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Tis study addresses an adaptive neural funnel fault-tolerant control problem for a class of strict-feedback nonlinear systems with
actuator faults and input dead zone. To guarantee the boundedness of the tracking error, a modifed transformation for funnel
error is devised and incorporated into the control design process. To manage unknown nonlinear functions, radial basis function
neural networks (RBFNN) are employed in designing an adaptive neural funnel fault-tolerant controller through the backstepping
technique. Te proposed controller guarantees the output tracking error stays within a predefned funnel, and all signals in the
closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, simulations of a rigid robot manipulator
system and an inverted pendulum system are conducted to validate the practicality and efectiveness of the proposed control
method.

1. Introduction

In recent years, there has been a growing interest in
addressing the control challenges of nonlinear systems, as
many modern control systems demonstrate nonlinear
behavior [1–3]. In addition, studies on nonlinear systems
have attracted a lot of attention recently, and numerous
control approaches, including sliding mode control,
adaptive backstepping control, and intelligent control, have
been proposed to control design for nonlinear systems
[4–6]. An adaptive backstepping control method can
overcome many of the technical limitations of classic
adaptive control, such as the matching condition and the
relative-degree constraint. Fuzzy logic systems (FLSs) and
neural networks (NNs) have been established to solve this
problem [7]. Te interest in neural networks (NN) and
fuzzy control of nonlinear systems has grown signifcantly

as a result of their ability to fnd unknown nonlinear
functions. As a result, various publications in this feld have
been published [8, 9]. For instance, the issue of adaptive
control for nonlinear systems using fuzzy logic systems has
been studied in [7]. Te problem of adaptive control for
stochastic nonlinear systems has been reported by
employing fuzzy approximation capabilities and in-
tegrating an output feedback mechanism. [10], and an
innovative adaptive NN-based decentralized control
strategy has been developed in [11] for interconnected
nonlinear systems. For nonlinear systems that are subject to
input saturation, the authors in [12] presented a composite
adaptive control strategy. For nonlinear switched systems
with unmodeled dynamics, an adaptive fuzzy control
strategy has been presented in [13]. However, none of the
aforementioned articles addressed the controlled system’s
fault tolerance problem.
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Actuators in real-world control systems may fail while
they are in service. Tese defects have the potential to
temporarily worsen control performance, infuence system
instability, and potentially precipitate disastrous outcomes
[14]. Te fundamental prerequisite for system dependability
is fault-tolerant control (FTC), and system performance
improvement is crucial in light of this.Te passive and active
approaches to the FTC design can be broadly classifed into
two groups [15]. Although the passive technique is typically
used to manage whole and partial actuator faults because its
passive control rules are set, it also has a limited ability to
address unknown actuator problems. Active techniques, as
opposed to passive ones, involve recreating the controller
live and are better equipped to handle unknown actuator
problems. Research interest in fault-tolerant control has
grown recently due to concerns over dependability and
safety, and a growing number of relevant advances have been
made [16–18]. In the presence of actuator faults, adaptive
fault-tolerant control techniques for nonlinear systems have
been reported in [19]. For nonlinear systems with un-
measured states, the authors in [20] reported the adaptive
fault-tolerant control issue based on observers. An adaptive
controller has been reported for a class of nonlinear systems
that are subjected to command-flter and actuator failure
[21]. An adaptive fault-tolerant control methodology, uti-
lizing the approximation method, has been detailed for
nonlinear systems in nonafne forms incorporating non-
linear faults through an event-triggered mechanism [22].

On the other hand, dead zones are one of the most
signifcant nonsmooth nonlinear phenomena that arise in
real-world applications. It has the potential to seriously
impair system control capabilities and potentially cause
instability [23]. As a result, it presents a challenge to con-
troller designs that must produce accurate tracking results
for nonlinear systems [24]. Some control strategies have
recently been put out to address the impact of dead-zone
nonlinearity [25–27].Te challenge of adaptive fuzzy control
for nonlinear systems has been explored, taking into account
dead-zone nonlinearity in the system input [28]. An adaptive
control strategy employing fuzzy approximation is in-
troduced for nonlinear systems, addressing unknown
functions and dead-zone nonlinearities through the in-
corporation of a fuzzy observer [29]. In [30], the researchers
devised a tracking control strategy using an observer-based
adaptive fuzzy approach for a specifc class of nonlinear
systems characterized by strict feedback form, unmeasurable
state variables, and dead zones. Moreover, a recently pub-
lished work in [31] presents an adaptive output control
scheme for stochastic nonlinear systems in pure-feedback
form, incorporating neural networks and accounting for
input dead zones.

Te funnel control has emerged as one of the most
successful control mechanisms in recent years [32–34].
Te primary objective of funnel control design, as outlined
in [35], is to regulate both the transient and steady-state
responses of nonlinear systems. Ensuring the boundedness
of tracking errors involves transforming the tracking error
into a modifed form using an improved funnel error
function, an integral part of the control design process

[36]. Notably, in the realm of nonlinear systems, funnel
control has been successfully implemented without the
need for intricate techniques [37]. In the context of
multiple-input multiple-output (MIMO) linear systems
with input saturation, a funnel control strategy has been
introduced, boasting stringent relative-degree one dy-
namics and stable zero dynamics [38]. Addressing non-
diferentiability, [39] introduces a funnel error
transformation and an adaptive controller utilizing the
properties of funnel and fuzzy approximation to ensure
both steady-state and transient performance in tracking
errors for nonlinear systems.

Building upon the aforementioned research, this study
introduces an adaptive fault-tolerant control approach
employing a funnel for a nonlinear system encountering
actuator faults and input dead zones. Te handling of un-
known functions is facilitated through radial basis function
neural network (RBFNN) approximation. Subsequently, an
adaptive funnel fault-tolerant controller is developed by
incorporating funnel control within the framework of the
backstepping method. Te primary contribution of this
work is as follows:

(i) In comparison to previous results [6, 7, 9], this work
investigated the adaptive fault-tolerant control de-
sign problem for a nonlinear system with actuator
faults and input dead-zone. Designing the suggested
control method with actuator faults and dead-zone
input considerations makes it more versatile for use
in real-world engineering. Te unknown functions
included in the nonlinear systems are modeled using
radial basis function neural networks. Te suggested
control strategy not only ensures nonlinear system
stability but also minimizes the impact of dead-zone
and actuator faults on the performance of the
control.

(ii) Funnel control is employed to regulate nonlinear
systems experiencing actuator faults and input dead
zones. To address the nondiferentiable issue in [40]
and guarantee that the output tracking error always
remains inside a predetermined funnel border,
a funnel variable is constructed. Te proposed
control methodology guarantees that the output
tracking error remains within a predetermined
funnel. Furthermore, utilizing Lyapunov stability
analysis and the backstepping method ensures the
semiglobal uniform ultimate boundedness (SGUUB)
of all signals in the closed-loop system.

Te paper is organized as follows: In Section 2, an
overview of the system is provided, along with an outline of
preliminary concepts. Controller design and the stability
assessment of the closed-loop system are discussed in Sec-
tion 3. Section 4 demonstrates the efectiveness of the
controller through an illustrative example. Lastly, Section 5
serves as the conclusion of the paper.

 . System Description and Preliminaries

Consider the following nonlinear system as follows:
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_ηi � Φi ηi(  + ηi+1ϕi ηi( , i � 1, 2, . . . , n − 1

_ηn � Φn ηn(  + uϕn ηn( 

y � η1

⎧⎪⎪⎨

⎪⎪⎩
(1)

where ηi ∈ R represents the state of the system with
ηi � [η1, η2, . . . , ηi]

T ∈ Ri, 1≤ i≤ n. y is the output of the
system, Φi(·) and ϕi(·) represent the smooth unknown
nonlinear function, u is the system input subject to actuator
fault and dead-zone.

Actuator faults involving input dead zones are critical
problems with real-world applications due to external en-
vironment uncertainties, long system operation, and
physical gear mechanism limitations.Temodel for actuator
fault is described as follows [17]:

u � ζ t, tζ φ(v) + ur t, tr( , (2)

where ζ(t, tζ) ∈ [0, 1] represents the actuation efectiveness,
and φ(v) characterizes the actuator input, accounting for
dead-zone nonlinearity, tζ indicates the time when actuation
efectiveness is compromised, and tr marks the moment
when an uncontrollable additive actuation fault occurs. Te
control signal to be designed is denoted as v, while ur(t, tr)

accommodates the uncontrollable additive actuation faults.

Remark 1. When ζ(t, tζ)≠ 0 and ur(t, tr) � 0, it signifes
a partial loss of performance during operation. Tis con-
dition, termed partial loss of efectiveness, implies that the
actuator’s performance is partially compromised. Con-
versely, when ζ(t, tζ) � 0 and ur(t, tr)≠ 0, it suggests that the
actuator output u is no longer infuenced by φ(v), i.e.,
u � ur(t, tr). Tis condition, known as total loss of efec-
tiveness, indicates that u is fxed at an unknown value
ur(t, tr). Lastly, when ζ(t, tζ) � 0 and ur(t, tr) � 0, meaning
u � 0, as seen in [41]. When ζ(t, tζ) � 1 and ur(t, tr) � 0,
then the actuators work in the failure-free case, as seen
in [41].

Te dead-zone model is represented as follows [42]:

φ(v) �

βr v − Rr( , v≥Rr,

0, Rl < v<Rr,

βl v − Rl( , v≤Rl,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where v is the dead-zone input signal and Rl and Rr are
uncertain breakpoints on the left and right axes that signify
the dead-zone input v. Furthermore, βl and βr are the
unknown slopes that characterise the left and right sides of
the dead zone. From a practical standpoint, it is necessary to
defne β � βr � βl. Ten, φ(v) can be represented as shown
in [43] in the following form:

φ(v) � β(t)v + d(t), (4)

where β(t) is the slope of the dead-zone and d(t) is defned
as

d(t) �

βRr, v≥Rr,

− βv, Rl < v<Rr,

− βRl, v≤Rl.

⎧⎪⎪⎨

⎪⎪⎩
(5)

Since βl and βr represent unknown slopes, setting β �

βr � βl makes β(t) an uncertain term. In addition, d(t)

involves uncertain breakpoints Rl and Rr and uncertain term
β, describing d(t) as an uncertain term. From (5), it is
natural to suppose that |d(t)|≤ d with d � max βRl, βRr .

One of the control objectives is to ensure that the
tracking error e1 � y(t) − yd(t) remains within a specifed
funnel. Tis funnel is mathematically defned as
Θ ≔ (t, e1) ∈ R+ × R ∣ |e1|<Θψ(t) , where the funnel
boundary is represented as zΘ(t) � Θψ(t). In other words,
for all t> 0, we want (t, e1) to belong to the setΘ.Te specifc
form of Θψ(t) is chosen as follows:

Θψ(t) � κ0 − κ∞( e
− βt

+ κ∞, (6)

where κ0 > 0, κ∞ > 0, and β> 0 are design parameters and
limt⟶∞Θψ � κ∞.

Remark 2. In the work [40], they defne a funnel variable
χ1 � e1/Θ2ψ − |e1|. It is evident that χ1 becomes non-
diferentiable when e1(t) � 0, thus failing to meet the
controller design requirement through backstepping.

To address the nondiferentiability issue associated with
the mentioned variable in [40], a new funnel error trans-
formation is defned as

χ1 �
e1�������
Θ2ψ − e

2
1

 ,
(7)

where e1 � η1 − yd.
Te time derivative of χ1 is given as

_χ1 � Γ1 _η1 − _yd −
e1

_Θψ
Θψ

⎛⎝ ⎞⎠, (8)

where Γ1 � Θ2ψ/(Θ
2
ψ − e21)

3.
Control objectives. Te control objective of this work is

to provide an adaptive funnel fault-tolerant controller for the
nonlinear system (1) such that

(i) All of the signals in the closed-loop system are
SGUUB;

(ii) Te tracking error remains inside a defned funnel.

To achieve this objective, we introduce the following
assumptions regarding the system and the reference signal.

Assumption 3 (see [17]). Te reference signal yd and its nth

order derivative are continuous and bounded. Furthermore,
there exists a constant d∗ such that |yd|≤d∗.

Complexity 3



Assumption 4 (see [44]). For i � 1, 2, . . . , n, the signs of
ϕi(ηi) are known, and there exist unknown constants ci such
that 0< ci ≤ |ϕi(ηi)| and it is supposed that ϕi(ηi)> ci.

Assumption 5 (see [17]). Te unknown time-varying
functions ζ(t, tρ) and ur(t, tr) are constrained within
bounded limits. In other words, there exist positive con-
stants ζmin and umax such that ζmin < ζ(t, tζ)≤ 1 and
|ur(t, tr)|≤ umax.

Assumption 6 (see [42]). Temeasurement of the dead-zone
output φ(v) is not available, and the slopes are identical in
both positive and negative regions, specifcally, βr � βl � β.

Assumption 7 (see [42]). Te parameters of the dead-zone,
Rr, Rl, and β, are unknown but bounded, and their signs are
known as Rr > 0, Rl < 0, and β> 0.

Remark 8. Assumption 3 is frequently employed in tracking
control studies, aiming to facilitate subsequent stability
analysis [17, 44]. As outlined in [45], Assumption 4 is
justifed by the deviation of ϕi(·) from 0, satisfying the
controllable condition. It is important to note that the values
of ci are only necessary for analysis purposes. Assumption 3
is a prevalent condition in fault-tolerant control for non-
linear systems, as discussed in [17]. Assumption 4 indicates
that the measurement of the dead-zone output φ(v) is
unavailable, and the slopes are identical in both positive and
negative regions. Meanwhile, Assumption 7 asserts that
parameters of the dead-zone, namely, Rr, Rl, and β, are
unknown but bounded, with their signs known. Assump-
tions 6 and 7 are commonly adopted in [42].

Lemma 9 (Young’s inequality) [46]. For any constants α and
β, the following inequality holds:

αβ≤
1
p

|α|
p

+
1
q
|β|

q
, (9)

where p> 0, q> 0, and (p − 1)(q − 1) � 1.

In this paper, radial basis function neural networks
(RBFNN) WTP(X) are employed [20] to estimate uncertain
continuous function Φ(.) defned within a compact set
Ω ⊂ Rq to achieve any desired accuracy ϵ> 0 such that

Φ(X) � W
T
P(X) + δ(X), (10)

where |δ(X)|≤ ϵ, W � [W1, W2, . . . , Wl]
T ∈ Rl represents

the ideal weight vector, and P(X) �

[P1(X), P2(X), . . . , Pl(X)]T represents the basis function
vector which is commonly chosen as Gaussian function as
follows:

Pi(X) � exp −
X − αi( 

T
X − αi( 

2η2
 , (i � 1, 2, . . . , l),

(11)

where αi � [αi1, αi2, . . . , αiq]T is the center and η is the width
of the basis function.

Remark 10. In the neural network (NN) with q neurons in
the input layer, l neurons in the hidden layer, and n neurons
in the output layer, the computation for the input layer
WTP(X) requires O(l ∗ q) steps for the hidden layer (11).
Te output layer is given by 

n
i�1Pi(Z)Wi,j, necessitating

O(l ∗ n) computational steps. Here, Wi,j denotes the weight
vector originating from the k-th hidden neuron and tar-
geting the j-th output neuron. Consequently, the overall
computational complexity of the neural network is
expressed as O(l∗ (q + n)). In a special scenario where n � 1
and l � q, the complexity simplifes to O(q2).

3. Controller Design and Stability Analysis

In the following section, an adaptive funnel fault-tolerant
control scheme for the nonlinear system (1), which employs
the backstepping technique and neural networks approxi-
mation, is introduced, beginning with the following co-
ordinate change:

z1 � χ, (12)

zi � ηi − ϑi− 1, i � 2, . . . , n, (13)

where ϑi− 1 is the virtual control signal to be designed.

Step 1. Te Lyapunov function is considered as follows:

V1 �
1
2
χ21 +

c1

2b1
c
2
1, (14)

where b1 > 0 is a design parameter, c1 is defned in
Assumption 4, and c1 represents the estimation error
with c1 as the estimate of c1.
Now, diferentiate (14), one has

_V1 �� χ1 Γ1ϕ1z2 + Γ1ϕ1ϑ1 +Φ1(  −
c1
b1

c1
_c1, (15)

where Φ1 � Γ1(Φ1 − _yd − e1
_Θψ/Θψ).

Given that Φ1 encompasses unknown nonlinear
functions Φ1 and ϕ1, the solution to this challenge
involves employing RBFNN to approximate the un-
known function Φ1. For any ϵ1 > 0, one has

Φ1 X1(  � W
T
1 P1 X1(  + δ1 X1( , ‖ δ1 X1(  ‖ ≤ ϵ1.

(16)

Using completion squares, one has

χ1Φ1 X1( ≤
c1

2β21
χ21c1P

T
1 X1( P1 X1(  +

β21
2

+
c1χ

2
1

2
+
ϵ21
2c1

,

(17)

where β1 > 0 is a design parameter, and c1 � ‖c1‖
2/c1.

We design the virtual controller ϑ1 as follows:

ϑ1 � −
1
Γ1

q1χ1 +
1
2
χ1 +

1
2β21

χ1c1P
T
1 X1( P1 X1(  ,

(18)
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and the adaptation law as

_c1 �
b1

2β21
e
2
2P

T
1 X1( P1 X1(  − μ1c1, (19)

where q1 > 0, μ1 > 0 represent design parameters.
By substituting (17)–(19) into (15), we have

_V1 ≤ − c1q1χ
2
1 + Γ1g1χ1z2 +

c1μ1
β1

c1c1 +
1
2
β21 +

1
2c1
ϵ21.

(20)

Step i (2≤ i≤ n − 1). By using (13), one has

_zi � ϕizi+1 + ϕiϑi +Φi(η) − ϑ
.

i− 1. (21)

Te Lyapunov function is selected as follows:

Vi � Vi− 1 +
1
2
z
2
i +

ci

2bi

c
2
i . (22)

By taking time derivative of (22), one has

_Vi ≤ − c1q1χ
2
1 − 

i− 1

j�2
qjz

2
j + 

i− 1

j�1

μj

bj

cjcj + 
i− 1

j�1

a
2
j

2
+
ϵ2j
2

+ zi gizi+1 + giϑi +Φi Xi( ), (23)

where

Φi Xi(  � gi− 1zi− 1 +Φi − ϑ
.

i− 1. (24)

Te RBFNN can approximate the unknown function
Φi(Xi) with accuracy, ensuring that for any given
ϵn > 0, one has

Φi Xi(  � W
T
i Pi Xi(  + δi Xi( , ‖ δi Xi(  ‖ ≤ ϵi. (25)

By using Lemma 9, one has

ziΦi Xi( ≤
ci

2β2i
e
2
i ciP

T
i Xi( Pi Xi(  +

a
2
i

2
+

cjz
2
i

2
+
ϵ2i
2ci

,

(26)

where ci � ‖Wi‖
2/ci, and βi > 0 is a design parameter.

Te virtual controller ϑi is designed as

ϑi � − qizi +
1
2
zi +

1
2β2i

ziciP
T
i Xi( Pi Xi(  , (27)

and the adaptation law is designed as

_ci �
bi

2β2i
z
2
i P

T
i Xi( Pi Xi(  − μici, (28)

where qi > 0, μi > 0 being the design parameters.
Substituting (26)–(28) into (23), we have

_Vi ≤ − ϕizizi+1 − c1q1χ
2
1 − 

i

j�1
cjqjz

2
j + 

i

j�2

cjμj

βj

cjcj + 
i

j�1

β2j
2

+
ϵ2j
2cj

⎛⎝ ⎞⎠. (29)

Step n. Utilizing (13) and computing the time derivative
of zn, one obtains

_zn � gnu +Φn(η) − ϑ
.

n− 1

� ϕnζ t, tζ β(t)v + ϕnζ t, tζ d(t) + ϕnur t, tr(  +Φn(η) − ϑ
.

n− 1.
(30)

Select the following Lyapunov function Vn � Vn− 1 +
1
2
z
2
n +

cn

2bn

c
2
n. (31)
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By diferentiating (31), one has

_Vn ≤ − 
n− 1

j�2
cjqjz

2
j + ϕn− 1zn− 1zn − c1q1χ

2
1 + 

n− 1

j�1

μjcj

bj

cjcj + 
n− 1

j�1

a
2
j

2
+
ϵ2j
2cj

+ zn gnζ t, tζ β(t)v + gnζ t, tζ d(t) + gnur t, tr(   +Φn Xn(  ,

(32)

where

Φn Xn(  � ϕn− 1zn− 1 +Φn(η) − ϑ
.

n− 1 +
1
2
zn. (33)

Te RBFNN can approximate the unknown function
Φn(Xn) with accuracy, ensuring that for any given ϵn > 0,
one has

Φn Xn(  � W
T
n Pn Xn(  + δn Xn( , ‖ δn Xn(  ‖ ≤ ϵn. (34)

Furthermore, we have

enΦ Xn( ≤
cn

2β2n
e
2
ncnP

T
n Xn( Pn Xn(  +

β2n
2

+
z
2
ncn

2
+
ϵ2n
2cn

, (35)

where cn � ‖Wn‖2/cn, and βn > 0 being a design parameter.
We defne the actual control law as

v � − qnzn +
1
2
zn +

1
2β2n

zncnP
T
n Xn( Pn Xn(  . (36)

By using Lemma 9 and Assumption 5, one has

zngnur t, tr( ≤
1
2
z
2
n +

1
2
u
2
maxc

2
n. (37)

Using Assumptions 5–7, Lemma 9, and (36), one has

ϕnζ t, tζ β(t)v≤ − cnqnζminz
2
n −

cn

2
z
2
n −

cn

2β2n
z
2
ncnP

T
n Xn( Pn Xn( , (38)

ϕnζ t, tζ d(t)≤
1
2
z
2
n +

1
2
d
2
c
2
nζ

2
min. (39)

We defne the adaptation law as

_cn �
bn

2β2n
e
2
nP

T
n Xn( Pn Xn(  − μncn, (40)

where qn and μn are positive design parameters.
Using (35)–(40) into (32), we have

_Vn ≤ − 
n− 1

j�2
cjqjz

2
j − cnqnζminz

2
n − c1q1χ

2
1 + 

n

j�1

μjcj

bj

cjcj + 
n

j�1

β2j
2

+
ϵ2j
2cj

⎛⎝ ⎞⎠ +
1
2
d
2
c
2
nζ

2
min +

1
2
u
2
maxc

2
n. (41)

Theorem 11. Under Assumptions 3–7, the nonlinear system
(1) with actuator faults (2), input dead-zone (3), the virtual
control signals (18), (27), real controller (36), and adaptive
laws (19), (28), (40), with bounded initial conditions. Te
proposed control strategy ensures that the tracking error
consistently remains within a specifed funnel boundary, while
also ensuring the SGUUB) behavior for all signals in the

closed-loop system with the initial condition of
|e1(0) ‖Θψ(0)|.

Proof. Since

c
T

c≤ −
1
2
c
2

+
1
2
c
2
. (42)
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Substituting (42) into (41), we have

_Vn ≤ − ς
1
2
χ21 + 

n

i�2

1
2
z
2
i + 

n

j�1

μjcj

2bj

c
2
j

⎛⎝ ⎞⎠ + 
n

j�1

β2j
2

+
ϵ2j
2cj

+ 
n

j�1

μjcj

bj

c
2
j

⎛⎝ ⎞⎠

− cnqnζminz
2
n − c1q1χ

2
1 +

1
2
d
2
c
2
nζ

2
min +

1
2
u
2
maxc

2
n ≤ − ςV + λ,

(43)

where

ς � min 2c1q1, . . . , 2cn− 1qn− 1, 2cnqnζmin, μ1, . . . , μn ,

λ � 
n

j�1

β2j
2

+
ϵ2j
2cj

+ 
n

j�1

μjcj

bj

c
2
j

⎛⎝ ⎞⎠ +
1
2
d
2
c
2
nζ

2
min +

1
2
u
2
maxc

2
n.

(44)

From (43), one has

0≤Vn ≤ V(0) −
λ
ς

 e
− ςt

+
λ
ς
, (45)

which implies that V(t) is bounded by λ/ς. Consequently, all
signals in the closed-loop system exhibit SGUUB behavior.

Furthermore, (45) implies that

1
2
χ21 ≤ V(0) −

λ
ς

 e
− ςt

+
λ
ς
≤V(0)e

− ςt
+
λ
ς
. (46)

Furthermore, substituting (45) into (7) results in:

e
2
1

Θ2ψ − e
2
1
≤ 2V(0) + 2

λ
ς
, (47)

which implies that

e
2
1 1 + 2V(0) + 2

λ
ς

 ≤ 2V(0) + 2
λ
ς

 Θ2ψ . (48)

Furthermore, one has

e1


≤

��������������
2V(0) + 2λ/ς

1 + 2V(0) + 2λ/ς



Θψ


< Θψ


, (49)

which shows that by carefully adjusting the design param-
eters, the tracking error can be minimized and still remain
within the specifed limit.

Figure 1 illustrates the block diagram representing the
presented control method. □

Remark 12. Te derivation of control laws in backstepping-
based methods sometimes involves repeated diferentiation
of virtual control inputs, presenting challenges such as the
explosion of complexity, particularly in higher-dimensional
systems. To address this issue and enhance applicability,
command flters are employed [47, 48], ofering a practical

solution to manage the computational complexities asso-
ciated with this control methodology.

Remark 13. Te existing literature has dealt with diferent
control challenges in various scenarios, including strict-
feedback nonlinear systems with constraints on states and
input delays [49], and pure-feedback stochastic nonlinear
systems with constraints using adaptive fuzzy control
schemes [50]. In addition, research has focused on stochastic
nonlinear time-delay systems with multiple constraints
using neural network-based adaptive control schemes [51].
In comparison, this paper stands out by proposing a novel
funnel-based adaptive fault-tolerant control scheme. Te
distinctive feature of this approach lies in its focus on
addressing nonlinear systems afected by dead-zone non-
linearity and actuator faults. Recognizing the practical im-
plications of actuator faults on system performance and
stability, the proposed scheme provides a valuable contri-
bution to the feld by ofering an efective solution to these
specifc challenges.

4. Simulation Results

Two practical examples are presented in this section to
validate the performance of the proposed control method.

Example 1. Consider a rigid robotic manipulator system
[44] with actuator faults and dead zones described by the
following set of equations:

_η1 � η2,

_η2 � −
mrgvlr cos η1( 

J
+
1
J

u,

y � η1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)
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where η1 represents the angular position of the manipulator,
η2 corresponds to the relative angular velocity, mr stands for
the load mass, lr represents the length of the manipulator, gv

signifes the gravity, and J denotes the inertia coefcient,
calculated as J � 4/3mrl

2
r , Φ1 � 0, Φ2 � − mrgvlr cos(η1)/J,

ϕ1 � 1, ϕ2 � 1/J. Te desired trajectory is yd(t) � 0.5 sin(t).
Te funnel function is represented as follows:

Θψ(t) � (3 − 0.15)e
− 0.3t

+ 0.15, (51)

with κ0 � 3, κ∞ � 0.15, and β � 0.3.
Te model of actuator fault model is defned as

u �
v, if   t< 10,

cos η1( ( 
2η2 φ(v) + 0.2 + 0.8e

(− 0.2t)
, if   t≥ 10,

⎧⎨

⎩

(52)

where ζ(t, tζ) � (cos(η1))
2η2, ur(t, tr) � 0.2 + 0.8 exp

(− 0.2t), φ(v) is defned in (3) with parameters Rr � 4,
Rl � − 2, β � 1.

To begin, choose

ϑ1 � −
1
Γ1

q1χ1 +
1
2
χ1 +

1
2β21

χ1c1P
T
1 X1( P1 X1(  ,

v � − q2z2 +
1
2
z2 +

1
2β22

z2c2P
T
2 X2( P2 X2(  ,

_ci �
bi

2β2i
z
2
i P

T
i Xi( Pi Xi(  − μici i � 1, 2.

(53)

Te initial conditions are set as [η1(0), η2(0)]T �

[0.5, 0.5]T, [c1(0), c2(0)]T � [0, 0]T. In addition, by the
trial and error, we assign values to design parameters
as q1 � 50, q2 � 30, β1 � 5, β2 � 2, b1 � 2, b2 � 2, μ1 �

0.05, μ2 � 0.05. Te centre and width of the RBFNN are
chosen as αi � [− 2, 2] and ]i � 2 for i � 1, 2.

Te simulation results, depicted in Figures 2–6, highlight
the efectiveness of the proposed approach. In Figure 2, the
successful tracking of the output signal y with the reference
signal yd showcases excellent tracking performance. Figure 3
illustrates that the tracking error e1 consistently stays within
the specifed funnel Θψ, indicating the reliable tracking
performance of the proposed method. Figure 4 show the
boundedness of the system state η2, while Figure 5 ensures

that both the system input u and control input v are
bounded. Finally, Figure 6 reveals the bounded nature of the
adaptive laws c1 and c2. When t< 10, the actuator operates
normally, while faults occur after t≥ 10, as evident in Fig-
ures 2, 3, and 5. Te fault efects are also visible in the
zoomed-in graphs. Although faults persist after t≥ 10, the
proposed control method efectively minimizes their impact,
as illustrated in Figures 2, 3, and 5. Analyzing Figures 2–5, it
is evident that the system output y efectively tracks the
reference signal yd, and all closed-loop signals maintain
bounded behavior.

To assess the efciency of the proposed method in
comparison to a previously established approach [7], the
following criteria for error assessment, as presented in [52],
are employed. Te funnel-based adaptive control scheme is
systematically compared with the existing control method
[7] that does not incorporate a funnel.

Relative approximation error (RAE) is given as follows:

RAE �

�����������������


n
i�1 yi(t) − yid(t)( 

2


n
i�1 yi(t)( 

2




. (54)

Mean squared error (MSE) is as follows:

MSE �


n
i�1 yi(t) − yid( 

2

n
. (55)

Root mean squared error (RMSE) is given as follows:

RMSE �

�����������������


n
i�1 yi(t) − yid(t)( 

2

n



. (56)

Mean absolute error (MAE) is given as follows:

MAE �
1
n



n

i�1
yi(t) − yid(t)


, (57)

where n is the number of observations, yi is the output of the
system, and yid is the reference signal.

Te comparison results presented in Table 1 clearly
indicate that the performance of the proposed control
method is slightly superior to the existing method. Tis
observation highlights the efcacy of the proposed approach,
as evidenced by the evaluation of error assessment criteria.

Example 2. Consider an inverted pendulum system [46] as
shown in Figure 7 with actuator faults and a dead zone
described by the following set of equations:

l
4
3

−
m cos2 θ
mc + m

 θ
..

� −
ml _θ

2
cos θ sin θ

mc + m
+ g sin θ +

cos θ
mc + m

u,

(58)

where θ represents the angle in radians, θ
.

is the angular
velocity in radians per second, mc � 1kg is the cart mass,
m � 0.5kg is the pendulum mass, l � 0.5m denotes half of
the pendulum length, g � 9.8m/s2 is the acceleration due to
gravity, and u denotes the system input.

Nonlinear system

Virtual controller ϑi

Real controller υ

Adaptive law γ̂i

Dead-zone

System
output

RB
FN

N

Reference
signal

Actuator
fault

u

φ (υ)

υ

y yd
–

Figure 1: Proposed control scheme.
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Figure 2: Trajectories of y and yd for Example 1.
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Figure 3: Te response of tracking error e1 and Θψ for Example 1.
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Figure 5: Te response of system input u and control input v for Example 1.
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Let η1 � θ and η2 � θ
.

, then the state-space representa-
tion is given by

_η1 � η2,

_η2 �
mc + m( g sin η1 − mlη22 sin η1 cos η1

4/3 mc + m(  − ml cos2 η1
+

cos η1
4/3 mc + m(  − ml cos2 η1

u,

y � η1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

where Φ1 � 0, Φ2 � (mc + m)g sin η1 − mlη22 sin η1 cos η1
/4/3(mc + m) − ml cos2 η1, ϕ1 � 1, ϕ2 � cos η1/4/3(mc +

m) − ml cos2 η1. Te desired trajectory is yd(t) � 0.4 sin(t).
Te funnel function is represented as follows:

Θψ(t) � (3 − 0.15)e
− 0.3t

+ 0.15, (60)

with κ0 � 3, κ∞ � 0.15, and β � 0.3.
Te model of actuator fault model is defned as

u �
v, if   t< 10,

cos η1( ( 
2η2 φ(v) + 0.2 + 0.8e

(− 0.2t)
, if   t≥ 10,

⎧⎨

⎩

(61)

where ζ(t, tζ) � (cos(η1))
2η2, ur(t, tr) � 0.2 + 0.8 exp

(− 0.2t), φ(v) is defned in (3) with parameters Rr � 4,
Rl � − 2, β � 1.

To begin, choose

ϑ1 � −
1
Γ1

q1χ1 +
1
2
χ1 +

1
2β21

χ1c1P
T
1 X1( P1 X1(  ,

v � − q2z2 +
1
2
z2 +

1
2β22

z2c2P
T
2 X2( P2 X2(  ,

_ci �
bi

2β2i
z
2
i P

T
i Xi( Pi Xi(  − μici i � 1, 2.

(62)

Te initial conditions are set as [η1(0), η2
(0)]T � [0.5, 0.5]T, [c1(0), c2(0)]T � [0, 0]T. In addition,
by the trial and error, we assign values to design parameters
as q1 � 50, q2 � 30, β1 � 5, β2 � 2, b1 � 2, b2 � 2,
μ1 � 0.4, μ2 � 0.4. Te centre and width of the RBFNN are
chosen as αi � [− 2, 2] and ]i � 2 for i � 1, 2. Te simulation
results, depicted in Figures 8–12, highlight the efectiveness
of the proposed approach. In Figure 8, the successful
tracking of the output signal y with the reference signal yd

0

0.2

0.4

0.6

0.8

10 20 30 40 500
Time (sec)

γ̂1
γ̂2

Figure 6: Te trajectories of adaptive laws c1 and c2 for Example 1.

Table 1: Comparison of the tracking performance using diferent error calculations for Example 1.

Method RAE MSE RMSE MAE
Proposed method 0.1036 0.0016 0.0401 0.0057
Method in [7] 0.1596 0.0038 0.0613 0.0169
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demonstrates excellent tracking performance. Figure 9
shows that the tracking error e1 consistently stays within
the specifed funnel Θψ , indicating the reliable tracking
performance of the proposed method. Figure 10 confrm the
boundedness of the system state η2, while Figure 11 ensures
that both the system input u and control input v are
maintained within prescribed bounds. Finally, Figure 12
reveals the bounded nature of the adaptive laws c1 and
c2. When t< 10, the actuator operates normally, while faults
occur after t≥ 10, as evident in Figures 9–11.Te fault efects
are also visible in the zoomed-in graphs. Although faults
persist after t≥ 10, the proposed control method efectively
minimizes their impact, as illustrated in the fgures. Ana-
lyzing Figures 8–11, it is evident that the system output y

efectively tracks the reference signal yd, and all closed-loop
signals maintain bounded behavior.

In this example, the error assessment criteria defned in
Example 1 are applied. Te results in Table 2 clearly indicate

Actuator
faults Dead-zone

φ (υ)

ϕ

υu
mc

m

Figure 7: Inverted pendulum system.
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Figure 8: Trajectories of y and yd for Example 2.
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Figure 9: Te response of tracking error e1 and Θψ for Example 2.
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Figure 10: Te trajectories of state variable η2 for Example 2.
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Figure 11: Te response of system input u and control input v for
Example 2.
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Figure 12:Te trajectories of adaptive laws c1 and c2 for Example 2.

Table 2: Comparison of the tracking performance using diferent
error calculations for Example 2.

Method RAE MSE RMSE MAE
Proposed method 0.0990 0.0010 0.0308 0.0037
Method in [7] 0.1501 0.0022 0.0468 0.0113
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that the proposed control method exhibits a noticeable
superiority over the existing method [7]. Tis observation
emphasizes the efcacy of the proposed approach, as evi-
denced by the evaluation of error assessment criteria.

5. Conclusion

Tis paper addresses the problem of fault-tolerant adaptive
neural funnel control for nonlinear systems incorporating
actuator faults and input dead zones. To ensure the
boundedness of the tracking error, a modifed trans-
formation for funnel error is introduced and integrated into
the control design process. Employing radial basis function
neural networks (RBFNN) to handle unknown nonlinear
functions, an adaptive neural funnel fault-tolerant controller
is designed using the backstepping technique. Te proposed
controller ensures the tracking error remains within a pre-
defned funnel, and all signals in the closed-loop system are
SGUUB. Te viability and efectiveness of the proposed
control approach are validated through simulations. Future
work will focus on cyber-physical systems with unmodeled
dynamics and sensor faults.
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