Based
Imputations. In the fnal setup, deep learning-based im-
putations and ensemble learning-based imputations were
experimented.

Table 10 shows the results of deep learning-based
methods and ensemble learning-based methods for “Gen-
der” attribute in the Kaggle employee-attrition dataset and
IBM employee dataset. When considering the F1 scores,
which provide a measure of the model’s ability to balance
precision and recall, the proposed CPA algorithm again
demonstrated superior performance (visualised in Figure 6).
It achieved an F1 score of 0.76 on the Kaggle dataset and 0.65
on the IBM dataset, surpassing the other models. MLP had
the highest F1 score of 0.65 on the IBM dataset, while the
other models scored considerably lower or zero.

5. Discussion

In this study, we showed a technique for imputing employee
missing data which is based on the probability of the at-
tributes in the dataset. After many experiments, the results
indicate that the CPA technique outperforms most of the
well-known imputation and prediction algorithms across
the feld. It is important to consider other factors such as
computational efciency, interpretability, and scalability
when selecting the appropriate algorithm for age prediction
in specifc scenarios. Additionally, further evaluation and
experimentation are recommended to validate the gener-
alizability of these algorithms across diferent datasets and
real-world applications. Te major diference between the
proposed method and existing ones is the emphasis on
probabilistic approaches. Unlike traditional methods that
might use deterministic imputation techniques, the pro-
posed approach employs probabilistic methods that in-
corporate uncertainty and variability in the imputation
process. Tis ensures more realistic and reliable estimates of
missing data, enabling better identifcation of patterns and
relationships between employee characteristics and attrition.

Local kaggle IBM HEC

Mean Acc
Mean F1 Score

CPA Acc
CPA F1 Score

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 3: Accuracy and F1 score of all datasets using CPA
and mean.

Table 8: Multiple imputations and comparison.

Local Kaggle IBM HEC

MICE Acc 0.44 0.4 0.5 0.42
F1 score 0.39 0.57 0.6 0

Proposed (CPA) Acc 0.62 0.54 0.6 0.72
F1 score 0.7 0.65 0.75 0.68

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Local kaggle IBM HEC

MICE Acc
MICE F1 Score

CPA Acc
CPA F1 Score

Figure 4: Multiple imputations with comparison.

12 Complexity

6. Conclusion

Missing data are widespread in real-world datasets, causing
a slew of issues in data processing. Several eforts have been
made to address this problem for the medical dataset;
however, relatively few eforts have been detected for the
employee dataset. Data might be omitted in employee
datasets for a variety of reasons, one of which is a system
failure, and another is data input errors. Employee data
analysis is one of the most signifcant tasks for the economy
in order to gain a clear picture of the many components of
work in order to cope with future issues. We focused on
employee datasets in this study to address missing data
prediction. We concentrated on the properties with missing
values in the dataset after fnishing general preprocessing
tasks. Te main task is to create a combination from chosen
attributes and to determine the probability for each com-
bination node. A subsequent table is made to fll in the
missing values based on the analytical fndings from the
values of each node’s probabilities.

For the tested dataset, our study demonstrates the
smallest inaccuracy in projected values. Also, when com-
pared to other procedures, this methodology produces better
results. Despite the fact that only categorical data may be
used in this approach, the generated data can be transformed
into numerical utilizing a few well-known techniques. Tis
research may be expanded by lowering the computation
cost. Te fndings of this study can be applied in various
industries, including human resources, fnance, and man-
agement, where employee data analysis plays a crucial role in
decision-making processes.

For the tested dataset, our study demonstrates the
smallest inaccuracy in projected values. Also, when com-
pared to other procedures, this methodology produces better
results. Despite the fact that only categorical data may be
used in this approach, the generated data can be transformed
into numerical utilizing a few well-known techniques. Tis

Table 10: Result comparison with deep learning and ensemble
algorithms.

Kaggle IBM
Accuracy F1 score Accuracy F1 score

Proposed (CPA) 0.62 0.76 0.54 0.65
ANN 0.56 0.44 0.41 0.07
MLP 0.47 0.0 0.48 0.65
XGB 0.47 0.48 0.46 0.37
Adaboost 0.47 0.0 0.42 0.16

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

ANN MLP XGB Adaboost Proposed
(CPA)

Kaggle Accuracy
Kaggle f1

IBM Accuracy
IBM f1

(%
)

Figure 6: Result analysis of deep learning and ensemble
algorithms.

Table 9: Result comparison with ML algorithms.

IBM Primary
Accuracy F1 score Accuracy F1 score

Proposed (CPA) 0.95 0.98 0.92 0.9474
SVM 0.94 0.97 0.88 0.9081
LDA 0.94 0.97 0.87 0.8978
DTC 0.95 0.98 0.91 0.9387

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Accuracy F1 Score Accuracy F1 Score
IBM Primary

Proposed
SVM

LDA
DTC

Figure 5: Result analysis of ML algorithms.

Complexity 13

research may be expanded by lowering the
computation cost.

Data Availability

(1) Te employee-attrition data used to support the fndings
of this study have been deposited in the Kaggle repository:
https://www.kaggle.com/colearninglounge/employee-attrition.
(2) Te ibm hr analytics attrition dataset used to support
the fndings of this study has been deposited in the Kaggle
repository: https://www.kaggle.com/pavansubhasht/ibm-
hr-analytics-attrition-dataset. (3) Te hair-eye color
dataset used to support the fndings of this study has been
deposited in the Kaggle repository: https://www.kaggle.
com/datasets/jasleensondhi/hair-eye-color. (4) Te local
employee dataset used to support the fndings of this
study has been deposited in the following one drive link:
https://iiucacbd-my.sharepoint.com/:x:/g/personal/nazmul_
arefn_faculty_iiuc_ac_bd/EdibpegNiC1Gt8p-cdOZV0cBM_
Tyn0V0fPIEBprOiVTKwg?e=q5nqSf.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] G. Liebchen and M. Shepperd, “Data sets and data quality in
software engineering,” in Proceedings of the 12th International
Conference on Predictive Models and Data Analytics in Soft-
ware Engineering, Ciudad Real, Spain, September, 2016.

[2] Z. Zhang, “Missing values in big data research: some basic
skills,” Annals of Translational Medicine, vol. 3, no. 21, p. 323,
2015.

[3] G. Ridder and R. A. Moftt, Chapter 75 the Econometrics of
Data Combination, Elsevier eBooks, Amsterdam, Nether-
lands, 2007.

[4] N. Mittag, Imputations: Benefts, Risks and A Method For
Missing Data, National Institute of Statistical Sciences, Tri-
angle Park, NA, USA, 2013.

[5] J. W. Grzymala-Busse and W. J. Grzymala-Busse, “Handling
missing attribute values,” Data Mining and Knowledge Dis-
covery Handbook, Springer Science & Business Media, Berlin,
Germany, pp. 37–57, 2005.

[6] J. Grzymala-Busse, W. Grzymala-Busse, and L. Goodwin, “A
comparison of three closest ft approaches to missing attribute
values in preterm birth data,” International Journal of In-
telligent Systems, vol. 17, no. 2, pp. 125–134, 2002.

[7] B. Agbo, Y. Qin, and R. Hill, “Best ft missing value imputation
(BFMVI) algorithm for incomplete data in the internet of
things,” in Proceeding of the 5th International Conference on
Internet of Tings, Big Data and Security, January 2020.

[8] P. Keerin, W. Kurutach, and T. Boongoen, “A cluster-directed
framework for neighbour based imputation of missing value
in microarray data,” International Journal of Data Mining and
Bioinformatics, vol. 15, no. 2, p. 165, 2016.

[9] N. A. Samat and M. N. M. Salleh, “A study of data imputation
using fuzzy C-means with particle swarm optimization,” in
Advances in Intelligent Systems and Computing, pp. 91–100,
2016.

[10] A.M. Sefdian and N. Daneshpour, “Missing value imputation
using a novel grey based fuzzy c-means, mutual information

based feature selection, and regression model,” Expert Systems
With Applications, vol. 115, pp. 68–94, 2019.

[11] B. M. Patil, R. C. Joshi, and D. Toshniwal, “Missing value
imputation based on K-mean clustering with weighted dis-
tance,” in Communications in Computer and Information
Science, pp. 600–609, 2010.

[12] H. Zhang, P. Xie, and E. Xing, “Missing value imputation
based on deep generative models,” 2018, https://arxiv.org/abs/
1808.01684.

[13] L. Li, J. Zhang, Y. Wang, and B. Ran, “Missing value im-
putation for trafc-related time series data based on a multi-
view learning method,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 8, pp. 2933–2943, 2019.

[14] B. Conroy, L. J. Eshelman, C. Potes, and M. Xu-Wilson, “A
dynamic ensemble approach to robust classifcation in the
presence of missing data,” Machine Learning, vol. 102, no. 3,
pp. 443–463, 2015.

[15] T. Tomas and E. Rajabi, “A systematic review of machine
learning-based missing value imputation techniques,” Data
Technologies and Applications, vol. 55, no. 4, pp. 558–585,
2021.

[16] G. Madhu, B. L. Bharadwaj, G. Nagachandrika, and
K. A. Vardhan, “A novel algorithm for missing data impu-
tation on machine learning,” in Proceedings of the 2019 In-
ternational Conference on Smart Systems and Inventive
Technology (ICSSIT), Tirunelveli, India, November 2019.

[17] M. Kokla, J. K. Virtanen, M. Kolehmainen, J. Paananen, and
K. Hanhineva, “Random forest-based imputation out-
performs other methods for imputing LC-MS metabolomics
data: a comparative study,” BMC Bioinformatics, vol. 20, no. 1,
p. 492, 2019.

[18] S. Al-Janabi and A. F. Alkaim, “A nifty collaborative analysis
to predicting a novel tool (DRFLLS) for missing values es-
timation,” Soft Computing, vol. 24, no. 1, pp. 555–569, 2020.

[19] E.-L. Silva-Ramı́rez, R. Pino-Mej́ıas, M. López-Coello, and
M.-D. Cubiles-De-La-Vega, “Missing value imputation on
missing completely at random data using multilayer per-
ceptrons,” Neural Networks, vol. 24, no. 1, pp. 121–129, 2011.

[20] R. Pan, T. Yang, J. Cao, K. Lu, and Z. Zhang, “Missing data
imputation by K nearest neighbours based on grey relational
structure and mutual information,” Applied Intelligence,
vol. 43, no. 3, pp. 614–632, 2015.

[21] H. Liu, Y. Wang, and W. Chen, “Tree-step imputation of
missing values in condition monitoring datasets,” IET Gen-
eration, Transmission and Distribution, vol. 14, no. 16,
pp. 3288–3300, 2020.

[22] Kaggle, “Employee Attrition,” 2023, https://www.kaggle.com/
datasets/colearninglounge/employee-attrition.

[23] Kaggle, “IBM HR Analytics Employee Attrition & Perfor-
mance,” 2023, https://www.kaggle.com/datasets/pavansubhasht/
ibm-hr-analytics-attrition-dataset.

[24] Kaggle, “Hair eye color,” 2023, https://www.kaggle.com/
datasets/jasleensondhi/hair-eye-color.

[25] S. I. Khan and A. S. M. L. Hoque, “SICE: an improved missing
data imputation technique,” Journal of Big Data, vol. 7, no. 1,
p. 37, 2020.

[26] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson cor-
relation coefcient,” Noise Reduction in Speech Processing,
Springer Science & Business Media, pp. 1–4, Berlin, Germany,
2009.

[27] S. V. Buuren and K. Groothuis-Oudshoorn, “mice: multi-
variate imputation by chained equations inr,” Journal of
Statistical Software, vol. 45, no. 3, 2011.

14 Complexity

https://www.kaggle.com/colearninglounge/employee-attrition
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/datasets/jasleensondhi/hair-eye-color
https://www.kaggle.com/datasets/jasleensondhi/hair-eye-color
https://iiucacbd-my.sharepoint.com/:x:/g/personal/nazmul_arefin_faculty_iiuc_ac_bd/EdibpegNiC1Gt8p-cdOZV0cBM_Tyn0V0fPIEBprOiVTKwg?e=q5nqSf
https://iiucacbd-my.sharepoint.com/:x:/g/personal/nazmul_arefin_faculty_iiuc_ac_bd/EdibpegNiC1Gt8p-cdOZV0cBM_Tyn0V0fPIEBprOiVTKwg?e=q5nqSf
https://iiucacbd-my.sharepoint.com/:x:/g/personal/nazmul_arefin_faculty_iiuc_ac_bd/EdibpegNiC1Gt8p-cdOZV0cBM_Tyn0V0fPIEBprOiVTKwg?e=q5nqSf
https://arxiv.org/abs/1808.01684
https://arxiv.org/abs/1808.01684
https://www.kaggle.com/datasets/colearninglounge/employee-attrition
https://www.kaggle.com/datasets/colearninglounge/employee-attrition
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/datasets/jasleensondhi/hair-eye-color
https://www.kaggle.com/datasets/jasleensondhi/hair-eye-color

[28] S. Utukuru, R. K. Pisipati, and K. Karlapalem, “Missing data
resilient ensemble subspace decision Tree Classifer,” in
Proceedings of the 6th Joint International Conference on Data
Science; Management of Data (10th ACM IKDD CODS and
28th COMAD), Mumbai, India, January, 2023.

[29] S. Moghtadernejad, Y. Jin, and B. T. Adey, “Estimating the
values of missing data related to infrastructure condition
states using their spatial correlation,” Journal of Infrastructure
Systems, vol. 29, no. 1, 2023.

[30] I. Izonin, N. Kryvinska, R. Tkachenko, and K. Zub, “An
approach towards missing data recovery within IOT smart
system,” Procedia Computer Science, vol. 155, pp. 11–18, 2019.

[31] A. Islam, “Ensemble machine learning approach for agri-
cultural crop selection,” in Proceedings of the 2023 In-
ternational Conference on Electrical, Computer and
Communication Engineering (ECCE), Kolkata, India, January,
2023.

[32] E. Foster and S. Godbole, Database Systems: A Pragmatic
Approach, Auerbach Publications, Boca Raton, FL, USA, 3rd
edition, 2022.

[33] F. Fallucchi, M. Coladangelo, R. Giuliano, and E. William De
Luca, “Predicting employee attrition using machine learning
techniques,” Computers, vol. 9, no. 4, p. 86, 2020.

[34] Z. Wang, L. Wang, Y. Tan, and J. Yuan, “Fault detection based
on Bayesian network and missing data imputation for
Building Energy Systems,” Applied Termal Engineering,
vol. 182, Article ID 116051, 2021.

[35] M. Sokolova and G. Lapalme, “A systematic analysis of
performance measures for classifcation tasks,” Information
Processing and Management, vol. 45, no. 4, pp. 427–437, 2009.

Complexity 15

