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Tis article investigates the decentralized formation tracking problem for complex multiagent systems in fnite settling time,
subjected to output constraints and external disturbances. Te barrier Lyapunov function is used to constrain the output of each
agent.Terefore, starting inside a closed boundary, the agents are guaranteed to remain inside it for all future time. Under directed
communication topology, decentralized time-varying formation tracking is achieved in fnite time. Furthermore, in the proposed
work, the linear slidingmanifold is employed tomitigate the singularity problem that occurs in the conventional robust fnite-time
methods, i.e., terminal sliding mode-based control schemes. Te stability properties of the proposed framework are established
through the Lyapunov method which not only ensures the fnite-time formation tracking of nonlinear multiagent systems under
directed communication but also guarantees that for all time the agents remain inside a closed boundary if they are initially inside
it. Consequently, the uniqueness of this article is that it presents a novel formation tracking control framework for multiagent
systems that simultaneously considers three performance metrics of robustness, fnite-time convergence, and output constraints
while mitigating the singularity problem. Te proposed topology is validated by implementing the numerical examples in
MATLAB/SIMULINK.

1. Introduction

Multiagent systems have gained popularity as a result of
their ability to perform distributed sensing and actuating
operations. In comparison with a single agent, they are more
fexible, cost-efective, reliable, and robust while operating in
an uncertain environment and are capable of handling
complex tasks. Owing to these benefts, they are being
adopted in a variety of applications, such as rescue and
retrieval operations, intelligence, surveillance, and re-
connaissance (ISR) missions, precision agriculture, space
and planetary exploration, cooperative transportation,
communication networking. [1, 2]. Typically, in these ap-
plications, the agent can be a robotic manipulator, an un-
manned aerial vehicle, an underwater vehicle, a ground
vehicle, etc.

In order to accomplish the aforementioned tasks, a co-
operative controller is required such that the multiagent
system attains the anticipated group behavior based on
individual dynamic models and the information sharing
among these agents [3]. In literature, several linear, non-
linear, fuzzy, and observer-based techniques are employed to
design cooperative controllers such as [4–10]. Cooperative
control can either be centralized or decentralized [11]. Te
centralized approach entails the control of all agents by
a central station; consequently, each agent shall perpetually
have knowledge of the central station’s states and inputs.Te
most fatal weakness of the centralized approach is its reliance
on a central station, resulting in poor robustness, high
computational requirements, and susceptibility to disrup-
tions. In order to address these problems, the decentralized
approach was introduced in which the central station is not
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present tomanage themultiagent system [12]. A controller is
assigned to each agent in accordance with its local in-
teraction in order to execute a global group mission [13].

Recently, decentralized cooperative control has attracted
much interest due to its stronger robustness, easy mainte-
nance, and high fexibility [14]. Te recent signifcant
decentralized works include consensus control [15–20],
formation control [21–23], consensus tracking control [24],
formation tracking control [1, 25–27], containment control
[28–30], and focking [31]. In consensus control, agents
share local information to establish an agreement on
a common state (i.e., consensus point) in a decentralized
manner. In formation control, each agent keeps a pre-
determined spatial gap from the other [3]. Te particular
spatial pattern is named the desired formation that can be
time-varying or time-invariant, as discussed in [27]. Fur-
thermore, formation tracking control deals with tracking
a reference while maintaining multiagent formation [26].
Te formation tracking control problem in multiagent
systems is examined in this article.

In the formation tracking problem, convergence time is
of signifcant importance in complex scenarios where there
are constraints on the time available for accomplishing
a particular task. For example, in some industrial applica-
tions, the operations are constrained by the production
schedule; in ISR missions that often take place in hostile or
challenging environments, such as battlefelds or disaster
zones, the task execution time becomes crucial for the
success of the mission. One of the viable solutions in such
circumstances is to design a controller that ensures fnite-
time stability, as discussed in [25, 32–36]. In fnite-time
control schemes, systems’ states converge to a fxed value or
a limit set within a fnite time interval. Consequently, fnite-
time stability ofers high control precision and improved
disturbance rejection attributes [37]. Te existing fnite time
control approaches employ the terminal sliding mode that
sufers from singularity. Tis paper employs a linear sliding
manifold to establish fnite time formation tracking control,
and as a result, the singularity problem is mitigated.

In practice, the complexity of control design arises when
the multiagent systems are subjected to particular con-
straints. Typical examples include the current through
a branch of the synchronous circuit, keeping a self-driving
car platoon inside the road boundary, or the fights of an
unmanned aerial systemmay be restricted by speed, angle of
attack, or position limits. Moreover, it is common practice to
deploy multiagent systems in a confned space, where it is
necessary to impose constraints on the agents’ states [38]. To
handle this complexity, these constraints are fulflled by
introducing the barrier Lyapunov functions (BLFs) in
nonlinear controllers [39]. In another article, the distributed
consensus of the multiagent system under position con-
straints is studied using BLF in conjunction with adaptive
backstepping [40]. In another research, the consensus
problem was addressed under input saturation constraints
[41]. BLF-based constrained nonlinear control along with
a disturbance observer is presented for surface ships [9]. In
another study, an output synchronization problem with
prescribed constraints is incorporated for nonlinear

strict-feedback multiagent systems by utilizing a high-gain
observer and adaptive controller [8]. In another study, BLF is
used in conjunction with sliding mode control (SMC) for
fnite-time tracking of a single quadrotor under output
constraints [42]. Te linear sliding manifold is used in this
work to achieve a fnite settling time of states. A similar
approach is used in References [43–47] for fnite and fxed
settling time control of single agents under constraints. It is
essential to note that recent work also includes fxed-time or
predefned-time controllers derived from fnite-time con-
trollers [48–50]. However, these approaches do not con-
stitute the consideration of constraints. In general, existing
research focuses on either fnite-time cooperative control or
the performance of cooperative control under constraints.
However, singularity-free fnite-time cooperative control of
multiagent systems with output constraints and the efect of
external disturbances is still an open problem. In this paper,
we present the singularity-free formation tracking of mul-
tiagents in fnite settling time under output constraints.

From the preceding discussion, it is evident that in the
literature, robustness, settling time, and output constraints
are the primary performance matrices that are considered
when dealing with multiagent systems’ control. Comparing
the existing robust cooperative control methods, it is to be
noted that the majority of the research is carried out without
considering the fnite convergence time or output con-
straints, as in references [15–19, 21–24, 27]. Only works of
references [25, 26, 32–36, 51] investigated the coordinated
control with convergence time consideration. References
[8, 38, 40, 41] present the cooperative control under output
constraints but only establish asymptotic convergence. A
brief comparison of existing cooperative control methods is
presented in Table 1. It demonstrates that none of the
available techniques provide robust formation tracking in
fnite time while maintaining output constraints, i.e., the
literature lacks to present a controller that considers three
performance matrices of robustness, fnite time, and output
constraints, simultaneously. In this research, we investigate
the formation tracking problem for nonlinear multiagent
systems with output constraints under disturbances in fnite
settling time.

Te subsequent points outline the main contributions of
this paper:

(1) A decentralized formation tracking control topology
is introduced for nonlinear multiagent systems that
is robust against the matched disturbances.

(2) Using the proposed control, the output of all the
agents is guaranteed to stay within the user-specifed
constraints under the directed communica
tion graph.

(3) Singularity-free convergence of outputs within a f-
nite time interval is guaranteed, and the upper bound
on the settling time is predetermined.

In a nutshell, this article presents a new formation
tracking control framework for multiagent systems that
simultaneously considers the three performance metrics of
robustness, fnite-time convergence, and output constraints
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while mitigating the singularity problem. To the best of the
authors' knowledge, such a cooperative controller that
considers these performance matrices simultaneously has
not been reported in the literature.

Tis article is organized as follows: Section 2 presents the
essential defnitions and lemmas to be used in this work.Te
problem statements with considered assumptions are de-
scribed in Section 3, whereas Section 4 presents the proposed
fnite settling time formation tracking control scheme. In
Section 5, the MATLAB simulation-based results are dis-
cussed. Te conclusion of this article is given in Section 6.

2. Preliminaries

In this section, the preliminaries are defned which will be
used throughout this article. Moreover, a concise summary
of previously published fndings is also provided in this
section of the paper.

2.1.GraphTeory. In multiagent systems consider that there
are N agents. Te communication graph G comprises a pair
(V(G), E(G)), where V(G) � ]1, ]2, . . . , ]N􏼈 􏼉 is the node set
which denotes the vertex of the graph, and
E(G)⊆ (]i, ]j); ]i, ]j ∈ V(G), i≠ j􏽮 􏽯 is the edge set that de-
fnes the fow of information from the node ]j to node ]i. For
an undirected graph, the set E(G) must satisfy the condition
(]i, ]j) � (]j, ]i), ∀E(G). On the other hand, if
(]i, ]j)≠ (]j, ]i) for any edge, then it is said to be a directed
graph. In the case of an undirected graph, the degree of
a node is defned as the number of edges that are incident to
a node [30]. In graph theory, a communication path is
defned to be the sequence of the edges among the nodes.
Whenever there exists at least one communication path
among all nodes of the graph, the graph G is connected. For
communication graph analytics, some of the matrices are
very signifcant. In a diagonal matrix D, each diagonal el-
ement characterizes the degree of the respective node
whereas in an adjacency matrixA, the nondiagonal elements
describe the information fows from the neighboring nodes.
Te communication graph is entirely defned by a semi-
positive defnite Laplacian matrix which is defned by
L � D − A [52].

2.2. Notations. In the course of this article, the following
notations will be used: A n × m dimensional set of real
matrices is denoted by Rn×m; sets of negative, nonnegative,
and positive real numbers are denoted by R− , R0+, and R+,
respectively; the N-dimensional identity matrix is repre-
sented by IN; the construction of a diagonal matrix is defned
by diag ∙{ }; and lN denotes an N-dimensional column matrix
with all entries equal to 1.Te Kronecker product operator is
denoted by ⊗ and sgn(x) defnes the discontinuous scalar
function, which is given by

sgn(x) �
− 1, x< 0,

+1, x≥ 0.
􏼨 (1)

Also, if X � [x1, x2, x3, . . . , xn]T then sgn(X) � [sgn
(x1), sgn(x2), sgn(x3), . . . , sgn(xn)]T and sgn(XT) � [sgn
(X)]T.

Consider an autonomous single agent with a globally
asymptotically stable origin defned as follows:

_x � f(x), (2)

where f: R0+ × Q⟶ Rn is continuously defned inside the
open set Q ∈ Rn defned in the neighborhood of equilibrium
f(0) � 0 and f(0) ∈ Q. x(t, x0) defnes the solution of (2)
where x0 � x(0) denotes the initial condition.

Te defnitions below are taken from the literature and
are provided here for the reader’s convenience.

Defnition 1 (fnite-time stability) [53, 54]. For the agent (2),
the origin is said to achieve global fnite-time stability, if
after time T(x0) its solution converges to the origin, i.e.,
x(t, x0) � 0,∀t≥T(x0). T(∙) denotes the settling time
function.

Lemma 2 (see [54, 55]). Let V(t, x) be a radially unbounded
and positive defnite function that is continuously defned on
the open neighborhood Q around the origin, i.e.,
V(t, x): R+ × Q⟶ Rn, and satisfes

(i) V(t, x) � 0⇒x � 0
(ii) _V(x)≤ − k

�����
V(x)

􏽰
, k ∈ R+

Ten, the agent (2) is said to be fnite-time stable.

Table 1: Comparison of existing cooperative control methods.

References Method Nonlinear dynamics
Robustness

Finite time Output constraintModeling
uncertainties Matched disturbances

[22] SMC Yes Yes Yes No No
[38] Lyapunov redesign approach No Yes No No Yes
[34] Terminal SMC Yes Yes Yes Yes No
[40] Backstepping and BLF Yes Yes No No Yes
[8] Neuro-fuzzy control and BLF Yes Yes No No Yes
[36] Neural network and SMC Yes Yes Yes Yes No
Tis paper Linear SMC and BLF Yes Yes Yes Yes Yes
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Defnition 3. (fnite settling time stability) [45]: For the
agent (2), the origin is said to achieve globally fnite settling
time stability if the solution x(t, x0) satisfes x(t, x0)≤
ϵ∀ t≥T(x0) where x0 ∈ R− ∪R+, ϵ is a bound such that
ϵ ≈ 0, and fnite settling time is denoted by T(x0).

Remark 4. According to Defnition 3, an agent is considered
to achieve fnite settling time stability if the states of the
agent approach the small bound ϵ≈ 0 after some fnite-time
T, rather than being exactly 0. Tis assumption takes the
practical aspect into account since in tracking control
problems, it is typically acceptable to have a small user-
defned error margin ϵ (e.g., order of 10− 2 ). In recent lit-
erature, this type of stability is also referred to as practical
fnite-time stability [56].

3. Problem Formulation

We consider N agents in a multiagent system, and each
agent has single-input single-output second-order dynam-
ics, as considered in [3]. Te multiagent system is defned by

_xi � vi,

_vi � f xi, vi( 􏼁 + g xi, vi( 􏼁ui + wi,

hi � xi,

(3)

where X ≔ [xi, vi]
T ∈ Q⊆R2×1 defnes the state vector;

w: R0+ × Q⟶ R is the disturbance; f: Q × R0+⟶ R

and g: Q × R0+⟶ R are continuously diferentiable
known functions with g≠ 0; and the origin of (3) lies inside
the open set Q. Moreover, xi is position, vi denotes the
velocity, hi and ui represent the output and input, and wi is
the associated disturbance of the ith agent; i � 1, 2, . . . , N.

Te position vector χ is defned as
χ � [x1, x2, . . . , xN]T.x0 ≔ [x1(0), x2(0), . . . , xN(0)]T and
v0 ≔ [v1(0), v2(0), . . . , vN(0)]T denote the initial conditions
of each agent in the multiagent system.

Te main aim of this article is to propose a robust fnite
settling time decentralized formation tracking control for
the multiagent system (3) under output constraints. For this
purpose, we defne the error variables as pi � xi − r and qi �

vi − _r for reference trajectory r and i � 1, 2, . . . , N. We
further defne η � [p1, p2, . . . , pN]T, υ � _η � [q1, q2,

. . . , qN]T, u � [u1, u2, . . . , uN]T. Ten,

_η � ],

_] � f
⋆

+ €r lN + g
⋆
u + w

⋆
,

(4)

where the vectors f⋆ and g⋆ are defned by
f⋆ � [f(x1, v1), f(x2, v2), . . . , f(xN, vN)]T, g⋆ � diag g􏼈

(x1, v1), g(x2, v2), . . . , g(xN, vN)}, respectively. Consider
the vector sliding surface s defned by

s � υ + _F + βL[η + F], (5)

where L � L + IN is a positive defnite matrix, β ∈ R+, and
F � [F1, F2, . . . , FN]T denotes the desired formation. Fur-
thermore, we defne few variables that will be employed to

construct the main results of this article, such as, p � η + F,
q � _p, i � 1, 2, . . . , N, and w⋆ � [w1, w2, . . . , wN]T. It is
pertinent to mention here that to avoid singularities in the
nominal control and disturbance compensator, all diagonal
entries of g⋆ must be diferent from zero. Te block diagram
to explain the notations and signal fow of the proposed
cooperative controller is given in Figure 1.

Assumption 5. G defnes a strongly connected,
directed graph.

Assumption 6. Te control direction, i.e., sgn(g(xi, vi)) is
always known.

Assumption 7. For A0, A1, A2,B,Fmax ∈ R+, we assume
the bound on a smooth reference |r|≤A0 <B, | _r|<A1,
|€r|<A2 and formation |F|<Fmax; _F, €F remain bounded.Te
error bound is defned by h � B − (A0 + Fmax) and ini-
tially, all agents satisfy the symmetric constraint
|pi(0) − Fi|<h. Te pictorial illustration is given in
Figure 2.

Assumption 8. Te uniform upper bound W(t) on the
matched perturbation is known, i.e.,

wi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤W(t), i � 1, 2, . . . , N. (6)

Remark 9. Tis paper deals with consensus-based formation
tracking. Terefore, virtually, the consensus point of mul-
tiagent is assumed to track the reference r.

3.1. Problem Statement. Under directed communication,
propose a decentralized formation tracking control for
a multiagent system (3) to

(i) Achieve the desired formation within fnite
settling time

(ii) Constraint the output of all agents, i.e.,
− B<xi <B,∀t ∈ R0+ and i � 1, 2, . . . , N

Provide the predetermined upper bound on the settling
time, depending upon the initial conditions of the agents.

4. Finite-Time Formation Tracking Control

In this section, the main contribution of this article is
presented. Te fnite-time formation tracking control is
presented in Teorem 10. Figure 3 presents the overview of
the proposed formation tracking controller. Te settling
time function is derived in Corollary 11.

Theorem 10. Under Assumptions 5–8 the multiagent system
(3) is guaranteed to achieve the desired decentralized for-
mation tracking within a fnite settling time using the fol-
lowing control protocol:

u � un + uc, (7)
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where nominal control un and disturbance compensator uc

are, respectively, given by

un � − g
⋆

􏼂 􏼃
− 1

f
⋆

+ €r lN + €F + βL[] + _F]􏽨 􏽩,

uc � − g
⋆

􏼂 􏼃
− 1 p

T
L

T
Lq

h
2

− p
T
L

T
Lp

.
sgn(s)

N
+
κ
N

��������

p
T
L

T
Lp

􏽱

������������

h
2

− p
T
L

T
Lp

􏽱 +

��������

2sgn s
T

􏼐 􏼑s

􏽱
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠sgn(s) + sW(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(8)

Agent-1

Tr
an

sfo
rm

at
io

n

Agent-2

Agent-N

Finite Settling
Time Formation

Tracking
Controller

w, F, h

u1

u2

uN

wN

w2

w1

x1 , v1

x2 , v2 p2 , q2 

xN , vN pN , qN 

p1 , q1 

r, ṙ

r, ṙ

r, ṙ

∑

∑

∑

η , υ

η , υ

Figure 1: Block diagram of the proposed formation tracking controller.

Fmax

B

-B

0

h

A0

-A0

r

Figure 2: Pictorial illustration of Assumption 7.
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where s denotes the sliding surfaces defned in (5) and κ ∈ R+.
Moreover, the outputs of all agents will satisfy the constraint
|χ|<B∀ t≥ 0.

Proof. Consider a Lyapunov function

V � sgn s
T

􏼐 􏼑s +
1
2
ln

h
2

h
2

− p
T
L

T
Lp

􏼠 􏼡. (9)

Te derivative of the Lyapunov function results in

_V � sgn s
T

􏼐 􏼑 _s +
p

T
L

T
Lq

h
2

− p
T
L

T
Lp

. (10)

Solving for _s

_s � _] + €F + βL[ _η + _F]. (11)

Plugging _] and _η from (4)

_s � f
⋆

+ €r lN + g
⋆
u + w

⋆
+ €F + βL[] + _F], (12)

and hence,

_V � sgn s
T

􏼐 􏼑 f
⋆

+ €r lN + g
⋆
u + w

⋆
+ €F + βL[] + _F]􏽨 􏽩 +

p
T
L

T
Lq

h
2

− p
T
L

T
Lp

. (13)

Plugging the control law [7],

_V � sgn s
T

􏼐 􏼑w
⋆

− κ

��������

p
T
L

T
Lp

􏽱

������������

h
2

− p
T
L

T
Lp

􏽱 +

��������

2sgn s
T

􏼐 􏼑s

􏽱
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − sgn s

T
􏼐 􏼑sW(t). (14)

Note that the second term in (14) is scalar and therefore
sgn(sT)sgn(s) � N. Moreover, the Assumption 8 results in
sgn(sT)w⋆ − sgn(sT)sW(t)≤ 0 and hence,

_V≤ − κ

��������

p
T
L

T
Lp

􏽱

������������

h
2

− p
T
L

T
Lp

􏽱 +

��������

2sgn s
T

􏼐 􏼑s

􏽱
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (15)

Since, ln(h2/(h2 − (Lp)2))≤pTLTLp/(h2− pTLTLp)

(Rens’ inequality [57]), therefore,

_V≤ − κ

����������������

ln
h

2

h
2

− p
T
L

T
Lp

􏼠 􏼡

􏽳

+

��������

2sgn s
T

􏼐 􏼑s

􏽱
⎛⎝ ⎞⎠. (16)

Using inequality,
�����
a + b

√
≤

��
a

√
+

�
b

√
, ∀ a, b≥ 0

_V≤ − κ
�
2

√
���������������������������

sgn s
T

􏼐 􏼑s +
1
2
ln

h
2

h
2

− p
T
L

T
Lp

􏼠 􏼡

􏽳

. (17)

Defning κ � κ⋆/
�
2

√
, κ> 0, then
_V≤ − κ⋆

��
V

√
. (18)

Formation Tracking Controller

Sliding
Manifold
Design

s(x)

Nominal Control

Disturbance
Compensator

Control

u

un

uc

h

η , υ

F,Ḟ

p,q
∑ ∑

w

Figure 3: Finite-time formation tracking control.
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Terefore, by virtue of Lemma 2, the sliding mode is
attained in fnite time. Since the error is bounded by an
upper bound h and exponential convergence of states is
guaranteed after attaining sliding mode, therefore, it is
straightforward to determine the maximum settling time
that states require after attaining sliding mode. Tis results
in fnite settling time stability. Moreover, by the construction
of the Lyapunov function, it is evident that |p|<h, which
eventually leads to |χ|<B based on Assumption 7. Te
mathematical expressions for fnite settling time are pro-
vided in Corollary 11. □

Corollary 11. Te settling time function T of the closed-loop
multiagent system using control law (6) is upper bounded by

T x0( 􏼁< max ln
h⊗ lN/ϵ( 􏼁

β
􏼢 􏼣L

− 1
􏼢 􏼣 + max

1
κ

����
2V0

􏽰
( 􏼁􏼒 􏼓,

(19)

where V0 denotes the value of Lyapunov function V at time
t � 0 and is dependent on the initial conditions of agents,
Laplacian matrix, and initial value of the reference. ϵ denotes
the error margin as explained in Defnition 3.

Proof. Simplify the inequality (19) to solve the reaching time
Tr of states. By straightforward evaluation of ordinary
diferential inequality dV/

��
V

√
≤ − κ⋆dt, we get

2(
��
V

√
−

���
V0

􏽰
)≤ − κ⋆t, where V0 denotes the initial values

of the Lyapunov function. By virtue of Defnition 1 and
Lemma 2, V � 0;∀ t≥Tr(x0), which implies that
Tr ≤ 2

���
V0

􏽰
/κ⋆. Simplifying these expressions result in

Tr ≤max(1/κ(
����
2V0

􏽰
)). Once the states of each agent reach

the respective sliding manifold, i.e., s � 0, it is guaranteed by
the construction of the sliding surface that the output
converges exponentially to the origin, i.e.,
p � p⋆10 exp(− βLt), where p⋆10 denotes the value of p when
s � 0 is achieved. Subsequently,p⋆10 <h⊗ lN implies that the
maximum settling time Ts to establish p1 < ϵ becomes
Ts < max[[ln(h⊗ lN/ϵ)/β]L− 1]. Terefore, T � Tr + Ts sat-
isfes Corollary 11. □

Remark 12. It is noticeable that the settling time function T,
of Corollary 11, can be predetermined, depending upon the
initial conditions, communication graph, disturbance
bound, and the control parameters. Te settling time
function of Corollary 11 exhibits relatively more over-
estimation of the settling time, and it can be improved by
knowing the exact knowledge of states at the time of
attaining the sliding mode.

Remark 13. Table 2 elaborates on the selection criteria as
well as the essence of all the formation tracking controller
parameters:

Remark 14. Excitation in the unmodeled closed loop dy-
namics, known as chattering, is caused by the high-
frequency switching that occurs during the sliding phase
(using the signum function). Actuators in the system can

experiencewear and tear due to chattering. While it is
impossible to completely eliminate the chattering, the
techniques outlined in [58] can help reduce it to a man-
ageable level.Te interesting fact about these methods is that
the controller is initially designed using the signum function,
and then its approximations are used to diminish chattering.
In this article, however, the chattering suppression is not
taken into account, and the focus is kept on the design of
a decentralized fnite settling time formation tracking
controller with output constrained in the presence of
disturbances.

Remark 15. By systematic extension of Teorem 10 and
Corollary 11, the validation of the results of this paper can
be employed to the square MIMOmultiagent system; with
each agent having nth order dynamics which are char-
acterized by n/2 block diagonals, each block having
a relative degree 2.

5. Simulations and Results

In order to validate the theoretical developments, two nu-
merical examples are presented here. Four frictionless carts
(agents) under external force and disturbances are consid-
ered, as illustrated in Figure 4. Assuming M � 1, the dy-
namics can be written as follows:

€xi � ui + wi. (20)

Te directed communication graph is given in Figure 5.
Te resulting Laplacian matrix L is as follows:

L �

3 − 1 − 1 − 1

− 1 2 0 − 1

− 1 0 2 − 1

− 1 − 1 0 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

In Example 1, a formation controller is devised for
multiagent cart dynamics while the solution is extended to
time-varying formation tracking control in Example 2.

5.1. Example 1 (Formation of Cart-Multiagent Dynamics).
While moving on a single axis under the efect of external
force, the cart dynamics are in the form of double in-
tegrator dynamics (i.e., in (3), f(xi, vi) � 0; g(xi, vi) � 1).
First, the simulations are carried out for formation control
only (Example-2 is presented for evaluation of perfor-
mance for the formation tracking control), and the initial
positions of four carts are considered as x0 � [− 2, 2,

− 0.9, − 0.1]T and speeds as v0 � [1, − 1, 0.5, − 0.5]T,
respectively.

Te desired formation is F � [1, − 1, 3, − 3]T while ref-
erence is set to r � 0⇒A0 � 0. Moreover, for simulations,
the disturbance is assumed to be wi � [0.25, 0.1, 0.5, 0.1]T.
Te controller parameters are set to
β � 2; κ � 1;W � 5;h � 3. From (18), the settling time
function yields a maximum time of 14.11 s. Te resulting
plots are given in Figures 6 and 7; it is evident from these
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Figure 4: Frictionless carts under the efect of external forces and disturbances i� 1, 2, 3, 4.
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Figure 6: States of the cart-multiagent system for constant
formation.
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Figure 7: Control inputs for formation of the cart-multiagent
system.
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Figure 8: States of the cart-multiagent system for time-varying
formation tracking.
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results that the settling time of the multiagent is 1.6 s,
therefore, the upper bound evaluated using the settling time
function is over-estimated. Te plot in Figure 6 shows the
position and speed state of each cart starting from diferent
initial conditions. Te position of each cart attains the de-
sired formation and then sustains it for all future time.
Furthermore, the position state satisfes the output con-
straints for all time. Figure 7 displays the control input for all
agents. Te chattering is observed with the presented con-
troller but is of a very small amplitude, and it is inevitable
when working with sliding mode control as discussed in
Remark 14.

5.2. Example 2 (Time-Varying Formation Tracking Control).
In this section, the time-varying formation tracking control
is presented for cart-multiagent dynamics of Example-1.
Here, the desired formation is time-dependent and given as
F � 0.1 sin(2πt) × [1, − 1, 3, − 3]T while reference is set to r �

cos(0.2πt)⇒A0 � 1. Te perturbation is assumed to be
wi � sin(t) × [0.25, 0.1, 0.5, 0.1]T. Te controller parame-
ters are set to β � 2; κ � 1;W � 5;h � 3. From (18), the
upper bound on settling time shall be 14.30 s.Te results (see
Figures 8 and 9) show that there is no degradation in the
performance of the proposed control for varying formations.
Te constraint on the output is also satisfed for all time.

Te time-varying reference formation F is kept similar
with just bias involved in the provided simulations for
clear visualization; nonetheless, the controller performs
equivalently well for alternative formations as well.
Moreover, the reference r is exactly in the center of the
solid-magenta and the dashed-black agent and the mul-
tiagent system attains the formation around that reference
according to desired F. Figure 9 represents the control
efort for the proposed time varying formation controller.
From the position plot of Figure 8, it is to be noted that the
cart multiagent system is not only tracking the low-
frequency reference but also has attained the high-
frequency time varying formation.

6. Conclusion

A novel control topology with robustness and fnite-time
formation tracking for complex multiagent systems, sub-
jected to output constraints, is designed in this paper. It is
established using BLF that the proposed controller ensures
that the output state never leaves that preassigned bound,
provided it starts from that bound. As a result, the output
bound during reaching phase of SMC is known and con-
sequently, the fnite convergence time is achieved using
linear sliding surface. Terefore, no singularity occurs in the
proposed formation tracking controller unlike in the
existing literature. Contrarily, nonlinear sliding surfaces are
utilized in existing literature to achieve fnite time stability of
the agents that causes the singularity in the control input.
Te simulations are conducted for cart-multiagent dy-
namics, and the results show that the proposed decentralized
controller performs well for the formation tracking of
constrained agents in the presence of unwanted distur-
bances. Tus the strength of this work lies in providing
a unique solution to the formation tracking control of
multiagent systems that ofers output constraints, robust-
ness, and fnite time convergence simultaneously without
singularity issues. However, the settling time function ex-
hibits relatively more overestimation and is the weakness of
this cooperative control framework. Te future directions
for this study include exploring the nonsymmetric con-
straints, predefned settling time, and higher-order multi-
agent systems. Moreover, a parallel study will be carried out
to design a fnite-time distributed cooperative control under
output constraints.
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