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To meet the personalized distribution needs of customers, comprehensively consider customer value, the urgency of customer
needs, and the impact of priority distribution to the customer on the enterprise, and based on regional restrictions, put forward
vehicle-drone joint distribution path optimization problem considering customer priority. First, the goal is tominimize the sum of
total distribution cost and customer priority cost integrating soft time windows and constructing a path optimizationmodel of the
vehicle-drone joint distribution. Second, a two-stage hybrid algorithm is proposed for the problem model. In the frst stage, the
deep neural network and the grid search improved support vector machine algorithm (DNN-GSM-SVM) are used to screen and
classify customer priority features, and in the second stage, adaptive large-scale neighborhood search improved genetic algorithms
(ALNS-GA) are used to solve the problem of vehicle-drone joint distribution path planning problem. Finally, combined with the
numerical example, the optimization scheme of the vehicle-drone joint distribution path considering priority is analyzed.
Compared with the three algorithms and error analysis, the efectiveness of the model and the two-stage algorithm was verifed.
Compared with the results of the scheme that does not consider priority, the results show that priority can signifcantly improve
customer satisfaction. Te efciency of the vehicle-drone joint distribution was verifed by comparing the three scenarios.

1. Introduction

With the rapid development of the digital economy, the deep
integration of the digital economy and the real economy has
become the main trend. Drones are an essential part of the
digital economy and are increasingly valued in the market
owing to their fast, low-cost, and unrestrained terrain
characteristics. At this stage, with limited resources, diferent
customers can bring diferent word-of-mouth impacts and
profts to enterprises. Terefore, meeting the personalized
needs of customers has become a key research direction for
logistics enterprises. At present, most of the end distribution
of logistics companies has adopted a single form of vehicle
distribution, which has disadvantages such as high costs and
incomplete customer coverage. Tese opportunities and
challenges have prompted a shift from traditional vehicle
distribution to the vehicle-drone joint distribution model at
the current end distribution, while further considering

customer priority levels and prioritizing meeting the time
window requirements of high-level customers. Te above
shows that the path optimization of vehicle-drone joint
distribution considering customer priority is of reference
signifcance for the development of logistics enterprises and
improves the common interests of consumers, e-commerce
companies, and logistics companies.

2. Literature Review

2.1. Research on Vehicle-Drone Joint Distribution. In recent
years, drone distribution has attracted the attention of
domestic and foreign scholars owing to its efciency and
low-cost advantages. For example, Murray and Chu frst
proposed joint distribution mode of trucks and drones [1].
Chang and Lee proposed a new approach on a nonlinear
programming model to cluster customers and research
vehicle support for drone distribution, but without
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considering the time window [2]. Ha et al. considered the
mode of each truck with a drone problem, the objective was
to minimize total transportation costs, and one created by
waste time a vehicle has to wait for the other, but without
considering multiple trucks and drones for delivery [3].
Boysen et al. diferentiated whether each vehicle was
equipped with multiple drones or one drone and whether or
not take-of and landing stops have to be identical [4]. Ham
studied the vehicle-drone parallel distribution, considering
two diferent types of drone tasks: drop and pickup, without
considering vehicle capacity [5]. Karak and Abdelghany
used a vehicle as an auxiliary tool for drones, the drone
completed all the distribution services, while considering the
fight distance and carrying capacity limitations of drones,
and and improved Clarke–Wright algorithm was designed
to solve the problem [6]. Wang and Lan proposed that the
customer points near the expressway be delivered by drones.
Te remaining customers within the city are serviced by
vehicles [7]. Moshref-Javadi et al. considered the carrying
capacity and endurance limits of drones, and an efcient
hybrid Tabu Search-Simulated Annealing algorithm was
developed to solve the problem [8]. Schermer et al. in-
troduced a robot station in the vehicle-drone joint distri-
bution mode and designed a mixed integer linear
programming formulation to solve the problem without
considering the impact of multiple trucks [9]. Salama and
Srinivas proposed two clustering strategies to determine
drone docking point: one strategy was to restrict it to one of
the customer locations and the other one was to allow it to be
anywhere in the delivery area [10]. Han et al. proposed
a three-objective optimization model of minimum vehicle
energy consumption, minimum drone energy consumption,
and minimum vehicle quantity [11]. Peng and Lai divided
customers into three categories: those who are only served
by vehicles, those who are only served by drones, and those
who are jointly delivered by vehicles and drones [12].
Dayarian et al. proposed that drones support vehicle dis-
tribution. Te role of drones is to supply vehicle, and the
potential benefts of drone resupply are quantifed, but
without considering vehicle capacity and drone travel range
[13]. Liu et al. designed three types of drone-vehicle dis-
tribution scenarios, and drones can serve multiple customer
points with each delivery [14]. Yan et al. studied emergency
logistics and considered regionally limited vehicles equipped
with drone path problems [15]. Yang et al. used the
COVID-19 isolation period as the background and adopted
a three-stage solution method to efectively solve the
problem of contactless distribution [16]. Zhang and Li
considered the vehicle-drone path planning problem of fresh
distribution during an epidemic [17]. Windras et al. in-
troduced charging stations to charge vehicles and drones
and served as launch and retrieve points for drones. To solve
the problem, a memetic algorithm-based approach with four
new problem-specifc operators was developed [18]. Wang
et al. worked on vehicle-drone routing systems with the goal
of minimum time, and then they derived a number of worst-
case results. Te conclusion is that the worst-case results
depend on the number of drones per truck and the speed of
the drones relative to the speed of the truck [19]. Poikonen

et al. studied the vehicle-drone considering the diferent
indicators between vehicles and made connections with
another practical variant of the vehicle routing problem and
with Amdahl’s Law [20]. Schermer et al. proposed an ex-
tension of the Vehicle Routing Problem with Drones
(VRPDs) called the Vehicle Routing Problem with Drones
and En Route Operations (VRPDEROs); drones may not
only be launched and retrieved at vertices but also on some
discrete points that are located on each arc, and a hybrid
variable domain search algorithm is designed to solve the
vehicle-drone delivery problem, but without considering the
time windows [21]. Popovic et al. established a three-index
mixed integer quadratic programming formula to study
vehicle-drone delivery [22]. Sacramento et al. proposed the
MLP formula to further study the vehicle-drone delivery
problem and considered time limit constraints. Moreover,
a detailed sensitivity analysis is performed on several drone
parameters of interest [23]. Kuo et al. aimed to minimize
total delivery costs, and the MIP formula is proposed to
study the vehicle-drone delivery problem with a time
window [24]. Murray and Raj designed the MILP formula,
considering the importance of appropriate scheduling of
pickup and delivery services within a single customer node.
Although the study considered drones of difering capacities,
there was no analysis regarding the impact of these capacities
[25]. Zhu et al. studied the electric vehicle-drone traveling
salesman problem, and a three-index MILP formulation was
proposed to solve the problem [26]. Kyriakakis et al. studied
electric car-assisted drones for customer service, with
electric vehicles not involved in direct delivery [27]. Windras
Mara et al. considered a drone was capable of visiting
multiple customer nodes within a single sortie and proposed
a new mathematical formulation and a new heuristic ap-
proach based on adaptive large neighborhood search
(ALNS) [28].

From the perspective of distribution modes, the above
literature can be divided into vehicle-drone joint distribu-
tion mode, drone assisted by vehicle distribution mode, and
vehicle drone parallel distribution mode; from the per-
spective of the number of drones carried, it can be divided
into two categories: each vehicle can carry one and multiple
drones; from the perspective of whether to consider time
windows, it can be divided into considering time windows
and not considering time windows. However, in this liter-
ature, scholars assumed that the drone could only deliver
a customer once in fight and could not visit multiple
customers within a single sortie, which was too simplifed
and reduced the efciency of drone use, which was not in
line with the reality. In addition, most scholars only consider
the time window limit of customers and lack detailed re-
search on customers’ individual needs. Tis study will im-
prove the above defciencies.

2.2. Research on Priority. Owing to the increasing emphasis
on personalized customer needs and a gap in the supply and
demand ratio, customer priority problems have been widely
applied in distribution target tasks. Te quality of logistics
services can be improved by studying the distribution order
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of customers, and distribution delays can be reduced.
Terefore, many scholars have conducted in-depth research
on priority issues in various aspects and achieved relatively
rich research results.

De Souza et al. established a hypercube model based on
spatial distribution queue theory to analyse systems with
multiple priorities, waiting queues for customers, and pro-
cessed customer priority queue sequences [29]. Lee et al. di-
vided customers into ordinary and picky customers using data
envelopment analysis, taking into account the expected levels
and service perceptions [30]. To determine the distribution
priority of emergency supplies, Schreiber used the Analytic
Hierarchy Process (AHP) to apply a consistent fuzzy preference
relationship to the decision matrix, and used the symmetric
decision matrix method [31]. Wang et al. introduced variable
weight factors in the Analytic Hierarchy Process (AHP) to
enable experts to assign weights to sustainable development
indicators that can vary over time or space. Tey proposed
a new and improved weight allocation method called the
variable weight Analytic Hierarchy Process (VWAHP), which
can better refect the true state of indicators [32]. Te entropy
method is a commonly used weighting method for measuring
value dispersion in decision-making. Te greater the degree of
dispersion, the greater the degree of diferentiation, and more
information can be derived. At the same time, the indicator
should be given a higher weight and vice versa. Shrestha
proposed a factor analysis method that uses the Kai-
ser–Meyer–Olkin sampling adequacy measure and Bartlett’s
sphericity test to evaluate the decomposability of the data [33].

In summary, there was no consideration of customer
priority in previous studies on the vehicle-drone joint dis-
tribution, and customer priority became the current research
hotspot because it could meet consumer individual needs.
Tis study comprehensively considers customer priority,
vehicle-drone joint distribution mode, and regional re-
strictions, integrates soft time windows into customer pri-
ority, establishes priority cost models, and proposes
a vehicle-drone joint distribution considering customer
priority problem. Te two-stage hybrid optimization algo-
rithm framework is designed as follows:

Te frst-stage optimization algorithm is the deep neural
network, grid search improved support vector machine algo-
rithm (DNN-GSM-SVM). Using DNN to wake up data di-
mensionality reduction can reduce redundant data, improve
computational efciency, and reduce the risk of model over-
ftting. Compared with the traditional AHP algorithm, the
GSM-SVM algorithm can process a large number of index
data, and this method belongs to supervised machine learning,
which can further predict the future and provide new solutions.

Te second stage optimization algorithm is an adaptive
large-scale neighborhood search improved genetic hybrid
algorithm (ALNS-GA) to solve customer level classifcation
and vehicle-drone path optimization problems. Compared
with the traditional adaptive genetic algorithm (AGA),
ALNS-GA increases the trade-of of operator efectiveness
and evaluates the operator based on the quality of new
solutions found. Dynamically update the operator weights
and use the roulette wheel method to select a set of operators
to destroy and repair the current solution.

3. Problem Description and
Mathematical Model

3.1. Problem Description. Vehicle Routing Problem with
Vehicle-Drone Considering Customer Priority (VRP-
VDCCP). As shown in Figure 1, each vehicle is equipped
with a drone departing from the distribution center, both of
which can deliver goods to customers. In the distribution
process, regional restrictions and customer priorities are
further considered, and priority is given to meet the time
window requirements of higher-level customers. At the
same time, it is stipulated that some customer points are
located in the vehicle restricted area and the drone no-fy
area. Customer points located in the vehicle restricted area
can only be delivered by drones, and customer points located
in the drone no-fy area can only be delivered by vehicles.
Te VRP-VDCCP problem can be seen as an integration of
two subproblems: Customer Priority Classifcation (CPC)
and Vehicle Routing Problem with Vehicle and Drone
(VRP-VD). Te CPC problem involves reasonably selecting
the main infuencing features from numerous features that
afect customer priority and then classifying customers
based on the selected features. Te VRP-VD problem in-
cludes two types of distribution routes: the route of vehicles
from the distribution center to customer points and the
route of drones taking of from the distribution center or
from vehicles to customer points.

3.2. Mathematical Model

3.2.1. Model Assumptions. Tis article makes the following
assumptions about the VRP-VDCCP problem:

(1) Each vehicle can carry a drone, which can visit
multiple customers within a single sortie

(2) Te drone can depart and return from the distri-
bution center independently

(3) Drones and vehicles are not allowed to have
subcircuits

(4) Both the drone and the vehicle are traveling at
a constant speed

(5) Do not consider the charging and unloading time of
drones

(6) Vehicles and drones are homogeneous
(7) Te drone cannot fy into the no-fy area, and the

vehicle cannot drive into a restricted area

3.2.2. Customer Priority Cost Function Integrating Soft Time
Window. In logistics distribution services, whether high-
level customers can obtain the service on time is a key factor
that afects the cost of customer priority. In reality, customer
requirements for time windows are not rigid but have
a certain space for fexible adjustment. Terefore, this study
constructs a relationship based on soft time windows and
priority cost as shown in Figure 2.

In Figure 2, ti is the time to reach customer i, [ETi, LTi] is
the soft time window range for customer i, when n� 1, 2, 3
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denote θ1 � 1 for the customer of level 1 priority distri-
bution, θ2 � 2 for the customer of level 2, and θ2 � 3 for the
customer of level 3, respectively. Based on the soft time
window with priority cost function, as in equation (1), it can
be seen that the cost coefcients for violating the time
windows of level 1, level 2, and level 3 customers are 1000,
100, and 10, respectively.

Ri ti( 􏼁 �

104−θn ti − ETi( 􏼁, ti ≤ETi,

0, ETi ≤ ti ≤ LTi,

104−θn ti − LTi( 􏼁, LTi ≤ ti.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

3.2.3. Mathematical Model. Vehicle Routing Problem with
Vehicle-Drone Considering Customer Priority (VRP-
VDCCP) network is described as a graph-theoretic problem,
such that G� (V, A) is an undirected noncomplete graph,
where V � 0, 1, 2, . . . , n{ } denotes the set of nodes and A �

(i, j) | i, j ∈ V􏼈 􏼉 denotes the set of arcs. Node 0 denotes the
distribution center, the remaining nodes represent cus-
tomers, and the set of customers is denoted by
Vc � 0, 1, 2, . . . , n{ }. AT denotes the set of arcs in which
vehicles can travel, and AD denotes the set of arcs in which

drones can fy. Te distribution center has several same type
vehicles, and each vehicle carries a drone of the same type.
Te maximum load weight of vehicle is GT, the maximum
load weight of drone is GD, and the longest single fight
distance of drone is LD. Te relevant symbols used in the
model are defned in Tables 1–3.

minF � F1 + F2, (2)

minF1 � f1 + f2, (3)

minF2 � f3 · f4, (4)

f1 � C0 􏽘
i∈V

􏽘
j∈V

􏽘
s∈Vs

dij · x
s
ij

+ C1 􏽘
i∈V

􏽘
j∈V

􏽘
s∈Vs

dij
′ · z

s
ij,

(5)

f2 � FC0 􏽘
S∈Vs

pts + FC1 􏽘
S∈Vs

pds
, (6)

f3 � 􏽘
i∈V

pi ti( 􏼁, (7)

f4 � 104−θn
. (8)

Equations (2)–(8) are objective functions and equation
(2) represents the minimum total cost. Equation (3) rep-
resents the minimum distribution cost. Equation (4) rep-
resents the minimum priority cost. Equations (5)–(8)
represent the travel and fight cost, fxed cost, penalty cost,
and priority cost coefcients, respectively, subject to

u
s
i � 􏽘

j∈Vc
x

s
ij + x

s
ji􏼐 􏼑, ∀i ∈ Vc,∀s ∈ Vs, (9)
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s
i � 􏽘
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􏽘
j∈V

z
s
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􏽘
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s
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s
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i∈V
x

s
i0 � 1, ∀i ∈ Vc,∀s ∈ Vs, (12)
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􏽘
j∈V

x
s
ij ≤ 1 −

1
M

􏼒 􏼓 · 􏽘
i∈Vc

u
s
i + 1, ∀s ∈ Vs, (13)

􏽘
i∈Vc

􏽘
j∈V

z
s
ij ≤ 1, ∀i, j ∈ V, ∀s ∈ Vs, (14)

􏽘
j∈V

x
s
ij � 􏽘

j∈V
x

s
ji ≤ 1, ∀i ∈ V,∀s ∈ Vs, (15)

x
s
ij ≥ z

s
ij, ∀i, j ∈ V,∀s ∈ Vs, (16)

ti tiETi LTi

Time

Priority Cost Level 1 1

Level 2

Level 3

Figure 2: Soft time window with diferent priority cost
relationship.
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Figure 1: Distribution path with diferent priority modes.
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􏽘
i∈V

qi · u
s
i + 􏽘

i∈V
qi · v

s
i ≤GT, ∀s ∈ Vs, (17)

qi · v
s
i ≤GD, ∀i ∈ Vc,∀s ∈ Vs, (18)

x
s
ij ≤ gtij, ∀i, j ∈ V,∀s ∈ Vs, (19)

x
s
ij ≤ gdij, ∀i, j ∈ V,∀s ∈ Vs, (20)

dij
′ · z

s
ij ≤ LD, ∀s ∈ Vs. (21)

Constraints (9) and (10) indicate the relationships
between the decision variables, which substantially sim-
plify the model. Constraint (11) indicates that all cus-
tomers can be served only once. Constraint (12) indicates
that the vehicle departs from the distribution center and
fnally returns to the distribution center. Constraint (13)
indicates that all vehicle paths do not allow for subloops.
Constraint (14) indicates that all drone paths do not allow
for subloops. Constraint (15) indicates that the vehicle can
serve only one customer simultaneously. Constraint (16)
indicates that the drone can visit multiple customers
within a single sortie. Constraint (17) indicates a vehicle
load constraint. Constraint (18) indicates the drone load
constraint. Constraint (19) indicates that the vehicle path
cannot pass through a restricted area. Constraint (20)
indicates that the drone fight path cannot pass through
the no-fy area. Constraint (21) represents the drone fight
distance.

4. Algorithm Design

Te VRP-VDCCP is an NP-hard problem. Combining the
model characteristics and problem features, this article
adopts a two-stage approach to divide the VRP-TDCCP into
CPC and VRP-VD. Te DNN-GSM-SVM algorithm is
designed for priority feature screening and classifcation of
customers to achieve the initial optimization in the VRP-
VDCCP logistics network. Ten, the ALNS-GA algorithm is
used for vehicle-drone path optimization. Te two-stage
algorithm optimization framework is shown in Figure 3.

4.1. Customer Priority Classifcation Based on DNN-
GSM-SVM Algorithm. Before the path optimization, the
DNN was used to screen the initial customer priority in-
dicators, and then the GSM-SVM was used to classify the
customer priority according to the fltered features. Te
specifc method of GSM-improved SVM is to divide the
penalty function C and the kernel function g into grids
within a specifed range and traverse all points within the
grid to take values; for the specifed C and g, the K-order
cross-validation method is used to obtain the classifcation
accuracy of this set of C and g under the training set, and C
and g with the highest classifcation accuracy of the training
set were obtained as the best generated parameter set. Te
specifc process is shown in Figure 4.

4.2. ALNS-GA for Solving Path Optimization. Te genetic
algorithm is a kind of algorithm idea that imitates the bi-
ological evolution process. It frstly encodes customers, then
randomly generates the initial population, and calculates the
ftness value of each individual. It goes through the genetics
of replication, mutation, and crossover. After many itera-
tions of the problem, fnally, it generates the optimal solution
or the approximate optimal solution. However, simpler
algorithms based on the use of the adaptive large-scale
neighborhood search often show better results within the
same computation time. Te generated customer priority
classifcation is used as the input and applied to the solution
path of the improved genetic algorithm for an adaptive
large-scale neighborhood search. In this study, the varia-
tional operation of the traditional GA is followed by an
adaptive large-scale neighborhood search operation to ob-
tain the optimal solution. Te specifc steps are as follows.

4.2.1. Two-Stage Generation of Initial Solutions

Stage 1: First, the initial vehicle path is constructed
without considering the drone and vehicle restricted
areas.

Step 1: Select any customer from all customer points
j ∈ 1, 2, · · · , n{ }.
Step 2: Initialize the number of vehicles k is 1.
Step 3: Generate a sequence seq � j, j + 1, · · · , n,􏼈

1, · · · , j − 1}.
Step 4: From serial number i, keep looping to n, that is,
generate the original solution, traverse customer seq

Table 2: Parameters.

Symbol Defnition
FC0 A vehicle fxed cost
FC1 A drone fxed cost
C0 Vehicle unit travel cost
C1 Drone unit fight cost
GT Vehicle load limit
GD Drone load limit
LD Te farthest distance a drone can fy in a single trip
θi Priority of point i
Vt Vehicle travel speed
Vd Drone fight speed
dij Travelling distance of the vehicle from i to j
dij
′ Flight distance of the drone from i to j

qi Customer i demand
M A large enough positive integer
gdij Te path from i to j does not pass through the no-fy area

gtij
Te path from i to j does not pass through the restricted

area

Table 1: Assembles.

Symbol Defnition
Vc � 1, 2, . . . , n{ } Set of all customer nodes

V � Vc⋃ 0{ }
Set of all nodes, {0} indicates distribution

center
Vs Set of vehicles
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(i), place customer seq (i) into the k-th path, and
divide it into two cases.

(1) If the k-th path does not reach the load limit, there
are three scenarios: if there is no customer point in
the current path, place sequence i into the path; if
there is a customer in the current path, put the
new customer i according to the left time window;
if the current number of customers l> 1, traverse
l − 1 pairs of customers.

(2) Confrm whether there is a position that can be
inserted, if not, put it at the end.

(3) If the k-th path has reached the load limit, save the
customers visited by the k-th vehicle.Ten, update
k to k+ 1.

Stage 2: Based on the generated vehicle paths, the drone
paths are decomposed, and area restrictions are
considered.

In the generated vehicle path, the value of the time
variation for each customer satisfying the drone load
and fight distance to be delivered by the drone,
compared to distribution by vehicle, is calculated in
the following equation:

∆t �
dij
′ + dji
′

vt

−
dij
′ + dji
′

vd

. (22)

Te customer with the greatest reduction in delivery
time on each initial route are set to be served by
drones, where ∆t is set to infnity if customer point is
in a restricted area or in a no-fy area. Update all
routes until the route scheme no longer changes.

4.2.2. Calculation of the Fitness Function. To prevent
decoding of each path from violating the priority and region
restriction constraints, a cost function, such as equation (23),
was used as the ftness function.

f(s) � c(s) + α · q(s) · w(s), (23)

where c (s) represents the distribution cost of the vehicle and
drone, q (s) represents the customer priority cost constraint,
and w(s) represents the sum of the violation of the soft time
window constraint. Because the adaptation degree value is
ultimately selected out of the large one, the smaller the
corresponding cost function, the better, so the ftness
function is set as the inverse of the cost function.

whether the 
training set 
converged

grid search 
parameter 

optimization

(4)
evaluation 
and results z1 z2 z3

MSE mean square error

select 20 characteristics that affect the 
priority of customers

X1 X2 X3 X19 X20……

pre -processing

feature screening

y1 y2 y3 y4 y5

(1) deep neural network

main impact characteristics

training set

create a 
classification

model

testing set

(2) optimization stage
(3)

SVM 

classification result

GSM-SVM

starting

selection strategy

roulette wheel selection

crossover strategy

OX order crossover

mutation strategy

inversion mutation

optimization strategy

adaptive large neighborhood search

coding, initialization group

output optimal solution
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Figure 3: Two-stage algorithm optimization framework.
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4.2.3. Selection Operation. Tis section uses roulette wheel
selection to select individuals with large ftness values
according to their ftness values for crossover, variation, and
local search operations.

4.2.4. Crossover Operation. Tis section designs the order
crossover (OX) operator as shown in Figure 5, which
generates two crossover fragments by randomly selecting the
start and end positions in the two parent chromosomes,
moving the crossover fragment of parent 1 to the front of
parent 2, and moving the fragment of parent 2 to the front of
parent 1. Duplicate codes in the noncrossover fragment were
deleted in the generated new parent to create ofspring.

4.2.5. Mutation Operation. Te mutation operation can be
analogous to the behavior of chromosomal mutations
during gene inheritance and can afect the local search ability
of the algorithm. A chromosome is randomly selected as
a mutated individual; multiple mutation points are gener-
ated for swapping as shown in Figure 6.

4.2.6. Adaptive Large-Scale Neighborhood Search Operation.
Te traditional large-scale neighborhood search operation
removes several customers from the solution using the
destruction operator and then reinserts the removed

customers back into the destroyed solution by using the
repair operator. Similarly, when inserting, the location is not
randomly selected for insertion, but to meet the load con-
straints and time window constraints as far as possible, the
removed customer is inserted back into the position of the
minimum total distance of the vehicle.

starting

priority classification sample

training set testing set

cross -verification training sample 
prediction value

no

yes

Convergence?

C [-1,5]
g [-10,10]

set the initial 
parameter

update 
parameters

customer priority SVM 
classification model

GSM parameter optimization 
process

GSM parameter optimization 
value

training SVM model

customer priority GSM-SVM 
classification model

ending

Figure 4: Grid search improved support vector machine fow chart.

3 5 9 11 6 14 4 15 10 2 1 8 13 7 12

10 2 1 8 4 7 12 14 3 5 9 11 15 13 6

Offspring 1

Offspring 2

6

Intersections Intersections
Paternal 1 14 4 15 5 10 2 1 8 13 3 9 7 12 11

4Paternal 2 8 7 12 14 3 5 9 11 15 13 6 1 10 2

3Paternal 1 5 9 11 6 14 4 15 5 10 2 1 8 13 3 9 7 12 1

10 2 1 8 4 8 7 12 14 3 5 9 11 15 13 6 1 10 2Paternal 2

Figure 5: Schematic diagram of the crossover strategy.

4 8 7 12 14 3 5 9 11 15 13 6 1 10 2Paternal

4 8 7 15 14 3 5 9 11 12 13 6 1 10 2Offspring

Figure 6: Schematic diagram of the mutation strategy.
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Tis article adopts the idea of destruction and repair,
designing multiple removal and insertion operators, each
with a weight assigned. On the basis of ALNS, it increases the
trade-of of operator efectiveness and evaluates the operator
based on the quality of the new solutions found. Dynami-
cally update the operator weights and use the roulette wheel
method to select a set of operators to destroy and repair the
current solution.

Based on the VRP-VD mathematical model, three re-
moval operators and two reinsertion operators were
designed. According to equation (24), R customers were
removed each time.

R � randi c1 ×(N + 1)􏼂 􏼃, c2 ×(N + 1)􏼂 􏼃( 􏼁. (24)

Randi (x, y) represents the generation of a pseudoran-
dom integer between x and y; N represents the total number
of customers; c1 and c2 represent coefcients generated
between (0, 1); and [A] represents rounding A to the nearest
whole number.

(1) Removal Operators. Te random removal operator
randomly removes R customers based on the current so-
lution, while the correlation removal operator removes the
node with the smallest correlation with the selected node.
Tat is, randomly select one customer i1 to remove, calculate
the correlationD between the remaining customers and i1 as
in equations (25) and (26), and select the customer with the
highest correlation for removal.

D(i, j) �
1

dij
′ + vij􏼐 􏼑

, (25)

dij
′ �

dij

max din( 􏼁
. (26)

vij indicates whether the customer is on the same path; 1
indicates yes, and 0 indicates no; and dij indicates the
distance from customer i to j. Te distances are all Euclidean
distances.

In the removed customer set, randomly select one
customer i2, calculate the correlation between the remaining
customers and i2, and select the customer with the highest
correlation for removal until the number of removed cus-
tomers equals R.

Te requirement-related removal operator is used to
remove nodes with similar requirements to the selected node
but not on the same route. Te steps are as follows:

(1) Calculate the weight u of each path, select one path
using the roulette wheel method, and randomly
select one customer i to remove from that path. Te
path weight is shown in the following equation:

u � 􏽘
n

i�1
qi − min􏽘

n

j�1
qj + λ. (27)

qi is the demand for customer i; n is the number of all
customers on the path; and λ is a very small positive
number, preventing u from being 0.

(2) Calculate the demand correlation g between each
path and i, and then use the roulette wheel method to
sequentially remove the remaining R-1 customers.
Te correlation between all customer demands and i
is shown in the following equation:

g ��
1

q − qi( 􏼁
2 + φ. (28)

q is the demand of the customer; and φ is a very small
positive number.

(2) Reinsertion Operators. Te greedy insertion operator
refers to sequentially inserting removed customers, each
time satisfying capacity constraints, time window con-
straints, and the position with the smallest distance in-
crement. If not, a new path is created to insert them. Te
minimum distance increment and maximum insertion
operator are as follows:

(1) Identify the appropriate insertion point for each
removed customer, which satisfes capacity con-
straints and time window constraints; if not, tem-
porarily add it to a new path

(2) Calculate the distance increment of the appropriate
insertion point for each customer and fnd the
minimum distance increment

5. Numerical Experiments

To verify the applicability and efectiveness of VRP-VDCCP
in the current environment, data from the Solomon dataset
R201 were selected and applied to the calculations in this
study. One distribution center has 34 customer points with
known location coordinates, time windows, and demands.
Te relevant parameters were set as follows: FC0 �100,
FC1 � 10, C0 � 10, C1 � 1, GT� 200, GD� 30, LD� 30,
Vt � 60 km/h, and Vd � 80 km/h; vehicles and drones de-
parture time from the distribution center was 0,
NIND� 100, MAXGEN� 500, Pc � 0.9, Pm � 0.05, and
GGAP� 0.9. All algorithms were run on an AMD Ryzen
7 5700U with Radeon Graphics 1.80GHz and 16.0GB RAM
computer using MATLAB R2022b.

5.1. Customer Priority Classifcation Based on
DNN-GSM-SVM

5.1.1. Customer Priority Feature Screening Based on DNN

(1) DNN Model Input. In this study, we frst used a deep
neural network (DNN) to screen 20 features that afect
customer priority as shown in Table 4 and selected the
Relu function Logloss � −1/N􏽐

N
i�1(y · logpi + (1 − y)·

log(1 − pi)) as the activation function and loss function
using the cross-entropy loss function, where pi is the
probability of the i-th sample predicted to be 1.

(2) DNN Model Output. Te loss rate and accuracy rate
obtained by DNN feature screening are shown in Figure 7,
respectively. When there are no feature value indicators

Complexity 9
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numbered 4, 10, 11, 14, and 16, the model loss value in-
creases as shown in Figure 7(a). Conversely, the accuracy
rate decreases as shown in Figure 7(b). It is proven that the
fve feature indicators corresponding to the consumption
strength, whether it is a VIP customer, the number of
recommended new customers, whether to handle expedited
service, and whether it is a particular product (fresh products
need to be refrigerated and other goods), have a great in-
fuence on the model, and the screening is completed.

5.1.2. Customer Priority Classifcation Based on GSM-SVM

(1) GSM-SVM Model Input. After screening 20 features
afecting customer priority with DNN, the GSM improved
SVM to classify customer priority in rank using the fve
screened features. In this study, 34 customer samples were
selected; 26 groups of customers were randomly chosen as
training sets, and the remaining eight groups were used as
test sets.Te screened 5 indicators were used as model input,
and customer priority was used as the model output. Te
fnal result classifes the customers into three categories.

(2) Sample Standardization. Tis study uses normalized
equation (29) to preprocess the input indicators of the SVM
classifcation model.

X
∗
i �

Xi − Xmin( 􏼁

Xmax − Xmin( 􏼁
, (29)

where Xi and X∗i are the i-th sample values of each indicator
with their corresponding normalized values and Xmin and
Xmax are the minimum and maximum values of each in-
dicator, respectively.

(3) Parameter Search and Error Analysis. In this study, the
parameters C and g of the SVM were optimized using the
grid search method so that the values of C were in the range
of (−1, 5) and g were in the range of (−10, 10).

To assess the accuracy of the model, the mean square
error (MSE) was selected as the evaluation index in this
study as shown in the following equation:

MSE �
1
N

􏽘

n

i�1
yi − 􏽢y( 􏼁

2
. (30)

When theMSE result is smaller, the prediction accuracy
is higher. Te fnal results of the parameters of the grid
search optimization and the mean square error of the
model in this study are shown in Figure 8, with the best
C � 24.2515, g � 0.25, and MSE � 0.1421, which demon-
strates that the model is highly accurate and strong in
classifcation.

(4) GSM-SVM Model Outputs. Te total number of samples
selected in this study is 34, the number of samples in the
training set is 26, and the number of samples in the test set
is 8. Te prediction results for the test set samples are
shown in Table 5. Te classifcation accuracy of GSM-SVM
reached 87.5%, which is highly accurate, and the model is
completed. Te fnal priority ranks of 34 customers are
shown in Table 6.

5.2. Vehicle-Drone Joint Distribution Results. Te vehicle-
drone joint distribution path, considering customer priority,
is obtained by applying the ALNS-GA solution as shown in
Figure 9. It is specifed that the 23rd customer point in the
restricted zone is the area where vehicles are not allowed to
drive, and the 19th customer point in the no-fy zone is the
area where drones are not allowed to fy. Te optimized
route results are shown in Tables 7 and 8.

To combine the optimization results of the two stages,
the fnalized customer priority classifcation is shown in
Table 6, and the vehicle-drone joint distribution path is
shown in Table 7. Tere are 6 customers of level 1, 8 cus-
tomers of level 2, and 20 customers of level 3 in the entire
distribution. Five vehicles are used, with each vehicle car-
rying one drone. For example, when vehicle 1 carries drone 1
for customer distribution, the vehicle 1 route is
0⟶C5⟶C16⟶C13⟶ 0, while the drone 1 route is
C5⟶C14⟶C16⟶C17⟶C13, drone 1 on vehicle 1
fies from C5 to C14 for distribution and rendezvous with
vehicle 1 at C16; after charging and loading cargo, it takes of

Loss

16
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11
10
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162 15135 7 180 9 10 11 126 1443 171 198
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Acc
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11 14
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190
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Figure 7: Screening feature indicator chart. (a) Feature screening loss rate graph. (b) Feature screening accuracy rate graph.
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from C16 to C17 for distribution, and after distribution,
drone 1 will rendezvous vehicle 1 at C13 and return to the
distribution center together with vehicle 1. Te total cost is
7581.0.

5.3. Algorithm Performance Analysis. Obtaining small-scale
arithmetic based on the Solomon dataset and the efec-
tiveness of the model and algorithm is illustrated by com-
paring the three algorithms. Five sets of arithmetic cases with
10, 15, 20, 25, and 30 customers are solved.Te three metrics
are used which are the total cost of the vehicle-drone dis-
tribution (F1), priority cost (F2), and solution time (t).

According to Table 9, it can be seen that the ALNS-GA
solution obtains better cost metrics than the traditional GA
and GAA-GA algorithm solutions. In addition, the average
solution time of the ALNS-GA algorithm is less than that of
the traditional GA algorithm, which is only 0.09 more than
that of the GAA-GA algorithm.Te adaptation curves of the
three algorithms are obtained as shown in Figure 10; the

Best c =24.2515 g=0.25 mse=0.1421

1

0.8

0.6

0.4

0.2

0
M

SE
10

5
0

-5
-10

log2g -1 0 1 2 3 4 5

log2c

Figure 8: SVR parameter selection and MSE results.

Table 5: Test set sample prediction results.

Customer number Priority true value Priority forecast value Correct rate (%)
4 3 3 100
7 3 3 100
18 3 3 100
19 3 1 0
22 3 3 100
26 3 3 100
33 3 3 100
34 3 3 100

Table 6: Customer priority ranking.

Customer Priority Customer Priority Customer Priority
1 3 13 2 25 3
2 1 14 3 26 3
3 3 15 1 27 2
4 3 16 2 28 3
5 2 17 3 29 1
6 2 18 3 30 3
7 3 19 1 31 2
8 3 20 3 32 2
9 2 21 3 33 3
10 3 22 3 34 3
11 3 23 1
12 1 24 2

80

70
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50

40

30

20

10

0
80706050403020100

Figure 9: Vehicle-drone joint distribution path.
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traditional GA and GAA-GA algorithms converge from 200
generations, whereas the ALNS-GA algorithm converges
much faster than the other two algorithms. Terefore, the
ALNS-GA performs well in fnding satisfactory solutions in
small-scale cases.

5.4. Sensitivity Analysis

5.4.1. Drone Load Capacity Analysis. To test the efect of the
drone load (GD) on the vehicle-drone joint distribution, GD
is set to 20, 25, 30, 35, and 40, and the solution results are
shown in Table 10.

From Figure 11, it can be seen that the change in drone
load weight directly afects its fight cost and priority cost,
which in turn afects the total cost of the entire process. As
can be seen from Table 10, this process is based on meeting
the range of the drone, and the original drone load capacity
cannot meet the demand volume of all customer points or
vehicle distribution; and with the increase in GD, the
number of customer points that the drone can deliver in-
creases. Tus, the drone fight cost also increases, and the
speed of the drone is faster than the speed of the vehicle,
which reduces the number of some customers who violate
the soft time window limit, resulting in a priority cost re-
duction. Terefore, it is important to choose drones with
a suitable load capacity; the price of the drone will not be too
high at the same time, and the cost is reduced.

5.4.2. Drone Endurance Analysis. To test the impact of the
drone range capacity (LD) on the vehicle-drone joint dis-
tribution, LD is set to 20, 25, 30, 35, and 40, and the solution
results are shown in Table 11.

Table 7: Vehicle-drone joint distribution path.

Truck Vehicle route Drone Drone route
1 0⟶C5⟶C16⟶C13⟶ 0 1 C5⟶C14⟶C16⟶C17⟶C13
2 0⟶C2⟶C15⟶C22⟶C4⟶C25⟶C24⟶ 0 2 0⟶C21⟶C2C15⟶C23⟶C22
3 0⟶C28⟶C12⟶C29⟶C3⟶ 0 3 C29⟶C34⟶C3⟶C26⟶ 0
4 0⟶C27⟶C31⟶C11⟶C19⟶C7⟶C18⟶C6⟶ 0 4 C31⟶C30⟶C11C7⟶C8⟶C18
5 0⟶C33⟶C9⟶C32⟶C1⟶ 0 5 C9⟶C20⟶C10⟶C32

Table 8: Vehicle-drone joint distribution cost.

Number of
vehicles used

Total vehicle
distribution cost

Number of
drones in

use

Total drone
distribution cost Priority cost Total cost

5 6039.9 5 371.4 1169.7 7581.0

Table 9: Comparison of results of GA, GAA-GA, and ALNS-GA algorithms.

Example Number
GA GAA-GA ALNS-GA

F1 F2 t F1 F2 t F1 F2 t
1 10 3173.2 579.6 11.47 2992.3 467.6 1.77 2625.1 103.1 1.63
2 15 4397.7 519.0 13.71 4408.7 358.8 1.75 4089.8 111.5 1.86
3 20 5595.6 441.5 14.14 5139.2 441.4 1.30 4335.6 381.4 2.13
4 25 8222.2 231.7 14.34 8187.2 227.8 1.47 5269.3 172.5 1.07
5 30 9053.3 255.8 18.32 9011.1 237.2 1.78 5704.5 207.7 1.81

Average 6088.4 405.2 14.39 5947.7 346.6 1.61 4404.8 195.2 1.70
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5004001000 200 300
running Times

GA
greedy GA
Location GA

Figure 10: Comparison of the adaptation curves of the 3
algorithms.

Complexity 13



From Figure 12, it can be seen that the change in the range
capacity of the drone directly afects the total cost of vehicle
distribution, the cost of drone distribution, and the cost of
priority, which in turn afects the total cost of the entire process.
As shown in Table 11, in this process based on satisfying the
range capacity, the drone cannot meet the demand quantity of

all customer points at the beginning, and thus the number of
drones used is small. In contrast, with the gradual increase in
LD, the number of customer points that can be delivered
increases, and the number of drones increases, which in turn
increases the fight cost of drones and reduces the driving cost
of vehicles, and the speed of drones is faster than that of ve-
hicles. An increase in the number of drones usedwill reduce the
number of customers who violate the soft time window limit,
which leads to a reduction in priority cost. Terefore, as far as
possible, to choose the appropriate endurance of the drone, the
price of the drone will not be too high at the same time, and the
cost will be reduced.

5.5. Whether to Consider Priority Comparison Analysis. A
comparison between considering and not considering pri-
ority is shown in Figure 13.Te solution results are shown in
Table 12. When priority is not considered, the total cost of
vehicle delivery is smaller than that when priority is con-
sidered, which proves that in order to meet the time window
of customers with high priority as much as possible, the
number of vehicles and drones will be increased, and the

Table 10: Comparison of costs for diferent loads.

Load (GD) 20 25 30 35 40
Number of vehicles 7 6 5 5 4
Number of drones 4 4 5 5 4
Drone fight cost 310.9 316.7 321.4 339.7 377.0
Total cost of drone distribution 350.9 356.7 371.4 389.7 437.0
Vehicle driving cost 7051.7 6424.5 5539.9 5133.6 4968.1
Total costs of vehicle distribution 7751.7 7024.5 6039.9 5633.6 5368.1
Priority cost 3110.9 2476.7 1169.7 615.4 0
Total cost 11213.5 9587.9 7581.0 6638.7 5805.1
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Figure 11: Te change of each cost under diferent loadings.

Table 11: Comparison of costs for diferent endurance.

Endurance (LD) 20 25 30 35 40
Number of vehicles 6 5 5 5 4
Number of drones 3 4 5 5 4
Drone fxed cost 30 40 50 50 40
Drone fight cost 250.7 270.1 321.4 373.6 412.3
Total cost of drone
delivery 280.7 310.1 371.4 423.6 452.3

Vehicle fxed cost 600 500 500 500 400
Vehicle driving cost 7433.9 6759.6 5539.9 5117.9 5045.4
Total cost of vehicle
delivery 8033.9 7259.6 6039.9 5617.9 5445.4

Priority cost 2209.6 1676.7 1169.7 747.7 537.5
Total cost 10524.2 9246.4 7581.0 6789.2 6335.2
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Figure 12: Te change of each cost under diferent endurance.

Table 12: Comparison between considering priority and mot considering priority.

No consideration of
customer priorities Consider the priority Rate of change (%)

Number of vehicles 4 5 25.0
Number of drones 4 5 25.0
Vehicle travel distance 555.2 553.9 −0.2
Drone fight distance 285.2 321.4 12.7
Total cost of vehicle delivery 5952.3 6039.9 1.4
Total cost of drone delivery 325.2 371.4 14.2
Cost of lost satisfaction 1505.0 1169.7 −22.3
Total cost 7782.6 7581.0 −2.6
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Figure 13: Comparison of routes (a) considering priority and (b) not considering priority.
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vehicles and drones will travel a longer distance, which will
lead to an increase in the total cost of vehicle delivery and
drone delivery. If the priority is not considered, it leads to an
increase in the cost of satisfaction loss. Finally, the total cost
with the priority level considered is reduced by 2.6%
compared to the total cost without the priority level.
Terefore, customer priority can be considered in the dis-
tribution process, which increases the total distribution cost
of vehicles and drones but reduces the satisfaction loss cost
and the fnal total cost.

5.6. Diferent Distribution Scenarios Analysis. Te vehicle-
drone joint distribution (Scenario 3) is compared with the
only vehicle distribution (Scenario 1) and the only drone
distribution (Scenario 2). All three scenarios are analyzed
under the premise of considering customer priority. A
detailed comparison is shown in Table 13. In Scenario 1,
one-to-one vehicle distribution to all customers creates long
transport times and generates a higher total vehicle distri-
bution cost. In Scenario 2, only drones are involved in
distribution, which requires multiple drones to participate in
distribution and cannot deliver customers beyond the
longest fight distance due to the limitation of the fight
distance and load capacity of drones. Tis results in many
customers not being served, signifcantly reducing customer
satisfaction, generating high-value loss, and being un-
realistic. Scenario 3 involved the vehicle-drone joint dis-
tribution mode. Te results show that vehicle-drone joint
distribution can reduce the total cost and priority cost and
verify that the vehicle-drone joint distribution considering
customer priority can efectively reduce the distribution cost
and deliver all customers.

6. Conclusion

Tis study investigates the path optimization problem of
vehicle-drone joint distribution considering customer pri-
orities and concludes the following:

(1) Te DNN-GSM-SVM model was used to screen fve
main infuencing features from 20 features, classify
customer points into three priority classes, with
a fnal MSE= 0.1421 variance loss indicator to prove
the superiority of the classifcationmodel, and design
the priority cost function that incorporates soft time
windows for path optimization.

(2) By comparing the results of the traditional GA,
GAA-GA, and ALNS-GA algorithms, the ALNS-GA
optimizes the generation of satisfactory solutions
and can obtain high-quality solutions in a shorter
period, which proves the superiority of the

algorithm. Trough the sensitivity analysis of the
drone load capacity and endurance, the drone with
moderate load capacity and endurance is selected to
reduce the cost, while the price of the drone will not
be too high.

(3) By comparing the joint distribution with and
without considering priority, it is found that cus-
tomer priority should be considered. However, it
increases the total delivery cost of vehicles and
drones by a small amount, decreases the priority
cost, and lowers the total cost.

(4) Finally, the diferent scenarios are compared, and it
is found that only vehicle distribution generates
a higher total cost. Only drone distribution cannot
serve all customers, further validating the superiority
of the vehicle-drone joint distribution.

Te study will enrich the research on vehicle-drone joint
distribution path optimization, provide a new theoretical
basis and algorithm reference for how enterprises make
decisions on customer priority, and provide a strong support
and reference basis for vehicle-drone path planning aspects
considering customer priority. In terms of actual complex
road conditions, further studies on customer dynamic de-
mands and drone charging cost can be considered in model
construction in the future.
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Table 13: Comparison of costs for diferent distribution scenarios.

Scenario Total vehicle
distribution cost

Total drone
distribution cost

Number of
distribution vehicles

Number of
distribution drones

Number of
unserved customers

1 7369.7 — 7 — 0
2 — 179.3 — 9 23
3 6039.9 371.4 5 5 0
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