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A better understanding of fnancial contagion and systemically important fnancial institutions (SIFIs) is essential for the
prevention and control of systemic fnancial risk. Considering the ripple efect of fnancial contagion, we integrate the relevant
spatiotemporal information that afects fnancial contagion and propose to use the ripple-spreading network to simulate the
dynamic process of risk contagion in China’s fnancial system. In addition, we introduce the smooth-transition vector autor-
egression (STVAR) model to identify “high” and “low” systemic risk regimes and set the relevant parameters of the ripple-
spreading network on this basis. Te results show that risk ripples spread much faster in high than in low systemic risk regimes.
However, systemic shocks can also trigger large-scale risk contagion in the fnancial system even in a low systemic risk regime as
the risk ripple continues. In addition, whether the fnancial system is in a high or low systemic risk regime, the risk ripples from
a contagion source (i.e., a real estate company) spread frst to the real estate sector and the banking sector. Te network centrality
results of the heterogeneous ripple-spreading network indicate that most securities and banks and some real estate companies
have the highest systemic importance, followed by the insurance, and fnally the diversifed fnancial institutions. Our study
provides a new perspective on the regulatory practice of systemic fnancial risk and reminds regulators to focus not only on large
institutions but also on institutions with strong ripple capacity.

1. Introduction

Financial security is an important part of national security;
preventing and defusing fnancial risk, especially holding the
bottom line of no systemic fnancial risk, is of great sig-
nifcance to ensure the smooth operation of China’s econ-
omy and fnance. In recent years, many fnancial institutions
in China have been engaged actively in cross-fnancial
business and conduct mixed fnancial services [1], which
have strengthened the linkages between fnancial institutions
and increased systemic risk [2]. Besides, the events of 2008
global fnancial crisis have reminded us that regulating f-
nancial institutions or markets in isolation and ignoring the
connectedness between institutions or markets can no
longer efectively prevent and control systemic fnancial risk
[3]. Terefore, it is essential and urgent to explore the
connectedness among fnancial institutions in China and

examine the spillover and contagion efects of systemic risk
by considering the fnancial system as a whole.

Te global fnancial crisis in 2008 has aroused attention
to the connectedness and risk contagion among fnancial
institutions or markets and increased the emergence of
related research methods. A commonly used measure of
systemic fnancial risk is the conditional value-at-risk
(CoVaR) and the delta conditional value-at-risk (ΔCoVaR)
[4], which are based on a “bottom-up” perspective and
refect the risk contribution of fnancial institutions to the
system [5–7]. Another commonly used measure is the
marginal expected shortfall (MES) [3], which is based on an
“up-bottom” perspective and focuses on the systemic risk
contribution of individual fnancial institution when the
system is in a crisis [8]. In addition, the conditional expected
shortfall (CoES) [9, 10] and the SRISK risk index [11, 12],
etc., have also been developed to measure systemic fnancial
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risk. Although methods such as CoVaR, MES, CoES, and
SRISK are widely used, they ignore the connectedness in the
fnancial system and take less account of the risk contagion
efect. While the contagion efect of risks is at the heart of the
outbreak of the systemic risk or fnancial crisis, when in-
dividual or local risk emerges, diferent institutions may be
afected by risk sharing, risk spreading, and risk amplif-
cationmechanisms, resulting in chain reactions and even the
collapse of the entire fnancial system.

Network theory, another important branch of systemic
risk research, provides an efective and intuitive analytical
tool for systemic fnancial risk by constructing network
nodes and edges, which can not only display the risk con-
tagion paths but also identify systemically important nodes
[13], and thus helps the regulators to establish a stable f-
nancial system and an efective regulatory system. In general,
there are two types of fnancial network analysis methods.
Te frst method uses detailed information on interbank
asset-liability exposures to construct fnancial networks and
then determines the specifc risk transmission mechanisms
or simulates the impact of shocks on the network. Based on
this method, scholars have established the interbank ex-
posure network [14], interbank payment network [15, 16],
and asset-liability network [17, 18]. Although this method
allows for the identifcation of specifc directions and paths
of risk contagion, it relies on nonpublic data, which makes
research limited. Te second method uses fnancial market
data, i.e., stock prices (e.g., return, volatility, and tail risk) to
build fnancial networks and then assesses risk contagion
through network topology indicators. Since fnancial market
data are publicly available and forward-looking, they are
widely used in the study of fnancial networks and systemic
risk. Related studies mainly include correlation-based net-
works [19–21], Granger causality networks [22–24], vola-
tility spillover networks [25–27], and tail risk spillover
networks [28, 29]. In addition, in order to take more risk
information into account, some scholars have developed
composite networks [30] and multilayer information spill-
over networks [31–34]. In these fnancial networks, nodes
denote fnancial institutions or markets, and edges denote
relationships between nodes. By examining whether there
are correlation, causality, or spillover efects between nodes,
we can determine the risk contagion paths.

In summary, the research on systemic risk under f-
nancial network has yielded rich results. It is worth noting
that, however, most of the relevant network analyses are
static. Although relevant studies have used the rolling time
window approach [27, 30, 34] to capture the dynamics of
risk contagion, they are unable to model the dynamic ripple
efects triggered by a contagion source, i.e., which fnancial
institution is afected frst and which is afected later when
a fnancial institution sufers a loss or goes bankrupt. Te
ripple efect describes the gradual spreading of the efects
caused by local events. In fact, the formation and evolution
of many real-world complex systems depend to a large
extent on the spreading of a few local events [35]. Suppose
a failed (lost or bankrupt) fnancial institution triggers f-
nancial contagion, the contagion will spread around like
ripples in a calm pond. When it reaches the nearest (highest

associated) fnancial institution, the institution may be in-
fected and trigger a new ripple-spreading process, which is
analogous to a ripple in a pond reaching a stake and creating
a new responding ripple due to the refection efect. As the
contagion continues to spread, more and more institutions
may be infected. It is well known that many successful
artifcial intelligence (AI) techniques are actually inspired by
certain natural system or phenomena [36, 37]. For example,
genetic algorithms (GA) are inspired by the process of
natural selection and evolution, particle swarm optimization
(PSO) is inspired by the learning behaviors within pop-
ulations, and artifcial neural networks (ANNs) are inspired
by animal brains, etc. Tese algorithms or their derived
algorithms are also widely used in economic and fnancial
felds [38, 39]. Following the common practice of learning
from nature in the feld of artifcial intelligence, Hu et al. [35]
developed a ripple-spreading network model (RSNM) which
is inspired by the natural ripple-spreading phenomenon on
the calm water surface and emphasized its application po-
tential and fexibility in their paper. On this basis, Hu et al.
[40] attempted to apply the genetic algorithm (GA) to tune
the ripple-spreading related parameters and made it a great
fexibility to study many real-world complex network
systems.

Existing studies have shown that fnancial contagion has
ripple efects [41]. Looking at the latest research, several
scholars have applied the ripple-spreading network to model
the contagion path of fnancial risk and identify systemically
important fnancial institutions or markets. For example, Su
et al. [42] proposed a ripple network-based collective
spillover efect approach and identifed the systemic im-
portance of fnancial markets. Xu et al. [43] pointed out that
the ripple efect is one of the most features of fnancial
contagion and modeled the paths of China’s systemic risk
contagion under diferent contagion sources. However, the
results are far from sufcient, and there are still some issues
that need to be further explored. For example, few literature
studies have analyzed the ripple efect of fnancial contagion
in the framework of regime switching. Financial markets
may experience regime shifts and nonlinear risk contagion
as a result of sudden structural changes due to selling be-
havior of common asset holders [44], investor panic [45],
and asymmetric dependence on fnancial asset returns in
both upward and downward phases of the market [46]. Feng
et al. [47] pointed out that macroeconomic and fnancial
variables often have sudden structural changes due to the
exposure to external shocks such as policy changes and
ignored the possible efects of regime shifts in the process of
risk contagion which may lead to a signifcant bias.
Terefore, it is necessary and urgent to explore the network
connectedness and examine the dynamic ripple-spreading
process of fnancial risk under diferent systemic risk re-
gimes. In addition, relevant studies have examined fnancial
contagion in the framework of a deterministic ripple-
spreading network. However, the deterministic and un-
certain factors coexist in the process of fnancial contagion,
and how to balance this relationship deserves further ex-
ploration. In this paper, we mainly carry out the following
innovative work.
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First, we improve the basic algorithm of the ripple-
spreading network to make it applicable to fnancial con-
tagion and apply it to the analysis of fnancial contagion in
China. Te semideterministic ripple-spreading network
model (SD-RSNM) can balance the deterministic and un-
certain factors in the process of fnancial contagion. By
observing the instantaneous state of the ripple-spreading
network, we can identify which fnancial institutions are
afected frst and which are afected later.

Second, we introduce the smooth-transition vector
autoregression (STVAR) model to identify the “high” and
“low” state regimes of systemic risk and parameterize the
ripple-spreading network on this basis. In terms of pa-
rameter specifcation, we take into account some important
spatiotemporal factors afecting fnancial contagion, such as
the magnitude of fnancial shock, risk amplifcation factor,
risk resistance ability, and spreading speed of each fnancial
institution.

Finally, we manage to identify systemically important
fnancial institutions (SIFIs) based on the heterogeneous
networks generated by the dynamic ripple-spreading pro-
cesses under high and low systemic risk regimes. We fnd
that most securities and banks and some real estate com-
panies have the highest systemic importance in China’s f-
nancial system. In particular, the securities sector has the
strongest ripple-spreading capacity and plays an in-
termediary role in the system network. Te results remind
fnancial regulators and government departments that sys-
temic risk regulation should focus not only on large in-
stitutions but also on institutions with strong ripple efects.

Te remainder of the article is structured as follows:
Sections 2 and 3 describe the methodology and data, re-
spectively. In Section 4, we apply our method to Chinese
fnancial institutions and present the empirical analysis
results. In Section 4, we provide a brief discussion of the
fndings.

2. Methodology

2.1. Basic Idea of the Ripple-Spreading Network. Considering
the simultaneous existence of deterministic and uncertain
factors in fnancial contagion, we derive the semi-
deterministic ripple-spreading network model (SD-
RSNM) based on Hu et al. [35] and Xu et al. [43] to
simulate fnancial contagion in China’s fnancial system.
In this model, there are two classes of parameters: con-
tagion source related and network node related. Te
parameters of the contagion source include E0, s0, and d0i.
E0 denotes the energy of the initial ripple of the contagion
source, and it measures the magnitude of the systemic
shock; s0 denotes the ripple-spreading speed of the
contagion source; d0i denotes the distance between the
contagion source and node i. Te parameters of the
network nodes include αi, βi, si, and dij (i, j � 1, 2, · · · , N).
αi denotes the risk amplifying factor of the node i; βi

denotes the connection threshold, representing the risk
resistance capability of the node i; dij is the distance
between the node i and j. Once a node is infected, it will

trigger a new ripple with energy Ei and speed si. In ad-
dition, the energy parameters, i.e., E0 and Ei, decay fol-
lowing the same function fDecay(Ei, r(i, t)) � ηEi/2πr(i, t),
where η is a constant and r(i, t) is the ripple radius of the
node i at time t. It is worth noting that, in the framework
of SD-RSNM, the node j follows the following activation
principles: if dij ≤ r(i, t) and fDecay(Ei, r(i, t))≥ βj, then the
node j is activated by the node i, while if dij ≤ r(i, t) and
fDecay(Ei, r(i, t))< βj, then the node j is activated with
probability PR(j) � 2ωR(1− βR(j)/esource(t)); ωR > 0 is the
probability decay coefcient. Using these parameters, the
specifc simulation steps of SD-RSNM are described in
Appendix A.

To visualize the basic principle of the risk ripple-
spreading process, we give a simple example, as shown in
Figure 1, where node 0 denotes the contagion source and
nodes 1–3 denote normal network nodes, i.e., fnancial
institutions. Te energy of a ripple decays as it spreads; i.e.,
the strength of energy is refected as the thickness of the
ripple.

At t � 1, the contagion source, i.e., node 0, frst triggers
an initial ripple with energy E0 and spreads out, but it has
not yet reached any node.

At t � 2, the initial ripple triggered by node 0 reaches
node 3. Since fDecay(E0, d03)≥ β3, node 3 is activated and
a directed link from node 0 to node 3 is established. Ten,
node 3 generates a response ripple with energy
E3 � α3fDecay(E0, d03) that spreads out again.

At t � 3, the initial ripple triggered by node 0 reaches
node 1. Since fDecay(E0, d01)≥ β1, node 1 is activated and
generates the corresponding response ripple.

At t � 4, risk ripples triggered by contagion source
disappear; i.e., the energy value decays to 0, while risk ripples
triggered by nodes 1 and 3 continue to spread out.

At t � 5, the ripple triggered by node 1 reaches node 2;
since fDecay(E1, d12)≥ β2, node 2 is activated by node 1 and
generates the corresponding response ripple.

At t � 6, the ripple triggered by node 2 reaches node 1,
since fDecay(E2, d21)< β1, node 1 is not activated; the ripple
triggered by node 1 reaches node 0, since
fDecay(E1, d10)≥ β0, node 0 is activated by node 1 and
generates the corresponding response ripple. At the same
time, the ripple triggered by node 1 reaches node 3, although
fDecay(E2, d21)< β1, a dotted link is created from node 1 to 3,
which is determined by chance. Ten, node 3 generates
a response ripple with energy E3 � α3fDecay(E1, d13).

Tus, a directed fnancial network consisting of four
nodes and fve edges is formed.

2.2. Parameter Specifcations. Parameter specifcations are at
the heart of the ripple-spreading network, and in this paper,
we set them in the context of systemic risk regime switching.
Te smooth-transition vector autoregression (STVAR)
model proposed by Weise [48] is capable of examining
asymmetric mechanisms in both high- and low-state re-
gimes. Te general form of the STVAR model can be
expressed as follows:

Complexity 3



Yt � 1 − F zt−1( 􏼁􏼂 􏼃 μ0 + 􏽘
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k�1
Πk
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p

k�1
Πk

μYt−k + ΞXt
⎡⎣ ⎤⎦ + εt, (1)

F zt( 􏼁 � diag
1

1 + exp −c zt − c( 􏼁􏼂 􏼃
􏼨 , · · · ,

1
1 + exp −c zt − c( 􏼁􏼂 􏼃

􏼩, c> 0, (2)

where Yt is the m-dimensional endogenous variable in the
period t, Xt is the q-dimensional exogenous variable in the
period t, p is the lag order of the STVARmodel, zt is the state
variable, and F(zt) is the transition function. Given zt and
F(zt), the sample can be partitioned into two states, a low-
state variable regime (l) and a high-state variable regime (h);
Πk

l andΠ
k
μ are the k-order lag term coefcient matrices of the

endogenous variables in the high- and low-state regimes,
respectively. Γ and Ξ are the exogenous variable coefcient
matrices; μ0 and μ1 are the m-dimensional intercept vectors.
F(zt) is the transition function which takes the form of
a logistic function. F(zt) portrays the probability of a sample
being partitioned into diferent state regimes; diag denotes

the diagonal matrix; c determines the degree of smoothing of
the regime transition, the larger the value of c, the faster the
rate of regime transition; c is the threshold parameter for
regime partitioning.

Furthermore, (1) can be equated to the following form:

Yt � B1′Wt + F zt−1( 􏼁B2′Wt + εt, (3)

where B1 � (μ0,Π1l , · · · ,Πp

l , Γ), B2 � (μ1,Π1μ, · · · ,Πp
μ ,Ξ),

Wt � (1, Yt−1, · · · , Yt−p, Xt), and εt ∼ N(0,Ω).
Following Caggiano et al. [49], the model can be sim-

plifed as follows:

Yt � 1 − F zt−1( 􏼁􏼂 􏼃ΠlYt−1 + F zt−1( 􏼁ΠμYt−1 + εt � Π∗l Yt−1 + F zt−1( 􏼁Π∗μYt−1 + εt, (4)

F zt( 􏼁 � 1 + exp −c zt − c( 􏼁􏼂 􏼃􏼈 􏼉
− 1

, c> 0, (5)

where Π∗μ � Πμ − Πl, zt is the normalized state variable, i.e.,
zt � (zt0 − zmean)/zstd, zt0 is the original observation, zmean
is the mean, and zstd is the standard deviation. It should be
noted that, in this paper, we use systemic risk measured by
CoVaR [50] as the state variable and the risk indicator, i.e.,
historical volatility [26] of each fnancial institution as en-
dogenous variables in the model.

On the basis of the coefcient estimation and regime
partitioning of the STVAR model, following Diebold et al.
[25], we can obtain the variance contribution under high and
low systemic risk regimes, i.e., how much of the future
uncertainty of variable j is due to shocks in variable i:

dij �
σ−1
ii 􏽐

H−1
h�0 ei
′Ah􏽐ej􏼐 􏼑

2

􏽐
H−1
h�0 ei
′Ah􏽐Ah

′ei( 􏼁
2 , (6)

where dij denotes the proportion of changes in i caused by
the shocks of the endogenous variable j and describes the
risk spillover intensity from j to i, N is the number of
endogenous variables, H is the forecast period, σ−1

ii is the
standard deviation of the error term for the i th equation, Σ is
the covariance matrix for the error vector εt, Ah is the H-step
moving average coefcient matrix, and ei is the selection
vector, with one being the i th element and zeros otherwise.
Since the shocks between variables are not orthogonal, the
entries of each row in the variance decomposition matrix do
not add up to 1. Hence, we normalize it according to the row
summation approach and obtain

􏽥dij �
d

H
ij

􏽐
N
j�1d

H
ij

⎛⎝ ⎞⎠ × 100. (7)

1

2
3

0

1

2
3

0

1

2
3

0

1

2
3

0

1

2
3

0

1

2

3

0

t=3t=2t=1
t=4t=5t=6

Figure 1: A simple example of the semideterministic ripple-spreading network.
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Furthermore, we can set the network parameters based
on the results of the regime transformation.

Connection threshold βi: We assume that the more
external shocks an institution is exposed to, the more vul-
nerable it is to fnancial contagion. It is similar to 􏽥dij in the
connectedness method proposed by Diebold et al. [25].
Tus, based on (7), the connection threshold for institution i

under high and low systemic risk regimes, i.e., βi(h) and
βi(l), can be expressed as follows:

βi(h) �
1

􏽐
N
j�1

􏽥dij(h)
, i≠ j; βi(l) �

1
􏽐

N
j�1

􏽥dij(l)
, i≠ j.

(8)

Amplifying factor αi: We use the market capitalization of
each fnancial institution to specify αi under high and low
systemic risk regimes. For example, the average market
capitalization of ICBC under a high-risk regime is 17.014 ×

100 billion yuan, so we set αICBC(h) � 17.014; the average
market capitalization of ICBC under a low-risk regime is
16.276 × 100 billion yuan, so we set αICBC(l) � 16.276.

Spreading speed si: Following Xu et al. [43], we use the
average turnover rate to specify si under diferent systemic
risk regimes. For example, the average turnover rate of ICBC
under a high systemic risk regime is 0.081, so we set
sICBC(h) � 0.081; the average turnover rate of ICBC under
a low systemic risk regime is 0.066, so we set
sICBC(l) � 0.066.

Market distance dij: dij is determined by the inverse of
the volatility correlation coefcient between institutions i

and j; i.e., the higher the correlation between two fnancial
institutions, the shorter their distance and the easier it is for
risk ripples to reach. Tus, the market distance between
institutions i and j under the high- and low-risk regimes, i.e.,
dij(h) and dij(l), can be expressed as

dij(h) �
1

corij(h)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, corij(h)≠ 0; dij(h) �

1
corij(l)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, corij(l)≠ 0, (9)

where corij is the correlation coefcient calculated based on
history volatility data between institutions i and j. In ad-
dition, if corij � 0, then dij � +∞.

2.3. Heterogeneous Network. Given a lager enough E0, the
ripple-spreading process will eventually form a stable fully
connected network with nodes N and edges N(N − 1),
which is not conducive to analyzing the systemic importance
of fnancial institutions. Following Xu et al. [43], we use the
variance of node degrees to identify the heterogeneous
network of the ripple-spreading process under diferent
systemic risk regimes. For every time instant t, let At �

(at
ij), i, j � 1, 2, · · ·, N be the adjacency matrix of the in-

stantaneous network in the ripple-spreading process.
Te variance of node degrees at t can be expressed as

follows:

s
2
t �

􏽐
N
i�1 D

t
i − Dt􏼐 􏼑

2

N
, (10)

where Dt
i denotes the node degree of the node i, i.e.,

Dt
i � 􏽐

N
i�1a

t
ij + 􏽐

N
i�1a

t
ji, and Dt denotes the average of node

degrees, i.e., Dt � (􏽐
N
i�1D

t
i )/N; when s2t takes the maximum

value, the network is of best heterogeneity and appropriate
for analyzing systemically important fnancial institutions
(SIFIs).

3. Data

Limited to data availability, we select 55 fnancial institutions
listed before 2011 as the main research object, specifcally
including 11 real estate companies, 16 banks, 14 securities, 4
insurance, and 10 diversifed fnancial institutions, as shown
in Table 1. In terms of sample selection, we include some
real estate companies (collectively, fnancial institutions) in
our research sample due to their fnancial-like attributes.Te
research sample covers the periods from January 4, 2011, to
February 10, 2023. Te daily historical volatility [26] of each
institution can be expressed as

Vi,t � 0.511 Hi,t − Li,t􏼐 􏼑
2

− 0.019 Ci,t − Oi,t􏼐 􏼑 Hi,t + Li,t − 2Oi,t􏼐 􏼑 − 2 Hi,t − Oi,t􏼐 􏼑 Li,t − Oi,t􏼐 􏼑􏽨 􏽩 − 0.383 Ci,t − Oi,t􏼐 􏼑
2
, (11)

where Hi,t, Li,t, Oi,t, and Ci,t are the logs of daily high, low,
opening, and closing prices, respectively, and the data are
obtained from the Wind database.

In the STVARmodel with the systemic risk index [50] as
the state variable, the results of the grid point search show
that the smoothing coefcient c of the transition function is
estimated to be 10 and the parameter c takes the value 1.126.
Figure 2(a) shows the results of the transition function. It can

be found that the transition function shows a smooth and
asymptotic trend, suggesting a nonlinear relationship of
asymptotic evolution of risk contagion as the state of sys-
temic risk changes. Furthermore, the distribution of the high
and low states of systemic risk over the sample period can be
obtained, as shown in Figure 2(b). Te shaded areas in
Figure 2(b) mark the high systemic risk regime. It can be
found that the high systemic risk regime covers the period of
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Table 1: ∗Name and abbreviation of China’s fnancial institutions.

No. Institution name Abbr.
1 China Vanke Co., Ltd. RE01
2 Poly Developments and Holdings Group Co., Ltd. RE02
3 Shenzhen Overseas Chinese Town Co., Ltd. RE03
4 China Fortune Land Development Co., Ltd. RE04
5 Gemdale Corporation RE05
6 Shanghai Lujiazui Finance & Trade Zone Development Co., Ltd. RE06
7 Xinhu Zhongbao Co., Ltd. RE07
8 Oceanwide Holdings Co., Ltd. RE08
9 Risesun Real Estate Development Co., Ltd. RE09
10 Youngor Fashion Co., Ltd. RE10
11 Jinke Property Group Co., Ltd. RE11
12 Industrial and Commercial Bank of China ICBC
13 Agricultural Bank of China ABC
14 Bank of China BOC
15 China Construction Bank CCB
16 Bank of Communications BCM
17 China Merchants Bank CMB
18 Shanghai Pudong Development Bank SPD
19 China CITIC Bank BCC
20 Ping An Bank PAB
21 Huaxia Bank HXB
22 China Minsheng Bank MSB
23 China Everbright Bank CEB
24 China’s Industrial Bank IBC
25 Bank of Beijing BOB
26 Bank of Nanjing BNJ
27 Bank of Ningbo BNB
28 China Merchants Securities CMS
29 Changjiang Securities CJS
30 CITIC Securities CITIC
31 Everbright Securities EBS
32 GF Securities GFS
33 Guoyuan Securities GYS
34 Sinolink Securities SLS
35 Southwest Securities SWS
36 Haitong Securities HTS
37 Huatai Securities HZS
38 Northeast Securities NES
39 Pacifc Securities PS
40 Sealand Securities SS
41 Industrial Securities IS
42 China Life Insurance CLIC
43 China Pacifc Insurance CPIC
44 China Ping An Insurance PAIC
45 Tianmao Insurance Company TMIC
46 Xinli Finance XLF
47 Anxin Trust and Investment AXT
48 Bohai Leasing BHL
49 Luxin Venture Capital LXC
50 Minmetals Capital Company MCC
51 Minsheng Holdings MSH
52 Aijian Group AJG
53 Shaanxi International Trust SIT
54 Sunny Loan Top SLT
55 CNPC Capital Company Limited CNP
∗Note. No. 1–11 represent the real estate companies; no. 12–27 represent banks; no. 28–41 represent securities; no. 42–45 represent insurance; no. 46–55
represent the diversifed fnancial institutions.
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“the market liquidity crisis caused by the money shortage
in China’s banking sector in 2013,” “the stock market
crash in China in 2015-2016,” and the outbreak of the
public health event, i.e., “COVID-19” in early 2020. In
particular, the aggregation characteristics of systemic risk
are the most obvious during the period of “the stock
market crash in China in 2015-2016.” Since the end of
2014, China’s stock market has seen explosive growth and
high market sentiment, with investors leveraging into the
market through brokerage fnancing and over-the-
counter matching, resulting in an over-leveraged stock
market and a serious market valuation bubble. However,
by the second half of 2015, the market trend took a sharp
turn for the worse, and the departure of leveraged funds
accelerated the decline of the stock market, which
eventually led to the outbreak of stock disasters and the
high fuctuation of systemic risk. Compared with the
actual situation, the model constructed in this paper can
well identify the evolution of China’s systemic risk in
various periods, indicating that the logistic smooth-
switching model adopted in this paper can efectively
identify various types of crisis events, and the estimation
results of the model are reasonable and reliable. Finally, it
can be estimated that, in the sample range from 2011 to
2023, China’s fnancial system has about 20% of the time
in a state of high systemic risk.

On the basis of the above systemic risk regime identi-
fcation, we give the behavioral parameters of the ripple-
spreading network under high and low systemic risk re-
gimes, respectively, as shown in Tables 2 and 3. Te market
distance, i.e., dij(h), dij(l), is measured by the inverse of the
correlation coefcient of historical volatility between f-
nancial institutions. In addition, in China’s fnancial system,
the real estate sector occupies an important position, so we
set a real estate company as the contagion source to explore
the risk ripple-spreading processes. To ensure sufcient
network links, the energy of initial ripple of contagion source
is set as esource(h) � esource(l) � E0 � 200π.

4. Results and Discussion

4.1. Ripple-Spreading Process under High Systemic Risk
Regimes. Given the model-related parameters mentioned
above, we perform the risk ripple-spreading simulation
processes under high systemic risk regimes according to the
algorithm in Appendix A.

Figure 3 shows the dynamic ripple-spreading processes
for 55 fnancial institutions, by giving some heat maps at
t� 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, and 64.Te rows of
the heat maps represent the ripple-spreading efect from
a given fnancial institution to other fnancial institutions.
For example, the frst row of Figure 3(a) represents the
ripple-spreading efect from the real estate company, i.e.,
RE01, to other institutions. In addition, in order to better
distinguish the ripple-spreading efects within and across
sectors, we use dotted lines to partition the heat map by
sectors, i.e., the real estate, banking, securities, insurance,
and diversifed fnancial sectors. Te fve diagonal areas of
each subfgure in Figure 3 indicate the risk contagion within

sectors, and nondiagonal areas indicate the risk cross-
contagion between sectors. For example, the top-left cor-
ner of Figure 3(a) represents the risk contagion within the
real estate sector; the bottom-left corner of Figure 3(a)
represents risk cross-contagion from the diversifed fnan-
cial sector to the real estate sector.

From these heat maps, it can be found that the number
of contagion links increases gradually over time. By ob-
serving the instantaneous state of the ripple-spreading
network, we can identify which fnancial institutions are
afected frst and which are afected later. On the whole, the
contagion triggered by the real estate company, i.e., RE01,
frst spreads to the real estate and banking sectors and then
to the insurance and securities sectors and thus triggers the
widespread contagion within the fnancial system. Spe-
cifcally, Figures 3(a) and 3(b) show that the fnancial
contagion originating from the source node, i.e., RE01, frst
reaches the real estate sector (RE02) and the banking sector
(ABC, BOC, CCB, BCM, etc.) and then spreads to the
insurance sector (CPIC, CLIC, etc.) and the securities
sector (GYS). By t � 24, as shown in Figure 3(b), all banks
are directly afected by the risk ripple of the contagion
source. Tese fndings suggest that real estate companies
have a signifcant impact on the fnancial system, especially
on the banking sector. Real estate companies are linked
with banks through massive amounts of debt, so when real
estate risks occur, the banking sector is afected more
deeply and broadly. As risk ripples continue to spread, the
cross-contagion occurs among institutions beyond the
source node, and the network density increases gradually,
as shown in Figures 3(c)–3(l). By t � 28, as shown in
Figure 3(c), the risk ripple from CCB reaches most banks
such as ICBC, ABC, BOC, and BCM. Ten, the risk ripple
from CCB reaches the securities sector (CMS, CJS, CITIC,
etc.) and the insurance sector (CLIC, CPIC, and PAIC), as
shown in Figure 3(d). Meanwhile, the risk ripples from
securities institutions (CITIC and GYS) begin to spread to
the fnancial system. It is worth noting that, by t � 32, all
diversifed fnancial institutions are not yet afected by risk
ripples and do not send any links to the system, suggesting
that diversifed fnancial institutions are more distant from
other fnancial institutions.

From t� 44 to t� 64, as shown in Figures 3(g)–3(l), we can
fnd that the cross-contagion between fnancial institutions
gradually permeates the entire fnancial system and the se-
curities sector sends the most risk ripples to the system net-
work. In addition, there are as many as 1,735 links at t� 52,
which is signifcantly higher than that at t� 40, i.e., 603, in-
dicating that risk ripples among fnancial institutions spread
very fast. After the contagion channels are fully established in
the early stage, the rapid risk contagion begins in the later stage.
Terefore, it is wise for regulators to take timely measures to
block the paths of risk contagion before the contagion channels
are fully established.

4.2. Ripple-Spreading Process under Low Systemic Risk
Regimes. Given the model-related parameters mentioned
above, we perform the risk ripple-spreading simulation
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processes under low systemic risk regimes according to the
algorithm in Appendix A.

For a better comparative analysis with the ripple-
spreading network under high systemic risk regimes, Fig-
ure 4 similarly shows heat maps of the ripple-spreading
process under the low systemic risk regime at t� 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60, and 64. From these heat maps,
we fnd that the contagion triggered by the contagion source,
i.e., RE01, frst spreads to the real estate sector and then to
the banking, securities, and insurance sectors and thus
triggers the cross-contagion beyond the source node. Spe-
cifcally, Figures 4(a)–4(c) show that the fnancial contagion
originating from the source node, i.e., RE01, frst reaches the
real estate sector (RE02, RE03, RE05, etc.) and then spreads

to the banking sector (ICBC, ABC, CCB, etc.), the securities
sector (CJS, CITIC, GFS, etc.), and the insurance sector
(CPIC, PAIC). By t� 28, as shown in Figure 4(c), most banks
are directly afected by the source node, which is similar to
the ripple-spreading network under high systemic risk re-
gimes; i.e., the real estate sector has the most signifcant
impact on the banking sector. Moreover, by t� 28, the
number of links in the system network is 32, which is smaller
than the links under the high systemic risk regime, sug-
gesting that fnancial institutions are relatively more distant
from each other under low systemic risk regimes. As the risk
ripple-spreading process goes on, we fnd that the cross-
contagion occurs beyond the source node, as shown in
Figures 4(d)–4(f). By t� 32, the cross-contagion occurs
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Figure 2: Transition function and state regime transitions. (a) Scatterplot distribution between state variable and the transition function;
(b) distribution of sample values of the transition function.

Table 2: Parameters of the ripple-spreading network: high systemic risk regime.

RE01 RE02 RE03 RE04 RE05 RE06 RE07 RE08 RE09 RE10 RE11
αi 2.546 1.288 0.589 0.772 0.550 0.611 0.367 0.432 0.362 0.336 0.270
βi 1.233 1.066 1.067 1.085 1.071 1.076 1.097 1.074 1.079 1.070 1.093
si 0.966 0.995 1.196 0.583 0.758 0.451 0.958 0.352 0.935 1.012 1.529

ICBC ABC BOC CCB BCM CMB SPD BCC PAB HXB MSB
αi 17.014 11.060 10.210 12.657 4.026 5.947 3.343 2.721 1.988 1.145 2.936
βi 1.057 1.066 1.057 1.057 1.061 1.066 1.070 1.054 1.050 1.063 1.073
si 0.081 0.106 0.143 1.263 0.415 0.354 0.395 0.209 0.651 0.526 0.487

CEB IBC BOB BNJ BNB CMS CJS CITIC EBS GFS GYS
αi 1.893 3.304 1.252 0.623 0.852 1.093 0.488 2.290 0.655 1.159 0.368
βi 1.069 1.063 1.071 1.059 1.068 1.050 1.055 1.052 1.057 1.046 1.052
si 0.414 0.632 0.559 1.003 0.848 0.733 1.416 1.957 1.294 1.043 1.848

SLS SWS HTS HZS NES PS SS IS CLIC CPIC PAIC
αi 0.377 0.393 1.553 1.376 0.261 0.293 0.281 0.508 6.929 2.602 9.373
βi 1.062 1.055 1.053 1.049 1.060 1.065 1.053 1.058 1.076 1.064 1.065
si 2.103 1.427 1.336 1.296 2.506 3.344 2.597 1.634 0.120 0.444 0.870

TMIC XLF AXT BHL LXC MCC MSH AJG SIT SLT CNP
αi 0.276 0.053 0.299 0.324 0.168 0.169 0.044 0.173 0.174 0.041 0.447
βi 1.112 1.222 1.104 1.061 1.104 1.096 1.371 1.403 1.082 1.109 1.101
si 1.602 1.732 1.868 0.860 2.404 3.004 2.676 1.724 2.133 3.873 1.436
Note. Te data in Table 2 are compiled by the authors based on Chapter 2.2.
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within the securities sector, and some securities institutions
such as CITIC begin to send risk ripples or links to the
banking sector. By t� 36, the risk cross-contagion occurs
within the banking sector. In addition, by t� 40, we can fnd
that most of the links constructed by the diversifed fnancial
institutions are mostly from securities institutions, while the
diversifed fnancial institutions do not issue any links to the
system network. Tis implies that the diversifed fnancial
institutions are the main receiver of risk ripples in the
Chinese fnancial system. From t� 44 to t� 64, as shown in
Figures 4(g)–4(l), we fnd that the risk cross-contagion re-
lationships become more complex and the network density
increases gradually. Taken together, although risk ripples
spread slower in low than in high systemic risk regimes,
systemic shocks can also trigger large-scale risk contagion
within the fnancial system even in low systemic risk regime
as risk ripples spread.

4.3. Network Centrality Analysis of Heterogeneous Networks.
In the above analysis, we have studied the dynamic ripple-
spreading processes in China’s fnancial system under high
and low systemic risk regimes. Furthermore, we discuss the
network centrality of heterogeneous ripple-spreading net-
works and identify the systemic importance of fnancial
institutions (SIFIs). According to (10), each process can
generate a stable heterogeneous network. We set the upper
time limit to t� 500. Figure 5 shows the dynamic change
trend of network heterogeneity. It can be seen that network
heterogeneity increases sharply from 0 to a maximum value
and then decreases gradually as risk ripples spread. Te
network heterogeneity in high and low systemic risk regimes
reaches its maximum value at t� 49 and t� 60, respectively.

In this subsection, we consider four network centrality
indicators, i.e., degree centrality (DC), closeness centrality
(CC), eigenvector centrality (EC), and betweenness

centrality (BC), based on heterogeneous networks selected
above under diferent risk regimes, to identify and analyze
SIFIs. Tese four network centrality indicators measure the
systemic importance of fnancial institutions from diferent
perspectives. In general, the higher the network centrality of
a node, the higher its systemic importance in the system
network. Te implications of these four centralities are
presented in Appendix A. Figures 6–9 show the measure-
ment results of four network centrality indicators for each
fnancial institution under high and low systemic risk re-
gimes. Te results are given in the form of heat maps, where
darker colors indicate higher centrality values and higher
systemic importance of fnancial institutions. Due to space
constraints, only some of the English abbreviations of f-
nancial institutions are shown in heat maps, and their order
from left to right is consistent with Table 1. As can be seen,
whether the fnancial system is in a high- or low-risk regime,
nodes with higher network centrality are mostly distributed
in the securities, banking, and real estate sectors, and nodes
with lower network centrality are mostly distributed in the
diversifed fnancial sector.

Specifcally, Table 4 shows the top 15 SIFIs ranked based
on four network centralities under high and low systemic
risk regimes. Overall, the top 15 SIFIs are concentrated in the
banking and securities sectors. However, there are some
diferences in the ranking of fnancial institutions under high
and low risk regimes. In particular, the systemic importance
characteristics of some securities institutions in the high
systemic risk regime are particularly signifcant. For ex-
ample, securities institutions such as GYS, HZS, IS, and GFS
all appear in the top 15 lists for four centralities under high
systemic risk regimes and only appear in the top 15 lists for
one or two centralities under low systemic risk regimes. In
addition, some real estate companies, such as RE02, RE09,
and RE10, appear in the top 15 lists, while diversifed

Table 3: Parameters of the ripple-spreading network: low systemic risk regime.

RE01 RE02 RE03 RE04 RE05 RE06 RE07 RE08 RE09 RE10 RE11
αi 2.045 1.302 0.531 0.453 0.453 0.396 0.293 0.252 0.277 0.273 0.237
βi 1.137 1.119 1.156 1.317 1.141 1.330 1.259 1.191 1.211 1.126 1.347
si 0.889 0.925 1.148 1.334 0.998 0.371 0.604 0.441 1.126 0.597 1.620

ICBC ABC BOC CCB BCM CMB SPD BCC PAB HXB MSB
αi 16.276 10.272 9.095 12.717 3.520 6.591 2.542 2.260 2.026 0.907 2.258
βi 1.102 1.088 1.100 1.103 1.081 1.073 1.072 1.110 1.099 1.075 1.079
si 0.066 0.148 0.085 0.930 0.316 0.369 0.487 0.135 0.832 0.483 0.466

CEB IBC BOB BNJ BNB CMS CJS CITIC EBS GFS GYS
αi 1.620 3.040 0.996 0.613 1.086 1.025 0.360 2.222 0.555 1.040 0.303
βi 1.074 1.081 1.088 1.100 1.105 1.072 1.080 1.068 1.101 1.086 1.108
si 0.396 0.637 0.434 0.769 0.693 0.602 1.053 1.277 1.089 0.996 1.218

SLS SWS HTS HZS NES PS SS IS CLIC CPIC PAIC
αi 0.306 0.288 1.228 1.053 0.194 0.205 0.228 0.434 6.527 2.367 8.106
βi 1.131 1.149 1.076 1.072 1.078 1.106 1.114 1.084 1.111 1.100 1.089
si 1.876 0.738 1.001 1.061 1.398 2.135 3.518 1.469 0.103 0.473 0.801

TMIC XLF AXT BHL LXC MCC MSH AJG SIT SLT CNP
αi 0.180 0.042 0.215 0.196 0.119 0.211 0.033 0.130 0.122 0.034 0.595
βi 1.477 2.449 1.217 1.300 1.319 1.340 2.179 1.175 1.113 1.292 1.706
si 1.146 3.146 1.362 1.175 1.144 2.138 2.019 1.604 1.754 2.699 0.839
Note. Te data in Table 3 are compiled by the authors based on Chapter 2.2.
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Figure 3: Heat maps for dynamic ripple-spreading process under high systemic risk regimes. Due to space constraints, only some of the
English abbreviations of fnancial institutions are shown, and their order from top to bottom and from left to right is consistent with Table 1.
(a) Current time: t� 20, links: 14; (b) current time: t� 24, links: 22; (c) current time: t� 28, links: 43; (d) current time: t� 32, links: 97; (e)
current time: t� 36, links: 251; (f ) current time: t� 40, links: 603; (g) current time: t� 44, links: 1040; (h) current time: t� 48, links: 1477; (i)
current time: t� 52, links: 1735; (j) current time: t� 56, links: 1911; (k) current time: t� 60, links: 2041; (l) current time: t� 64, links: 2134.
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Figure 4: Heat maps for the dynamic ripple-spreading process under low systemic risk regimes. Due to space constraints, only some of the
English abbreviations of fnancial institutions are shown, and their order from top to bottom and from left to right is consistent with Table 1.
(a) Current time: t� 20, links: 3; (b) current time: t� 24, links: 17; (c) current time: t� 28, links: 32; (d) current time: t� 32, links: 74;
(e) current time: t� 36, links: 227; (f ) current time: t� 40, links: 487; (g) current time: t� 44, links: 752; (h) current time: t� 48, links: 953;
(i) current time: t� 52, links: 1144; (j) current time: t� 56, links: 1342; (k) current time: t� 60, links: 1532; (l) current time: t� 64, links: 1733.
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fnancial institutions do not appear in the top 15 lists.
Terefore, we conclude that most securities and banks and
some real estate companies have the highest systemic im-
portance, and the diversifed fnancial institutions have the
lowest importance. Furthermore, we average the network
centrality indicators for each fnancial institution by sector
to obtain a systemic importance ranking for each sector, and
the results are shown in Table 5. It can be found that the
systemic importance of the real estate sector is higher in high

than in low systemic risk regimes, and supervisors should
pay particular attention to the risk contagion capacity of the
real estate sector when the fnancial system is under pressure.
In addition, whether the fnancial system is in a high or low
systemic risk regime, the securities sector has the highest
“degree centrality” and “betweenness centrality,” which
indicates that the securities sector not only has signifcant
risk ripple linkage capacity but also has signifcant risk ripple
intermediation efects. Te spreading of risk ripples relies
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Figure 6: Heat map of degree centrality for each fnancial institution.
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Figure 7: Heat map of closeness centrality for each fnancial institution.
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Figure 8: Heat map of eigenvector centrality for each fnancial institution.
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Figure 9: Heat map of betweenness centrality for each fnancial institution.
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heavily on information transmission from the securities
sector, thus providing a new entry point for blocking risk
contagion.

5. Conclusion

In this paper, we propose using the ripple-spreading net-
work model to reveal the spatiotemporal evolutionary
characteristics of systemic risk contagion in China’s fnancial
system. Compared to existing fnancial networks such as
correlation networks and spillover networks, the ripple-
spreading network provides a new tool for modeling the
dynamic process of how fnancial contagion spreading from
the contagion source to the whole fnancial system. On the
one hand, the dynamic ripple-spreading process can reveal
which nodes are afected frst and which are afected later.
On the other hand, we can identify SIFIs based on the
generated heterogeneous networks.

As for the dynamic ripple-spreading processes, we fnd
that risk ripples spread much faster in high than in low
systemic risk regimes. However, systemic shocks can also
trigger large-scale risk contagion within the fnancial system
even in low systemic risk regimes as the risk ripples con-
tinue. Excessive network connectedness among institutions
can amplify fnancial shocks through contagion efects.
Overall, whether the fnancial system is in a high- or low-risk
regime, the risk ripples from the contagion source (i.e., a real
estate company) spread frst to the real estate sector and the

banking sector. On the one hand, institutions belonging to
the same sector share similarities in terms of their business
scope, business pattern, investment pattern, risk manage-
ment, and fnancial regulation, etc., which may make it
easier for the cross-contagion to occur within the sector. On
the other hand, the real estate companies are linked with
banks through massive amounts of debt, so when real estate
risks occur, the banking sector is afected more deeply and
broadly. In addition, the diversifed fnancial institutions
have fewer risk interactions in the early stage, and all the
links established by the diversifed institutions are mostly
from securities, while it issues fewer links to the system
network. Tis implies that the diversifed institutions are the
main receiver of risk ripples in the Chinese fnancial system.

As for the identifcation for SIFIs, we fnd that most
securities and banks and some real estate companies are the
most systemically important fnancial institutions in China’s
fnancial system. Although we set the real estate company,
i.e., RE01, as the contagion source, securities institutions
exhibit the strongest risk ripple-spreading ability as the risk
ripples continue, sending the most links to the system
network. Especially, the systemic importance characteristics
of securities institutions in high systemic risk regimes are
particularly signifcant. To some extent, the results are not
consistent with the previous studies, which noted that large
fnancial institutions such as banks and insurances are the
most SIFIs [51, 52]. For example, Wang et al. [51] noted that
banks and insurance institutions in China contribute more
to systemic risk than securities institutions. Chen et al. [52]
pointed out that SIFIs are concentrated in the banking and
insurance sectors. Te reason for this is that the methods
used in these studies focus mainly on assessing the systemic
risk contribution of fnancial institutions. Te higher the
systemic risk contribution of a fnancial institution, the
higher the level of systemic importance. However, the
measurement of systemic risk contribution usually takes into
account the impact of the size of fnancial institutions, so
that large-scale fnancial institutions such as banks and
insurance are identifed as SIFI. Our paper mainly focuses on
the network correlation of fnancial contagion, rather than

Table 4: Te top 15 SIFIs under high and low systemic risk regimes.

Rank
High systemic risk regime Low systemic risk regime

DC CC EC BC DC CC EC BC
1 GYS BCC SPD CCB CITIC MSB SPD IBC
2 HZS HZS BCC RE03 NES SPD MSB MSB
3 CITIC GFS BCM PS PS CMB BCM CITIC
4 IS CMS HZS IBC SIT BCM CMB PS
5 GFS SPD GFS RE09 SS BOB BOB NES
6 SS GYS CMS BNB HZS ABC HXB PAB
7 RE02 RE10 IBC CITIC RE03 HXB ABC SPD
8 CJS BCM BOB HZS CJS IBC IBC SIT
9 SWS CITIC GYS HXB IS CEB CEB RE03
10 HTS IS RE10 GYS HTS BOC BOC HTS
11 NES RE02 HXB BNJ GYS CITIC HTS HZS
12 PS CJS CITIC IS RE01 HTS CITIC IS
13 RE11 HTS RE02 GFS SLS CMS CMS SS
14 BNJ IBC IS RE02 EBS ICBC CPIC HXB
15 SLS BOB HTS SWS RE02 CPIC ICBC BNJ

Table 5: Systemic importance ranking of fnancial sectors under
high and low systemic risk regimes.

Rank
High systemic risk regime Low systemic risk regime
DC CC EC BC DC CC EC BC

1 G3 G3 G3 G3 G3 G2 G2 G3
2 G1 G2 G2 G2 G1 G3 G3 G2
3 G2 G1 G1 G1 G2 G4 G4 G1
4 G4 G4 G4 G4 G4 G1 G1 G4
5 G5 G5 G5 G5 G5 G5 G5 G5
Note. G1, G2, G3, G4, and G5 represent the real estate, banking, securities,
insurance, and diversifed fnancial sectors, respectively.
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the systemic risk contribution. Financial institutions with
the highest network correlation tend to have the highest
systemic importance. At the same time, this inconsistency
reminds fnancial regulators and government departments
that systemic risk regulation should focus not only on large
institutions but also on institutions with strong ripple-
spreading efects.

Finally, it is worth noting that the channel mechanism of
fnancial contagion is very complex, this paper only analyzes the
dynamic ripple-spreading processes of risk triggered by con-
tagion source under high and low systemic risk regimes and
does not involve the exploration of specifc contagion channels
or mechanisms. In the future, a more comprehensive in-
tegration of the factors afecting fnancial contagion will provide
a better understanding of the contagion process of risks.

Appendix

A. Simulation Steps of the
Ripple-Spreading Network

Given the ripple-spreading network behavior parameters,
the new dynamic ripple-spreading network model can be
mathematically described as follows:

Step 1. Initialize the current time instant, i.e., t � 0;
initialize the current point energy of contagion source
as esource(t) � E0, (E0 > 0); initialize the current point
energy of each network node as enodes(i, t) �

Enodes(i) � 0, i � 1, 2, · · ·, N. Assume contagion source
and each node have a ripple with a current radius of 0,
i.e., rsource(t) � 0, rnodes(i, t) � 0.
Step 2. If the stopping criteria are not satisfed, do the
following:

Step 2.1. Let t � t + 1,
Step 2.2. Update the current radius and point energy
of contagion source as rsource(t) � rsource(t − 1) + s0,
esource(t) � fDecay(E0, rsource(t)), where s0 is the
spreading speed of contagion source, i.e., the change
in the radius of a ripple during one time instant,fDecay
is a function defning how the point energy decays as
the ripple spreads out. A typical decaying function can
be defned as follows:

fDecay E0, rsource(t)( 􏼁 �
ηE0

2πrsource(t)
, (A.1)

where η is a decaying coefcient and π is the math-
ematical constant. Clearly, η has an important in-
fuence on the decaying speed of ripples and will
therefore afect the fnal network topology. In this
paper, following Xu et al. [43], we set η � 1.
Step 2.3. Check which new nodes are reached by the
ripples of contagion source. Suppose d0j is the dis-
tance between the contagion source and node j. If
d0j ≤ rsource(t) and esource(t)≥ βj, then node j is ac-
tivated by contagion source, and thus, a link from the
contagion source to node j is established. Node j

generates a responding ripple with initial energy
Enodes(j) � αjesource(t) and enodes(j, t) � Enodes(j). In
this step, we consider the uncertainty characteristics
of fnancial risk contagion; i.e., if d0j ≤ rsource(t) and
esource(t)< βj, then node j generates responding ripple
with the following probability:

PR(j) � 2ωR 1− βR(j)/esource(t)( ), (A.2)

where ωR > 0 is the probability decay coefcient.
Obviously, the lower the ripple energy, the lower the
probability of generating node behavior.
Step 2.4. If enodes(i, t − 1)> 0, then update the current
radius and energy of the ripple starting from node i in
a similar way to the ripple from the contagion source,
i.e., rnodes(i, t) � rnodes(i, t − 1) + si; enodes(i, t) � fDecay
(Enodes(i), rnodes(i, t))

Step 2.5. Check which new nodes are reached by the
ripples of nodes. If dij ≤ rnodes(i, t) and enodes(i, t)≥ βj,
then node j is activated by node i, and thus, a directed
link from node i to node j is established. Node j

generates a responding ripple with initial energy
Enodes(j) � αjenodes(i, t) and enodes(j, t) � Enodes(j).
Likewise, we consider the uncertainty characteristics
of fnancial risk contagion; i.e., if dij ≤ rnodes(i, t) and
enodes(i, t)< βj, then node j generates responding
ripple with the probability shown in equation (A.2).

Finally, we can stop the simulation in Step 2 by setting an
upper time limit.

B. Networks Centrality Measures

Te degree centrality of node i can be expressed as follows:

DC(i) �
􏽐

N
j�1aij + 􏽐

N
j�1aji􏼐 􏼑

(N − 1)
, (B.1)

where N is the number of nodes and N − 1 is the maximum
out- or in-degree. If there is a directed link from node i to j,
aij � 1; otherwise, aij � 0.

Te closeness centrality for node i is calculated as
follows:

CC(i) �
(N − 1)

􏽐
N
j�1,j≠idij

, (B.2)

where dij denotes the length of a shortest directed path from
i to j.

Eigenvector centrality is a global measure of network
centrality. It assigns a relative score to each node in the
network, and in the contribution of a given node’s score,
connections to nodes with high scores are larger than
connections to nodes with low scores. Te relative centrality
score for node i can be defned as

xi �
􏽐

N
j�1aijxj􏼐 􏼑

λ
, (B.3)
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where λ is a constant. It can be written as an eigenvector
equation: Ax � λx. Typically, each eigenvector will correspond
to a diferent eigenvalue λ. Only the solution corresponding to
the largest eigenvalue is required by the centrality measure.

Te betweenness centrality for node i is calculated as
follows:

BC(i) �
􏽐j,kσjk(i)/σjk􏼐 􏼑

(n − 1)(n − 2)
, (B.4)

where i≠ j, j≠ k is the number of shortest directed paths
linking j and k and σ jk(i) is the number of shortest directed
paths linking j and k that contain node i.
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