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Urban and regional systems often face the difculty and necessity of structural transitions. Tese transitions, which can be
imposed by external circumstances or initiated by a city itself, include energy transitions, transitions to a circular economy,
transitions following a pandemic or natural disaster, or intentional policies meant to “move” an urban economy toward a desired
state. However, what does economic structure mean in these cases? Traditional notions of economic structure are ambiguous and
simplistic and typically consist of simple distributions, such as number of workers per industry. Yet to better understand, guide, or
respond to system transitions, planners must move beyond these nebulous notions toward a theoretically grounded, quantifable
defnition of economic structure. A recent trend emerging from the nexus of complexity science and urban science has been to
operationalize urban economic structures as networks of interacting economic components. Typically based on colocation
patterns of some type of entity, these networks have previously been constructed using economic entities such as products,
occupations, or labor skills. Yet diferent types of entities also exhibit colocation patterns with each other, such as patent
technology classes and industries. Here, those cross-entity colocation patterns are used to merge multiple types of entities into
a single network representation of urban economies, ofering a granularity not possible using a single node type. Occupations,
industries, college degrees, and patent technology codes are merged into one multidimensional or multinodal network. As in
previous studies, a dense core of highly connected entities emerges in this network. Te network locations of individual cities are
contrasted, and community detection algorithms are used to identify clusters of highly connected economic entities, showing that
the densely connected network core is associated with science, technology, and business-related economic entities. Proximities
between individual cities within the network are also measured revealing that many cities that are close to each other in the
network are also close to each other in physical space.Tis framework ofers potential applications including the ability to quantify
structural change over time in response to a shock or to assess the relative difculty of future desirable trajectories. More broadly,
this framework might be applied to the study of structural change in other complex adaptive systems from human institutions to
ecosystems.

1. Introduction

Urban and regional systems face the difculty and necessity
of structural transitions. Tese transitions, which can be
imposed by external circumstances or initiated by a city
itself, include energy transitions (e.g., decarbonization),
transitions to a circular economy, transitions following
a pandemic or other shock (building back better), or any

number of policies intended to “move” an urban economy
toward an aspirational state. Yet a region’s current economic
structure constrains its potential pathways for future tran-
sitions [1–4], and policy-makers can beneft from un-
derstanding the constraints—and possibilities—applicable
to their regions.

But what does structure mean in these cases? For most
people, the term structure evokes an image of something that
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can be touched and seen, like a building or a bridge. Unlike
physical structures, the economic structure of a city is not
tangible, and yet it directly impacts the lives of every resident
of the city. While a person managing a building has the
luxury of blueprints and maps that enable detailed planning
and analysis, urban planners typically equate economic
structure with simple distributions such as workers per
occupation, GDP per industry, or exports per product.

To better understand developmental trajectories of ur-
ban systems, researchers have begun to view urban econ-
omies as networks of interacting economic entities. Tese
networks—or spaces—capture the internal heterogeneity of
economies by quantifying the interdependencies or re-
latedness between economic components such as labor
occupations. Tis approach was brought to prominence in
2007 by Hidalgo et al. [5] who sought to understand how
a nation’s product space constrains its future development
pathways. Variations of the methodology are now used
frequently to compare cities, to explain past urban transi-
tions, or to explore possible future trajectories of urban
economies. Economic relatedness, which is central to this
approach, has been calculated based on products produced
[5], similarity of processes and outputs [6, 7], patterns of
geographical colocation [2], supply-chain linkages in an
input-output matrix [8], and even patterns of co-occurrence
within other economic units, such as how skills co-occur
within occupations [9]. Tese measures, which capture the
magnitude of interdependence between pairs of entities,
have been used to construct various parts of a city’s eco-
nomic structure, including its industry structure [10–12],
occupational structure [2, 13, 14], labor skills structure
[9, 15, 16], technology structure [17, 18], and scientifc re-
search structure [19]. Tese studies typically represent
economic structures as networks for which some measure of
relatedness or interaction is used to weight the links
between parts.

Tese various spaces interact strongly with and in-
fuence each other yet are almost always studied in iso-
lation. However, when these spaces are operationalized as
networks, they may be merged and studied as a single
integrated system. Tis merger can be accomplished ei-
ther by introducing multiple node types within a single
network or by linking networks in a multilayered net-
work. Combining spaces can reveal previously un-
discovered patterns of co-occurrence and relatedness and
may ofer novel insights regarding the constraints and
developmental possibilities of urban economies. One
example of this approach, at the country level, merges
three types of economic entities based on colocation
patterns among countries [20].

Here, this approach is applied at a subnational level by
analyzing colocation patterns for four entity types across
nearly 400 U.S. metropolitan areas. Multiple economic
datasets are integrated to examine several instantiations of
this previously unexplored multidimensional network level.
Colocation patterns are analyzed not only of various in-
dustry pairs, occupation pairs, etc., but also for industry-
occupation pairs, occupation-degree pairs, technology-
industry pairs, and every other possible combination. Te

result is a non-Euclidian map of the U.S.–a multinodal
network in which individual cities can be located and their
complex economic structures characterized in fner detail
than has previously been possible. Whereas two cities may
look almost identical in, for instance, industry space, they are
likely distinct in a merged occupation-industry-technology-
degree space. With such detail one might ask:

(1) Why are these cities similar in one economic di-
mension but not in others?

(2) What combinations of industries, skills, and tech-
nologies are most likely to grow quality jobs?

(3) What skills are absent or defcient and thus pre-
venting a city from moving to a new area of the
network?

(4) Which parts of the network are most vulnerable to
shock or most enhance a city’s economic resilience?

One key to addressing these questions is the ability to
quantify the notion of similarity between two economic
structures. Note that the strength of interaction between
individual nodes translates to a measure of closeness or
proximity between those nodes. Two nodes that have a high
interdependence value will have high proximity in a net-
work. Past studies have taken advantage of this concept to
generalize across nodes and create an aggregate measure of
proximity between two economic structures [3, 4]. Here, this
method is applied to a series of multidimensional networks
to calculate the proximity between every pair of MSAs at
diferent levels of network granularity.

While this is similar to measuring physical proximities
between cities, there are important diferences between
measuring proximity in physical space and in a network.
First, this studymeasures proximities as opposed to distance.
Tus, when two cities occupy the same place they will have
a distance of 0, but a proximity of 1. Second, depending on
the method one uses to aggregate proximity between two
sets of nodes, proximity may not be symmetrical in a net-
work. In other words, city A may be highly proximate to city
B in a network, but it does not necessarily mean that city B is
highly proximate to city A. Such a case could occur if, for
instance, most of the economic entities present in city B were
also present in city A, but few of the entities present in city A
were present in city B.

2. Data and Methods

2.1. Geographical Units. Te spatial units of analysis used in
this study are U.S. Metropolitan Statistical Areas (MSAs).
For each MSA collected, four categories of economic data
were collected as described below. Tese various datasets
are generated by diferent agencies and do not typically
cover the exact same set of MSAs. Terefore, a process of
harmonizing areas across datasets was required. Te
resulting list standardizes MSA codes and names across the
four datasets and excludes MSAs that were not present in
all four datasets. Te fnal harmonized list contains 387
MSAs, including those in Puerto Rico, for which all four
data sources were available.
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2.2. Data. Data for each of four economic categories oc-
cupations, industries, degrees, and technologies, were pro-
cured or derived at the level of MSA from publicly available
sources. Details of each dataset are described below. A
summary of the number of entities present at each hierar-
chical level for each data type is presented in Table 1. In all
cases, 2019 data are used unless otherwise noted.

2.2.1. Employment per Occupation. Occupational employ-
ment data are published annually for MSAs in the U.S. Bureau
of Labor Statistics’ Occupational Employment and Wage
Statistics (OEWS) [21]. Data are published by Standard Oc-
cupation Classifcation (SOC) code at 2 levels of aggregation,
“broad” (2-digit SOC) and “detailed” (6-digit SOC). By simple
truncation of codes, two further levels of aggregation were
created that were previously reported in the OEWS but ceased
to be after 2017, “major” (3-digit SOC) and “minor” (5-digit
SOC). Occupations having less than 10 employees within
a given MSA are suppressed in the publicly available data, and
for simplicity, these cases are taken to be 0 employment.

One idiosyncrasy of the OEWS data is that, despite being
labeled as employment by MSA, data on urban areas in the
six states of New England are published not forMSAs but for
an alternative geographical unit known as New England City
and Town Areas (NECTAs). NECTA boundaries are similar
to New EnglandMSA boundaries but are not identical.Tus,
there exists both a Boston MSA and Boston NECTA, each
with a diferent boundary. To harmonize OEWS data with
remaining datasets, NECTAs were assumed to correspond to
MSAs of the same or similar name. For example, occupation
data are published for NECTA 74950, Manchester, NH,
while industry, degree, and patent data are published for
MSA 31700, Manchester-Nashua, NH. Tese spatial units
are assumed to be equivalent in this study. Because this
study’s analytic methodology is based on proportions within
each MSA and not on absolute numbers, this approach is
justifed (see the MSA Harmonization Table in the ac-
companying data repository for further details).

2.2.2. Employment per Industry. Industry employee data are
published both quarterly and annually for MSAs in the U.S.
Bureau of Labor Statistics’ Quarterly Census of Employment
and Wages (QCEW) [22]. Here, the annual fle is used. Data
are reported by North American Industry Classifcation
System (NAICS) code at three aggregation levels, 2-digit
NAICS, 3-digit NAICS, and 4-digit NAICS. While further
granularity is available (5- and 6-digit NAICS), these data are
typically too sparse for the needs of this analysis and are not
used in this study.

2.2.3. Employment per College Degree. Degree data for
employed workers are taken from U.S. Census Bureau’s
American Community Survey (ACS) 1-year dataset [23].
Te Census Bureau publishes a sample of this survey known
as the Public Use Microdata Sample (PUMS), which covers
approximately 1% of the U.S. population and which assigns
one of 174 possible college degree codes to each worker for

both a frst and second (if applicable) college degree. One of
the possible degree values is “N/A or less than a bachelor’s.”
PUMS data are aggregated to geographical units known as
a Public Use Microdata Areas (PUMAs) which do not
correspond to any other generally used spatial unit for
collection of regional statistics in the U.S. Terefore,
a crosswalk, published by iPUMS, is used to allocate PUMA
population characteristics to MSAs [24]. Degrees are tab-
ulated at four levels of aggregation: detailed, which is the 4-
digit code used in the raw PUMS data, and both 3-digit and
1-digit ACS categories are defned in [25], each of which is
an aggregation of detailed degree codes. Te fourth aggre-
gation uses an alternative categorization based on the 2-digit
Classifcation of Instructional Programs (CIP) codes defned
by the U.S. Department of Education [26]. Each 2-digit CIP
code is an aggregation of 4-digit ACS codes. For further
detail, refer to the degree code crosswalk included in the data
repository accompanying this paper.

2.2.4. Technologies per Patent. Te U.S. Patents and
Trademark Ofce (USPTO) publishes data on each patent it
grants including the county of residence of each inventor
and a list of each cooperative patent classifcation (CPC)
code included on the patent [27]. CPC codes represent the
specifc technologies present in a patent based on common
subject matter, and a single patent may include several CPC
codes. Te number of times each CPC code was used on
a patent is then tallied for each county in a given year. Using
the 2020 ofcial mapping of counties to MSAs from the U.S.
Ofce of Management and Budget [28], county totals are
then aggregated to MSA totals. CPC codes on patents having
multiple inventors are assigned to the county of each in-
ventor unless the inventors reside in the same county. In
cases where multiple inventors live in the same county, each
CPC code used on a patent is tabulated only once for that
county. Likewise, if a patent has inventors in multiple
counties, but those counties are all within the sameMSA, the
patent’s CPC codes are counted only once for the corre-
sponding MSA. CPC code usage is tabulated at three ag-
gregation levels, “section” (1-digit CPC), “class” (3-digit
CPC), and “subclass” (4-digit CPC). Because patenting rates

Table 1: Summary of curated data and their hierarchical structures.

MSA data type Hierarchy level Unique codes

Occupations (O)

Major 22
Minor 94
Broad 450
Detailed 781

Industries (I)
2-digit NAICS 20
3-digit NAICS 92
4-digit NAICS 304

College degrees (D)

acs1 6
acs2 16
cip2 38

Detailed 174

Patent technology codes (T)
Section 10
Class 129

Subclass 665
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can exhibit high variability from year to year, the time
window is expanded to include patents for the years
2015–2019 for each MSA. Finally, only utility patents are
considered in this study (thus ignoring design patents and
plant patents).

2.2.5. Data Used for Networks. For each network con-
structed, only one hierarchical level of data for each of the
four data types shown in Table 1 is selected. Using hierar-
chical levels with a low number of entities (codes) does not
provide enough heterogeneity for meaningful networks. On
the other hand, using hierarchical levels with a large number
of entities increases the granularity of the analyses but it also
exponentially increases computation time. Furthermore, as
the number of entities increases the data become more
sparse and therefore less useful.. Tus, this study is focused
on intermediate hierarchical levels of each data type. More
precisely, of 144 possible combinations of data slices, four
networks were constructed and analyzed using slices as
shown in Table 2. Results and visualizations in this paper are
primarily derived from networks 1 and 3.

2.3. Calculating Interdependence. After selecting a hierar-
chical level at which to aggregate each of the four data types
in Table 1, interdependence value between each pair of
economic entities is calculated using the method described
in [2]. Tis method requires that raw data frst be recast as
presence-absence data so that a matrix of employees by
occupation of MSA, for instance, becomes a matrix of 1’s
and 0’s (Figure 1). An economic entity is determined to be
present in an MSA if the location quotient (LQ) for that
entity is greater than one in the selected MSA. Te LQ of
entity e in MSA m is defned as follows:

LQe,m �
ce,m/ece,m 

mce,m/mece,m 
, (1)

where c is the count of entity e inMSAm such as the number of
employees in a particular occupation in m. An entity is de-
termined to be present inm if LQe,m≥ 1 and absent if LQe,m< 1.

Location quotients and the determinations of present or
absent are calculated for each data type separately before
being merged into a single list of presence-absence for all
entities. Using this master list of presence-absence data, the
method of [2] is applied to MSA co-occurrence patterns to
calculate an interdependence value x between every pair of
entities i and j as follows:

xi,j �
P LQi,m > 1, LQj,m > 1 

P LQi,m′ > 1 P LQj,m″ > 1 
− 1, (2)

wherem, m′, and m″ denote randomly selectedMSAs.Tus,
x> 0 when two entities co-occur in the same MSAs more
often than expected by chance, and x< 0 when they co-occur
less often than expected.

Te resulting entity × entity matrix of interdependence
values is used to create a network in which each economic
entity is a node and the interdependence values between
entities are the weights of links between nodes. Because

study data cover four types of economic entities, the
resulting networks have four node types, each of which is
interdependent with and, therefore, connected to every
other node. Tus, the resulting networks are complete,
weighted, nondirected, and multinodal networks.

2.4. Calculating Proximities between MSAs. Having calcu-
lated an interdependence value x between every pair of
economic entities i and j, an aggregate measure of proximity
between any two MSAs p and q can then be calculated.

To begin, let Sp be the set of all economic entities present
in MSA p. Consider an entity i not present in Sp, i ∉ Sp. For
each such entity i, an aggregate value of proximity is cal-
culated between i and all the members of Sp. Tis measure,
known as the transition potential of i [2], is defned as
follows:

Vi Sp  � 1 − 
j∈Sp

1 − c xij + 1 P LQi,p > 1  ,
(3)

where c is simply a tuning parameter chosen to result in
a useful range of values ofV. Tus, the transition potential of
entity i, where i ∉ Sp, is the aggregate proximity of i to all the
entities j ∈ Sp.

Finally, this value is calculated for every member of Sq

and aggregated to a measure of proximity R from MSA p to
MSA q:

R
p⟶q

�
1

Nq


i∈Sq

Vi Sp 
1−δi

, (4)

where Nq is the number of entities in Sq and δi is an indicator
function: it is 1 if i is already a member of Sp and 0 if it is not
[3, 4]. Tus, an entity i has Vi � 1 if it is already present in
MSA p and the value determined by function (3) if it is not.
In the case that all entities in Sq are already present in Sp, the
proximity of Sp to Sq would be 1, the maximum possible
proximity.

It is critical to note that proximity R is not symmetrical.
Tat is, it is not required that Rp⟶q � Rq⟶p. To illustrate,
consider the case where all entities present in MSA p are
present in MSA q, but q also has many more entities present
that are not present in p. In this case, the proximity of p to
qRp⟶q would be relatively low, while Rq⟶p � 1.

2.5.NetworkVisualizations. Networks were visualized using
the igraph package for R [29]. Pairwise interdependence
values are used as link weights, and link weights less than
0 are dropped before rendering. Te igraph package’s
multidimensional scaling layout algorithm is used to spa-
tially arrange nodes, and only links having a weight above
a certain threshold value are shown to highlight those
pairwise relationships having the highest interdependence
values.

2.6. Community Detection. Clusters of related economic
entities within each network were identifed using igraph’s
walktrap community detection algorithm [29]. Te walktrap
algorithm uses random walks to identify densely connected
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subnetwork communities within a larger network and re-
quires that nonpositive link weights be dropped. Because
walktrap is a hierarchical detection method, users may select
the number of communities to be detected. Output includes
both a dendrogram and community membership list of
every node.

3. Results and Discussion

Networks were constructed for various combinations of data
hierarchy levels as shown in Table 2. A rendering of network
3, with number of nodesN= 353, is shown in Figure 2. Links
with an interdependence value less than 2 are not shown so
that only pairs of entity pairs with relatively high in-
terdependence are highlighted.

As with previous work using only one type of economic
entity, Figure 2 displays a dense core of highly connected
entities. All networks created using the data slices in Table 2
displayed a similar dense core. Previous studies have shown
this dense core to be associated with high-wage, knowledge-
intensive dimensions of an economy, such as so-called
“creative” jobs [2, 3]. Here, for the frst time, a multidi-
mensional space reveals that this dense network core in-
cludes not only certain occupations but also certain
industries, college degrees, and technologies.

Note that although patents are generally associated with
creativity and innovation, many CPC codes do not appear in
the dense network core. However, studies have demon-
strated that some technology codes are more associated with
innovation than others [30], and only a small fraction of
patents lead to innovations that afect markets [31]. Tus,
perhaps, it should not be unexpected that many CPC codes

appear outside of the core, and the network approach de-
veloped here may ofer a new method of assessing the in-
novative potential of each CPC technology code.
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job 3 4 38 97 47 64 97 66 74
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ind 2 22 44 18 66 91 21 45 18
ind 3 97 97 46 90 22 60 39 37
deg 1 41 55 29 84 96 28 86 11
deg 2 80 20 78 30 10 38 54 57
deg 3 74 41 44 66 76 17 29 90
cpc 1 84 37 62 70 10 7 57 91
cpc 2 87 79 14 68 68 81 86 67
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M
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job 1 0 1 1 0 1 0 1 0
job 2 0 1 1 1 0 0 1 1
job 3 0 0 1 0 1 1 1 1
ind1 0 1 0 1 0 0 0 0
ind 2 0 0 0 1 1 0 0 0
ind 3 1 1 0 1 0 1 0 0
deg 1 0 0 0 1 1 0 1 0
deg 2 1 0 1 0 0 0 0 0
deg 3 1 0 0 1 1 0 0 1
cpc 1 1 0 1 1 0 0 0 1
cpc 2 1 1 0 1 1 1 1 1
cpc 3 0 0 0 1 0 0 1 1

… 1 0 0 1 1 1 1 1

entity × entity 
interdependence matrix3

Figure 1: Extracting additional information from distributions to build a network. Starting with distributions across spatial units (1), raw
counts are converted to presence-absence data (2), and then compared to null models of colocation to quantify the interaction or in-
terdependence between every pair of economic entities (3). Tose interdependencies can be positive or negative and are used to construct
a network in which nodes are the economic entities of interest and pairwise interdependencies are the link weights between nodes.

Technology
Industry

Occupation
Degree

Figure 2: Visualizing the 2019 U.S. multimodal economic network
structure using network 3 (N� 353). Links with value less than 2 are
not shown. Note the characteristic dense core of highly connected
entities which has been shown in other studies to be associated with
high-wage and/or creative activities. Networks constructed with other
hierarchical levels of data aggregation display a similar dense core.

Table 2: Description of data slices used in the four networks constructed for this study.

Network 1 Network 2 Network 3 Network 4
Occupation level Major (O� 22) Major (O� 22) Minor (O� 94) Broad (O� 450)
Industry level 2-digit (I� 20) 2-digit (I� 20) 3-digit (I� 92) 4-digit (I� 304)
Degree level acs2 (D� 16) acs2 (D� 16) cip2 (D� 38) cip2 (D� 38)
Technology level Section (T�10) Class (T�129) Class (T�129) Class (T�129)
Total nodes (N) 68 187 353 921
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Te concentration of college degrees in the core is even
more pronounced, with nearly all degrees falling within the
dense core. Only a small number of relatively ubiquitous
degrees, such as education degrees, fall outside the core.
Tus, one interpretation of this study’s network approach
reinforces the notion that advanced education is critical for
a knowledge-based, innovation economy.

3.1. Locating MSAs in the Network. As with related studies
that used only a single dimension, this study fnds that the
network location of individual MSAs varies considerably.
Figure 3 compares two economically distinct MSAs, re-
vealing that San Francisco is primarily located in the creative
core while Dalton, Georgia, is not. However, Figure 3 also
shows that San Francisco is almost exclusively within the
creative core which could indicate that San Francisco’s
creative economy may be less sustainable than those of other
knowledge intensive regions because it lacks the ancillary
economic activities required to support a high-wage, high-
tech sector. In contrast, other MSAs associated with crea-
tivity, including Boston and San Jose, do occupy several
nodes outside the dense core.

While researchers have previously mapped cities within
network composed of single entity types, merging spaces
provide an unprecedented level of granularity in the un-
derlying network map and an ability to clearly distinguish
between various economic structures. To demonstrate this
advance, consider two MSAs, Blacksburg, Virginia (13980)
and Muskegon, Michigan (34740). Data for 2019 show that
these MSAs have the same presence/absence pattern for
industries. Tus, when located in a network space composed
of industries only, these cities would be indistinguishable
and have a proximity of 1. Teir locations are identical.

However, when located in the merged, multidimensional
networks created in this study, the cities are distinct. Even in
network 1 (N� 68), the coarsest multidimensional network
created in this study, substantial diferences emerge. Figure 4
highlights only those economic entities that are unique to
each MSA. Note that Blacksburg has several college degrees
present, primarily in the network’s creative core, while
Muskegon has none. Each MSA also specializes in diferent
technologies. In quantitative terms, the correlation between
the presence/absence vectors of industries—taken as a vector
of 1’s and 0’s—for Blacksburg and Muskegon is R� 1.00,
while the correlation between the presence/absence vectors
of all economic entities in network 1 is R� 0.35.

Tus, a key advantage of multidimensional economic
networks, in this context, is the ability to identify and
quantify diferences between cities that may be invisible
within a single dimension. While this example uses the
least detailed multidimensional network, networks with
higher granularity should only enhance the ability to
identify subtle and unique components of each city’s
economic structure.

3.2. Identifying Economic Communities. It is frst important
to note that the membership and nature of communities
detected will be diferent depending on the network used,

and on the number of communities that the algorithm is
instructed to detect. Results of the community detection
algorithm produced intuitive results even at the coarsest
level of data. In network 1, which is constructed with only 68
nodes, fve economic communities were detected (Figure 5),
and were subjectively named based on the members of each
(Table 3). Tese communities include manufacturing,
business and services, construction, STEAM (science,
technology, engineering, arts, and mathematics), and gen-
eral commercial economic communities.

Note that all college degrees other than education felds
are found in the STEAM and business/services communities.
Education is the lone degree within the general commercial
community, which likely corresponds to the ubiquity of
educational activities. Te degree code for “less than
a bachelor's” falls within the manufacturing community
which may indicate limited requirements for advanced
education in manufacturing relative to other industry sec-
tors. On the other hand, the manufacturing community
contains many patent technology codes, suggesting that the
nature of U.S. manufacturing has evolved to focus more on
technologies than labor skills.

3.3. Determining Marshallian Channels of Agglomeration.
A long-standing goal of regional economics is to understand
the causes of observed industry agglomerations [32–35].
Researchers generally focus on three so-called Marshallian
channels or economic forces that lead certain industries to
colocate more frequently than expected, and research has
sought to disentangle which channel is the primary driver of
diferent industry agglomerations [12, 13, 36–40]. Tese
channels, which are assumed to infer diferent cost benefts,
include the followings:

(1) Labor access—industries that share similar labor
requirements (e.g., similar skill sets) tend to colocate
because they need access to the same pool of workers

(2) Industry linkages—industries that are in a customer-
supplier relationship tend to colocate because they
can lower transportation costs by being near
each other

(3) Knowledge spillovers—industries that can gain
technological knowledge from each other by being in
close proximity (e.g., where employees can mingle)
tend to colocate

Te use of multidimensional networks can contribute
to this discourse by explicitly determining the types of
economic entities that are associated with closely linked
industry pairs. Industry agglomerations are frst identifed
by selecting industry pairs (or groups) with a relatively
high interdependence value, indicating that the pair of
industries is generally both present and absent in an area.
To explain what forces may underly a high in-
terdependence value, one would then identify other
economic entities to which both industries are highly
linked. For instance, if a pair of agglomerating industries
are both highly linked to several occupations, it is likely
the industries coagglomerate because of shared labor
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needs. If, on the other hand, a pair of agglomerating
industries are both highly linked primarily to technolo-
gies, it is more likely they coagglomerate because of
knowledge spillovers. Industry linkages are likely the
driving force in cases where two agglomerating industries
are most highly linked with other industries. Cases in
which agglomerating pairs are mostly closely linked with
college degrees present the tantalizing possibility that not
only is labor access likely the driving agglomeration force
but also it is access to particular types of cognitive skills, as
opposed to physical skills, that is driving agglomeration.

Te high-level communities identifed in Table 3 (and
shown in Figure 5) already point to the ability of multidi-
mensional networks to distinguish diferent drivers of in-
dustry agglomeration. Notice that cluster 1 (STEAM) is
primarily composed of college degrees along with a single
industry, “Professional and Technical Services.”Te fact that
this sector appears alone with several degree entities suggests
that frms in this sector coagglomerate not only because of
shared requirements for labor but also for highly skilled
labor. On the other hand, cluster 2 (manufacturing), which
also has a single industry, is dominated not by college

San Francisco (N=68)

Industry
Technology Occupation

Degree

(a)

Dalton (N=68)

Industry
Technology Occupation

Degree

(b)

San Francisco (N=353)

Industry
Technology Occupation

Degree

(c)

Dalton (N=353)

Industry
Technology Occupation

Degree

(d)

Figure 3: Comparing the network locations of individual MSAs. When only the entities present in an MSA are highlighted, the network
location of that MSA is revealed. Here, the locations of San Francisco (a and c) and Dalton, Georgia (b and d), are compared frst in network
1, withN� 68 (a and b) and second in network 3, withN� 353 (c and d). MSA locations are distinctly diferent with San Francisco appearing
almost exclusively within a dense network core and Dalton almost exclusively outside that core. Diferences in network locations can be
quantifed to give a proximity between any two economic structures. Links with value less than 0.4 are not shown in panels (a) and (b) while
links with value less than 2 are not shown in panels (c) and (d).
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degrees but by technologies, suggesting that frms in this
sector coagglomerate more because of knowledge spillovers.
Note that the communities shown in Table 3 are detected
only in the coarsest network of this study (network 1) and
more detailed networks are likely to reveal communities
within industry sectors that agglomerate for diferent
reasons.

Regardless of the network used, the fact that all pairwise
relationships are quantifed means that the relative contri-
bution of each Marshallian channels to observed agglom-
erations should also be quantifable. Tere are likely several
ways to construct such a measure, but such an endeavor is
beyond the scope of the current study, and it is left to future
studies to undertake this promising challenge.

3.4. Proximities between MSAs. Using network 3 (N= 387),
proximities were calculated between every MSA pair. A
selection of the highest and lowest proximity values between
MSAs is shown in Table 4. Recall that proximity ranges from
0 to 1, with 1 being the highest possible proximity. One
striking feature of these values is the fact that many of the
cities having high economic proximity also have high
physical proximity. Of the fve highest economic proximity
values, three MSA pairs—Chattanooga-Dalton, Riverside-El

Centro, and Charleston-Sumter—are physically adjacent to
each other, while a fourth pair, North Port-Sebring, is
separated by just one county. Tus, spatial context and
physical embeddedness likely play key roles in the evolution
of urban economic structures. Tis phenomenon may also
indicate that the defnitions of metropolitan statistical areas
do not adequately capture regional units in the U.S.

On the other hand, the fourth highest proximity is
between Guayama, Puerto Rico, and Oklahoma City,
demonstrating that structural similarity can also emerge in
places far apart physically.

3.5. Identifying Transition Gaps. While the previous section
focused on the network proximity between two MSAs, more
generally, the network proximity between any two economic
structures can be measured. Tere is no requirement that
those structures represent existing cities. A structure might
instead be a desired future economy. Tus, proximity can be
calculated, for instance, between every city and the com-
munities detected above.

To demonstrate, Table 5 presents the 10 closest MSAs, in
terms of proximity in network 1, to the STEAM and business
& services communities detailed in Table 3. Such measures
not only give urban planners a quantifed metric of the

Technology
Industry
Occupation

Degree

Unique to:
Muskegon, Michigan
Blacksburg, Virginia

Figure 4: Juxtaposition of two MSAs highlighting only diferences
between the two. Using network 1 (N� 68), Muskegon, Michigan
and Blacksburg, Virginia are identical in terms of industry
structure, meaning that they share the exact same set of industries
present. Yet in a multidimensional space, substantial diferences
between the two emerge, particularly in terms of college degrees.
Note also that Blacksburg hasmanymore unique entities within the
dense network core. Links with value less than 0.4 are not shown.

Manufacturing

STEAM

Business and services
Construction
General CommercialIndustry

Occupation

Technology

Degree

Figure 5: Location of fve economic communities detected in
network 1. Results are from the walktrap community detection
algorithm using network 1 (nodes N� 68). Te number of com-
munities was chosen a priori. Subjective community names were
assigned by the author. Note that the dense core is composed of
STEAM and business and services entities, see Table 3 for a detailed
list of members of each community. Links with value less than 0.4
are not shown.
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Table 3: Economic communities (5) detected in network 1
(N� 68), see Figure 5 for visualization.

Community 1: STEAM
Occupations
(i) Management
(ii) Business and fnancial operations
(iii) Computer and mathematical
(iv) Arts, design, entertainment, sports, and media
Industries
(i) Professional and technical services
Degrees
(i) Computers, mathematics, and statistical
(ii) Physical and related science
(iii) Social science
(iv) Engineering
(v) Literature and language
(vi) Visual and performing arts
(vii) Communications
Technologies
(i) Physics
(ii) Electricity
Community 2: manufacturing
Occupations
(i) Installation, maintenance, and repair
(ii) Production
(iii) Transportation and material moving
Industries
(i) Manufacturing
Degrees
(i) N/A (less than bachelor’s degree)
Technologies
(i) Performing operations; transporting
(ii) Textiles; paper
(iii) Fixed constructions
(iv) Mechanical engineering; lighting; heating; weapons
(v) General tagging of new technological developments
Community 3: construction
Occupations
(i) Community and social service
(ii) Building and grounds cleaning and maintenance
(iii) Ofce and administrative support
(iv) Construction and extraction
Industries
(i) Construction
(ii) Administrative and waste services
(iii) Unclassifed
Degrees
(i) (None)
Technologies
(i) Human necessities
(ii) Chemistry and metallurgy

Table 3: Continued.

Community 4: general commercial
Occupations
(i) Healthcare practitioners and technical
(ii) Healthcare support
(iii) Protective service
(iv) Food preparation and serving related
(v) Sales and related
(vi) Farming, fshing, and forestry
Industries
(i) Agriculture, forestry, fshing, and hunting
(ii) Mining, quarrying, and oil and gas extraction
(iii) Utilities
(iv) Wholesale trade
(v) Retail trade
(vi) Transportation and warehousing
(vii) Health care and social assistance
(viii) Accommodation and food services
Degrees
(i) Education
Technologies
(i) (None)
Community 5: business and services
Occupations
(i) Architecture and engineering
(ii) Life, physical, and social science
(iii) Legal
(iv) Educational instruction and library
(v) Personal care and service
Industries
(i) Information
(ii) Finance and insurance
(iii) Real estate and rental and leasing
(iv) Management of companies and enterprises
(v) Educational services
(vi) Arts, entertainment, and recreation
(vii) Other services, except public administration
Degrees
(i) Biological, agricultural, and environmental sciences
(ii) Psychology
(iii) Multidisciplinary studies
(iv) Science- and engineering-related
(v) Business
(vi) Liberal arts and history
(vii) Other felds
Technologies
(i) Other—no section assigned
Note. Occupation level: major (2-digit), industry level: 2-digit NAICS,
degree level: acs2, and technology level: cpc section (1-digit).
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difculty of transitioning to a desired economic structure
but also enable planners to identify the economic entities
missing in their local economy that must be grown or ac-
quired. For instance, an MSA seeking to grow a STEAM
economy as defned in Table 3 may fnd that it is missing
certain degrees or technologies. Planners could use this
information to develop strategies for acquiring thosemissing
economic elements, for instance, by working with local
community colleges. Coupled with network proximity
measures, planners could conceivably outline a long-term

plan including time-phased intermediate steps for tran-
sitioning to a desirable future economy in a manner that
enhances returns on investment.

Proximities to various communities can also be com-
pared within an MSA to assess a degree of diversity for each
region. Such assessments are visualized as radar diagrams for
two MSAs in Figure 6. Note that, while San Francisco has
high proximity to the STEAM and business & services
communities, it has very low proximity to others. In con-
trast, Portland has a moderate-to-high proximity to all

Table 4: Five highest and a selection from the 20 lowest MSA-to-MSA proximity values using network 3.

MSA a MSA b Ra⟶b

5 highest values of R
Chattanooga, TN-GA (16860) Dalton, GA (19140) 0.823
Riverside-San Bernardino-Ontario, CA (40140) El Centro, CA (20940) 0.816
North Port-Sarasota-Bradenton, FL (35840) Sebring, FL (42700) 0.808
Oklahoma city, OK (36420) Guayama, PR (25020) 0.803
Charleston-North Charleston, SC (16700) Sumter, SC (44940) 0.791
5 of the 20 lowest values of R
Dalton, GA (19140) San Francisco-Oakland-Hayward, CA (41860) 0.073
Bloomsburg-Berwick, PA (14100) San Jose-Sunnyvale-Santa Clara, CA (41940) 0.105
Odessa, TX (36220) New York-Newark-Jersey city, NY-NJ-PA (35620) 0.108
Dalton, GA (19140) San Diego-Carlsbad, CA (41740) 0.108
Hinesville, GA (25980) Milwaukee-Waukesha-West Allis, WI (33340) 0.123

Table 5: MSAs closest to the STEAM and business & services communities on network 1, detailed in Table 3.

Closest
to STEAM community

Closest to business
& services community

San Francisco-Oakland-Hayward, CA (41860) Boston-Cambridge-Newton, MA-NH (14460)
Austin-Round Rock, TX (12420) Raleigh, NC (39580)
Washington-Arlington. . ., DC-VA-MD-WV (47900) Philadelphia-Camden. . ., PA-NJ-DE-MD (37980)
Seattle-Tacoma-Bellevue, WA (42660) Baltimore-Columbia-Towson, MD (12580)
Durham-Chapel Hill, NC (20500) New York-Newark-Jersey city, NY-NJ-PA (35620)
Portland-Vancouver-Hillsboro, OR-WA (38900) San Francisco-Oakland-Hayward, CA (41860)
New York-Newark-Jersey city, NY-NJ-PA (35620) Denver-Aurora-Lakewood, CO (19740)
Boulder, CO (14500) Minneapolis-St. Paul-Bloomington, MN-WI (33460)
San Diego-Carlsbad, CA (41740) Madison, WI (31540)
Bridgeport-Stamford-Norwalk, CT (14860) San Diego-Carlsbad, CA (41740)

San Francisco
General Commercial General Commercial

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

STEAM STEAM

Construction ConstructionBusiness and Services Business and Services

Manufacturing Manufacturing

Portland

Figure 6: Radar diagrams showing proximities of two MSAs to each of the fve communities, detailed in Table 3. While Portland shows
a diversity of high-to-moderate proximities among communities, San Francisco is high in proximity to two communities and close to 0 for
all others. Tis could indicate a lower diversity of economic activities in San Francisco compared to Portland and is an area for future
research. Proximities were calculated using network 1 (N� 68).
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communities. Tis could indicate that Portland has a more
diverse and balanced economy than San Francisco, though
more research is needed to determine the nature and in-
terpretation of this type of analysis.

 . Conclusion and Future Directions

Here, an increasingly popular framework for viewing
urban economies as networks has been extended by
merging four separate economic networks into a single
multidimensional space. In these networks, nodes rep-
resent one of four components of an urban economy, such
as industries or occupations, while link weights quantify
the interdependence between pairs of economic compo-
nents and are derived from the co-occurrence patterns of
components across a country’s urbanized areas. While
researchers have previously attempted to merge networks
at the national level, this study implements this technique
at the level of metropolitan statistical areas in the
United States. Te resulting network enables a refned
characterization of individual regional economies not
possible when using only a single network. Tis network
serves as a non-Euclidian map in which cities can be
located and compared, and their developmental trajec-
tories analyzed over time.

Te key beneft of this network approach to representing
urban economies is that it provides a method of visualizing
and quantifying economic structure in a manner more
sophisticated and useful than mere frequency distributions.
Being represented as a network makes urban economies
amenable to a suite of computational methods and metrics
from network science and graph theory. Te key contri-
bution of this study is that it expands this network frame-
work into multiple economic dimensions, or node types,
ofering a large improvement in the granularity with which
an individual urban economy can be characterized.

Tere are several potential policy applications for this
framework, and many ways the framework can be improved,
some of which are outlined below.

4.1. Refning the Methodology. In addition to numerous
possible applications that have not been discussed, there
remains much fundamental research to do in this domain.
Te methodology used in this study requires multiple steps,
including the following:

(1) Determine whether an entity is present or absent in
an area

(2) Quantify the interaction between any two entities
(3) Measure the proximity or distance between two

subnetworks within a network

Yet for each of these stages depicted in Figure 1, there
exists no method that is generally accepted in the relevant
literature as superior to others. For instance, several mea-
sures have been proposed for quantifying interactions be-
tween entities based on co-occurrence patterns, though there
has been little work to determine which is optimal. Future
research should seek to compare existing measures, to

explore new measures, and to determine which measures
ofer the most meaningful outputs.

4.2.DealingwithNegative Interactions. An obstinate issue in
working with network spaces like those developed in this
study is how to treat negative interaction values. While
negative interactions are a hallmark of the ecological
thinking that inspired much of this methodology, they have
been difcult to deal with in economic networks. Indeed, in
the foundational work by Hidalgo and Hausmann [5], which
most studies in this area acknowledge as inspiration, neg-
ative interactions are not permitted at all. Even in studies
where they are, negative interactions introduce difculties in
network renderings and community detection and so typ-
ically end up being ignored, such as was required in
this study.

Yet such interactions carry important information. In
ecosystems, species interacting negatively may competitively
exclude one another so that only one species is generally
present in an area. In economic networks, such consider-
ations become important if policy-makers were to apply this
methodology, for example, to identify potential targets for
job growth. Such targets may be less desirable if they interact
negatively with many of a city’s existing economic strengths.

Consider also the previous discussion on determining
agglomeration forces. One possibility that is seemingly not
addressed in relevant literature is that two industries ag-
glomerate not because they are drawn together but because
they are both driven away from a common set of other
industries. Even in cases where industries are drawn to each
other, it is likely that negative interactions play a moderating
role in each channel.

Such issues related to negative economic interactions
should be more thoroughly investigated and where needed,
such as in community detection, new methods should be
developed that integrate such relationships instead of ig-
noring them.Tis is likely an excellent opportunity for cross
disciplinary collaboration between ecosystem theorists and
regional economists.

4.3. Next Steps. Another aspect of this study that demands
further examination is the relationship between network-
based results and spatial patterns. For instance, do MSAs
that fall primarily into one network community cluster
spatially across the U.S.? Or doesMSA population size better
explain the network location and community of individual
MSAs? Tese important questions comprise a fruitful re-
search agenda at the nexus of regional science and com-
plexity science.

Finally, the method used in this study is applicable to any
country for which data are available for multiple economic
entities at a meaningful level of geography (generally unifed
labor market areas). Tis could be extended to groups of
countries (e.g., European Union), provided they share
a common coding schema and data structure. Tus, this
domain of inquiry has potential for a broad and diverse suite
of future applications and research directions with global
appeal.
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