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Te echo state property (ESP) is a key concept for understanding the working principle of the most widely used reservoir
computing model, the echo state network (ESN).Te ESP is achieved most of the operation time under general conditions, yet the
property is lost when a combination of driving input signals and intrinsic reservoir dynamics causes unfavorable conditions for
forgetting the initial transient state. A widely used treatment, setting the spectral radius of the weight matrix below the unity, is not
sufcient as it may not properly account for the nature of driving inputs. Here, we characterize how noisy driving inputs afect the
dynamical properties of an ESN and the empirical evaluation of the ESP. Te standard ESN with a hyperbolic tangent activation
function is tested using the MNIST handwritten digit datasets at diferent additive white Gaussian noise levels. Te correlations
among the neurons, input mapping, and memory capacity of the reservoir nonlinearly decrease with the noise level. Tese trends
agree with the deterioration of the MNISTclassifcation accuracy against noise. In addition, the ESP index for noisy driving input
is developed as a tool to help easily assess ESPs in practical applications. Bifurcation analysis explicates how the noise destroys an
asymptotical convergence in an ESN and confrms that the proposed index successfully captures the ESP against noise. Tese
results pave the way for developing noise-robust reservoir computing systems, which may promote the validity and utility of
reservoir computing for real-world machine learning applications.

1. Introduction

Reservoir computing (RC) provides a supervised learning
framework for recurrent neural networks (RNNs) that help
overcome practical limitations of RNNs such as the con-
vergence issue on training and vanishing/exploding gradient
problems [1–7]. Among various types of RC models, the
echo state network (ESN) originally developed by Herbert
Jaeger in 2001 [5, 8] has been widely used. In an ESN system,
a random sparsely connected RNN (acting as a reservoir)
maps the time-varying driving inputs into the high-
dimensional spatiotemporal information in the reservoir,
and then a readout layer is used to link the reservoir in-
formation and desired output [4, 5, 8–10]. In most cases, the
connectivity matrix of the reservoir network is fxed, yet the
weights of connections between the reservoir and the
readout layer are trainable in a supervised manner. Tis
efcient learning strategy enables high performance at a low

computational cost, compared to conventional RNN set-
tings. Tis basic working principle is shared with another
widely used RC model, the liquid state machine (LSM)
which was developed by Maass, Natschlager, and Markram
(independently from the ESN) [4, 9, 10]. Tese RC models
have been successfully applied to a wide range of real-world
problems including stock market prediction [11, 12], bio-
medical application [13–17], speech recognition [18, 19], and
handwriting recognition [20–23], as well as fundamental
problems in physics such as critical transition dynamics
[24–27], network link inferring [28, 29], and stochastic/
chaotic time series prediction [7, 30–41].

Te echo state property (ESP) was originally defned by
Jaeger [5] to grasp the computational capabilities and
mechanisms of ESNs, which may be used as a design
principle of the reservoirs. Intuitively, a reservoir having this
property can be successfully entrained by the driving input
to generate high-dimensional, nonlinear, and rich memory
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properties for computations. In other words, the reservoir
dynamics asymptotically washes out its transient initial state
induced by the driving input; this is also referred to as “input
forgetting” or “state forgetting” [5]. Te original ESP [5]
claims that an ESN meets the ESP if all state vectors driven
by any input sequence from a compact set U asymptotically
converge to the same state. While it is a sufcient condition
for achieving ESP that the largest singular value of the weight
matrix is smaller than unity, it is a necessary condition that
the spectral radius of the matrix is smaller than unity. Some
following works elaborated on the ESP defnition and its
sufcient conditions by taking into account the nature of
driving input signals. Te work by Yildiz et al. [42] con-
sidered the distribution of the driving input signals to refne
the original ESP concept. Tis work had important rami-
fcations for the conditions for ESP, a spectral radius greater
than unity does not necessarily imply a loss of the ESP, and
thus, the commonly used procedure of scaling the spectral
radius to under unity to ensure ESPs can be fawed.
Meanwhile, the condition on the largest singular value of the
weight matrix was found to be too restrictive, leading to poor
performance, and alternative conditions were formulated
[42, 43]. Subsequently, less restrictive sufcient conditions
for the ESP to prevent the fast washing-out problem have
been developed [42, 43]. More recently, Manjunath and
Jaeger [44] provided an alternative formulation where the
ESP is defned concerning a specifc input signal rather than
a range of possible inputs. For a given input signal, the
formulation prescribes the spectral properties of the network
weight matrix W that satisfes the ESP. However, work still
needs to be done to elucidate when ESP is satisfed given
a broad distribution of input signals, e.g., inputs in the
presence of noise. Wainrib and Galtier [45] developed
a cheap algorithm to establish a local and operational version
of the ESP through the computation of the largest Lyapunov
exponent. Basterrech [46] presented an empirical analysis of
the accuracy and the input mapping of reservoirs. Kubota
et al. [47] experimentally demonstrated that cultured neu-
ronal networks can have ESPs to serve as physical reservoir
computers.

As stated above, the ESP concept has undergone several
refnements since its introduction, yet the validity of widely
used literature conditions for the ESP is limited because they
do not always properly account for the nature of driving
input signals. Of course, the simple technical treatment (i.e.,
setting the (efective) spectral radius of the weight matrix
below the unity) often fails to guarantee the ESP when
a combination of driving input and intrinsic reservoir dy-
namics causes unfavorable conditions for forgetting the
transient initial state. For this, the empirical assessment of
ESP in practice needs more elaboration in providing suf-
cient conditions for the ESP, considering that the ESP is
a cooperative phenomenon of the intrinsic reservoir dy-
namics and a set of admissible driving inputs. Tis study
specifcally describes numerical simulations and an analyt-
ical characterization of the ESP in the presence of noisy
driving inputs. Te standard ESN model with a tangent
hyperbolic activation function is used to examine the dy-
namical properties and the resulting ESP during the MNIST

handwritten digit classifcation tasks at diferent additive
white Gaussian noise levels. Te efects of the noise on the
reservoir dynamics are characterized by various measures
including the correlations among the neuronal activities
within a reservoir, the mapping of the noisy input to the
reservoir, and the memory capacity. Tese dynamical
properties are related to the MNISTclassifcation accuracy
and bifurcation dynamics of the reservoir. In addition, the
ESP index for noisy driving input is developed based on
the work by Gallicchio [48] to help easily assess the
property in practical applications. Bifurcation analysis was
employed to capture the underlying dynamical properties
of the reservoir and to prove the validity of the proposed
ESP index.

By way of outline, Section 2 reviews the theoretical
frameworks for understanding ESNs and the ESP. Section 3
describes the computational and theoretical methods in-
cluding the defnition of noisy input-driven ESP, bifurcation
analysis, and the MNIST classifcation task. Section 4 begins
by describing the changes in the dynamical properties of the
reservoir against noise, followed by bifurcation dynamics of
the reservoir, and these are related to the deterioration of
classifcation accuracy and the ESP index. Section 5 com-
bines the discussion and conclusions.

2. Theoretical Framework

2.1. Standard Echo State Network. Te standard echo state
network (ESN) model proposed by Herbert Jaeger in 2001
[5] with N reservoir units, K inputs, and L outputs is defned
as follows:

xk+1 � F xk, uk+1( 􏼁 ≡ f Wxk + W
in

uk+1 + W
fb

yk􏼐 􏼑,

yk � g W
out

xk􏼐 􏼑,
(1)

where xk ∈ RN×1, uk ∈ RK×1, and yk ∈ RL×1 are the internal,
input, and output vectors at time k, respectively, W ∈ RN×N

is the internal weight matrix of the reservoir, Win ∈ RN×K is
the input matrix, Wfb ∈ RN×L is the feedback matrix, and
Wout ∈ RL×(N+K) is the output matrix. Te state activation
function f � (f1, . . . , fN)T is a sigmoid function (usually fi

is a hyperbolic tangent function) applied component-wise
with f(0) � 0 and the output activation function is
g � (g1, . . . , gL)T, where each gi is usually the identity or
a sigmoid function.

Te compactness condition means F is defned on
X × U, where X ⊂ RN and U ⊂ RK are compact sets and F

satisfes F(xk, uk+1) ∈ X with uk ∈ U, ∀k ∈ Z. Let
U− ∞ ≔ u− ∞ � (. . . , u− 1, u0) | uk ∈ U,∀k≤ 0􏼈 􏼉 and X− ∞ ≔
x− ∞ � (. . . , x− 1, x0) | xk ∈ X,∀k≤ 0􏼈 􏼉 denote the set of left-
infnite input and state vector sequences, respectively. We
say x− ∞ is compatible with u− ∞ when xk+1 � F

(uk+1, xk),∀k≤ 0.
Te standard ESN with a hyperbolic tangent activation

function without feedback (i.e., f � tanh and Wfb � 0) is
given by

xk+1 � F xk, uk+1( 􏼁 ≡ tanh Wxk + W
in

uk+1􏼐 􏼑. (2)
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2.2. Echo State Property for Standard ESNs. Te echo state
property (ESP) is frst defned by Jaeger in his original paper
that proposed the ESN [5]: a network F: X × U⟶ X with
the compactness condition has the ESP with respect to U if
for any left infnite input sequence u− ∞ ∈ U− ∞ and any two
state vector sequences x− ∞, y− ∞ ∈ X− ∞ compatible with
u− ∞, it holds that x0 � y0. It is important to note that the
ESP is not a property of a reservoir (or network) per se, but
a property of a pair (the reservoir and the set of admissible
inputs). Te original defnition of the ESP takes into account
only the range U of admissible inputs, not the probability
distribution of the input process. In practice, however, it is
this distribution that determines the admissible range of
spectral radius for almost all input sequences—which are the
practically relevant ones, not the “pathological” ones, which
destroy the ESP but occur with zero probability [42].
Terefore, a more useful defnition of the ESP is proposed
considering the probability of occurrence for admissible
inputs [42]: a network F satisfes the echo state property with
respect to a stochastic process (Uk)k∈Z (where the random
variables Uk take values in a set U) if with probability one,
∀u− ∞ ∈ U− ∞ and ∀x− ∞,∀y− ∞ ∈ X− ∞ compatible with
u− ∞, it holds that x0 � y0. Te defnition of ESP for
a specifc input signal that respects the nature of the expected
input signals in more detail is suggested by Manjunath and
Jaeger [44]: a network F is said to have the echo state
property with respect to an input sequence uk􏼈 􏼉 if ∀k ∈ Z,
xk+1 � F(xk, uk+1), and yk+1 � F(yk, uk+1), then xk � yk for
all k ∈ Z.

Te ESP is connected to the spectral properties of the
weight matrix W, and some work has been devoted to stating
and refning sufcient/necessary conditions for the ESP of
the standard ESN [5, 42–44]. A rather restrictive sufcient
condition for the ESP was given by Jaeger [5] as σmax(W)< 1,
where σmax(W) denotes the maximum singular value of W.
Since this condition is too restrictive and the input is washed
out very fast, it is not commonly used in practice. A less
restrictive sufcient condition known to date is that W is
diagonally Schur stable [42, 43]. More recently, Manjunath
and Jaeger [44] provided an improved formulation of the
sufcient condition for the ESP linked to an input: limt⟶∞
sup 1/t􏽐t

i(C(t) − (1 + ln 2))I C(t)≥ 2{ }> ln(‖W‖)/2, where
C(t) � min(|Winu(t)|), and I is the indicator function that
is 1 when its argument is true, and 0 otherwise. In the
presence of zero input, a necessary condition for the ESP is
ρ(W)< 1, where ρ(W) denotes the spectral radius of W [5].
However, for nonzero input signals, the condition is neither
sufcient nor necessary for the ESP [42].

Conditions for the ESP used in the literature typically fail
to properly account for the efects of driving input signals,
often limiting the potentialities of the RC approach. Gal-
licchio [48] introduced an empirical ESP index that enables
analysis of the stability regimes of reservoirs:

ESPindex �
1
P

􏽘

P

i�1

1
L − T + 1

􏽘

L

j�T

D ϕ(j, 0, 0), ϕ j, 0, zi( 􏼁( 􏼁,

(3)

where P is the number of randomly generated initial states,
the frst and the last time step used for the calculation of the
ESP index are denoted by L and T, respectively, and D(x, y)

represents the Euclidean distance between two vectors x and
y. A process ϕ on a state space X is defned as follows:

ϕ(n, m, x) �
Fn− 1 ∘ . . . ∘Fm(x), if n>m,

x, if n � m.
􏼨 (4)

where Fk(·) � F(·, uk+1).

2.3. BifurcationAnalysis in ESNs. Tedynamical properties of
ESNs have been investigated using bifurcation theory; it has
been considered the standardmethod to examine the qualitative
changes of the dynamical systems such as phase transitions and
instabilities [49]. Yildiz et al. [42] used bifurcation analysis to
prove that the spectral radius condition ρ(W)< 1 is not
a necessary condition for ESPunder the zero input environment
[42]. With zero input uk � 0, the origin becomes a trivial fxed
point with a sigmoid activation function. Since stationary origin
state xk � 0 is compatible with zero input, the problem is re-
duced to the stability and existence problem of additional fxed
points, which can be analyzed with bifurcation theory in an
autonomous dynamical system. In two-dimensional systems
consisting of two nodes, the weight matrix should be in the
stable triangle region Δ � W ∈ R2×2||tr(W)| − 1< det(W)􏼈

< 1} [50]. For convenience, they assumed the one component in
the weight matrix zero w11 � 0. By fxing (det(W), tr(W))

� (c, c + 1), where c is positive, new fxed points emerge if
|w12|< 1/

�
c

√
and disappear if |w12|> 1/

�
c

√
. It is called de-

generate bifurcation which generates two more fxed points
away from the origin in a two-dimensional system. Moreover,
increasing determinant det(W) with fxed trace tr(W) induces
additional nontrivial fxed points away from the origin. Tis
bifurcation analysis ensures the existence of nontrivial fxed
points—at least four—away from the origin which can be either
asymptotically stable or unstable. Stabilities of these fxed points
in reservoir dynamics should be separated from stabilities in
bifurcation analysis.

Using computational simulations, one can easily check
the stabilities of these points by observing the basin of points.
Yildiz et al. [42] showed the case that there exist three as-
ymptotically stable fxed points including the origin and two
fxed points from the degenerate bifurcation and two saddle
points from the pitchfork bifurcation. Tese results can be
extended to higher dimensions using appropriate block
matrices. However, the bifurcations of the higher di-
mensional nonautonomous dynamical systems are difcult
to solve analytically: in higher dimensions, ESNs can exhibit
the Neimar–Sacker bifurcation, indicating fxed points other
than the origin can exist at ρ(W)< 1, and the input noise
signifcantly afects the dynamical properties of reservoirs
and in turn the training and inference performance of ESNs.
Temathematical theory called stochastic bifurcation theory
has dealt with this type of dynamical systems perturbed by
additive stochastic noise [51]. However, artifcial neural
networks including ESNs allow the input signal to be
mapped into networks through a nonlinear sigmoid-like
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activation function. Tis nonlinearity applied to stochastic
terms makes analytic approaches much more challenging
due to the difculty of linearly separating the deterministic
and stochastic terms. To circumvent these problems, we
resort to numerical simulations to examine the behavior of
the stochastic and nonlinear dynamical systems.

3. Methods

We refne the literature defnitions of ESP [5, 42–44] and ESP
index [48] to adequately refect the efects of noisy driving input
u � 􏽥u + ξ, where 􏽥u is the input sequence from a compact set U
and ξ the additive white Gaussian noise (AWGN). We also
provide a sufcient condition of ESP considering the noise.

3.1. Echo State Property upon Noisy Driving Input

Defnition 1 (ESP with respect to noisy driving input). A
network F: X × U⟶ X (with the compactness condition)
has the echo state property of tolerance ϵ and confdence c

with respect to U and noise process ξ: if for any left infnite
noisy input sequence u− ∞ � 􏽥u

− ∞
+ ξ− ∞, u− ∞ ∈ U− ∞, and

any two state vector sequences x− ∞, y− ∞ ∈ X− ∞ compat-
ible with diferent realizations of u− ∞, it holds that
P(‖x0 − y0‖≤ ϵ)≥ c.

Here, ‖·‖ denotes the norm defned on the state space X.
If ϵ � 0, c � 1, and ξ− ∞

� (. . . , 0, 0), the defnition becomes
the original one by Jaeger [5].

A sufcient condition for the ESP with respect to noisy
driving input is given by following proposition—sufcient
condition for ESP with respect to noisy driving input. For
a standard ESN model in equation (2), if the following
conditions are satisfed:

(i) ξ and η are diferent realizations of the noise
process;

(ii) σmax(W)< 1;
(iii) P(σmax(Win)􏽐

∞
k�1[σ

max(W)]k‖ξ− k − η− k‖≤ ϵ)≥ c,

the ESN has ESP of tolerance ϵ and confdence c with
respect to noisy driving input.Te proof of the proposition is
presented in Appendix A. When the probability distribution
of the noise is given, the regime of spectral properties of W

and Win where ESP holds can be calculated using the given
proposition.

Finally, we defne the ESP index noisy driving input to
empirically assess the property, which leads to:

ESPindex �
1
P

􏽘

P

i�1

1
L − T + 1

􏽘

L

j�T

D 􏽥ϕ(j, 0, 0), ϕ j, 0, zi( 􏼁􏼒 􏼓, (5)

where 􏽥ϕ is a process defned using the 􏽥Fk(·) � F(·, 􏽥uk+1)

instead of Fk (see equation (4)).

3.2. Bifurcation Analysis. For an ESN that satisfes the ESP,
diferent reservoir states induced by the same driving input
from a compact set U should asymptotically converge. If the
input is given zero (i.e., u � 0), the reservoir starting from

any initial state should converge to the origin which is
a unique global stable fxed point. Te stability and
uniqueness of the fxed point are analytically provable, yet
the analytical approaches seem to be challenging in the case
of the nonlinear mapping of input signal containing noise
because the problem of separating the stochastic part from
the deterministic term is not easy to solve. Instead, we use
numerical simulations to examine the nonlinear non-
autonomous dynamical properties of the ESN upon noisy
driving input.

Te ESNs upon a driving input with white Gaussian
noise evolve following the relation:

xk+1 � tanh Wxk + W
inξk􏽨 􏽩, (6)

where W ∈ RN×N is an internal weight matrix, Win ∈ RN×K

is an input matrix, xk ∈ RN×1 is reservoir state, and
ξk ∈ RK×1 is the K-dimensional vector whose component is
a n independent white Gaussian noise. Te input matrix is
fxed to Win � 0.5IN×N when noise is given for convenience,
and Win � 0 without input. As discussed above, if there is no
input (i.e. Win � 0), the ESNs with ESP will converge to the
origin. Reservoir states were updated at each step fol-
lowing equation (6). After one update, all states are
bounded within (− 1, 1) since the activation function is
bounded. Hence, initial states within [− 1, 1] are enough to
examine the full dynamics of the reservoirs. In one-
dimensional ESNs, 50 initial states within [− 1, 1] with
equal intervals randomly chosen from the uniform distri-
bution U(− 1, 1) and the reservoirs were updated for 300
steps. In two-dimensional ESNs, 100 initial states are chosen
randomly in [− 1, 1] × [− 1, 1]—each component is
extracted from a uniform distribution U(− 1, 1)—and
updated for 300 steps. Increasing the spectral radius of W

(by multiplying constants), we observe the stability in ESNs
to track the ESP. In the simulations, the input noise was
given in the same way as the MNIST classifcation task
(Section 3.3).

3.3. Handwritten Digit Classifcation Tasks. Te modifed
National Institute of Standards and Technology (MNIST)
image database for handwritten digits (“0,” “1,” . . ., and
“9”) is used to test the performances of the standard ESN.
Te training and test accuracies are obtained using dif-
ferent numbers of examples: the sizes of the training sets
vary from 120 to 240, . . ., 30,000, and the test sets are one-
sixth of the corresponding training set size, i.e., from 20
to 40, . . ., 5,000 examples. Each training or testing set
contains an equal number of samples from each digit. Te
pixel dimension of a digit number image was
28 × 28 � 784 pixels. Te AWGN was added to each image
with diferent signal-to-noise ratios (SNRs). Te SNR was
defned as E(􏽥P

2
n,(i,j))/Var(σ), where 􏽥Pn,(i,j) is the pixel

intensity of the (i, j) pixel (i, j � 1, 2, . . . , 28) in the nth

image without noise, and σ denotes a white Gaussian
noise with a mean of zero. Te variance of σ is determined
by the given SNR value. Pixel intensities of the noisy
image are given as follows:
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Pn,(i,j) �

0, if 􏽥Pn,(i,j) + σ < 0,

255, if 􏽥Pn,(i,j) + σ > 255,

􏽥Pn,(i,j) + σ, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Each image is transformed into 28 temporal driving
input signals by presenting the normalized intensities of 28
pixels in a column at each time step, i.e., jth element
(j � 1, 2, . . . , 28) of the input signal uk at the time step k �

28n + i is given by Pn,(i,j)/255. Te readout layer consists of
10 simple neurons with a linear activation function, where
the output signal ŷD of Dth readout neuron represents the
likelihood that the input image at time t belongs to class D.
We train the output ŷD to copy a target signal yD, where
yD(t) � 1 if the current image at time t belongs to class D,
yD(t) � 0 otherwise. For the test, class D with the highest
probability is chosen.

4. Results

Figure 1 exhibits the efect of noise on the handwritten digit
classifcation accuracy using the standard ESN model (see
equation (2)). For each SNR level, the training and test
accuracies converged as the training/test dataset size in-
creased (left side of Figure 1(a); training and test accuracies
colored cyan and blue, respectively), where the accuracies
declined as the SNR level decreased (i.e., increasing AWGN
levels). Te neuronal activities in the reservoir fuctuated
more frequently as the SNR decreased (Figure 1(a)) and
these caused the decrease of the mean absolute value of
cross-correlations with a lag of zero (Cabs) between all pairs
of neuronal activities in the reservoir (Figure 1(b)). Te
dependence of the training and test accuracies on the SNR
was nonlinear, as displayed in Figure 1(c): both the training
and test accuracies drastically dropped at SNR<∼1.0.

Te short-term memory capacity (MC) of the reservoir,
which is the primarymeasure of the network’s ability to store
the past input information [52], nonlinearly decreased upon
reducing the SNR level (i.e., promoting AWGN)
(Figure 2(a)). Te MC is the sum of δ-delay short-term
memory capacity MCδ (δ � 1, . . . , δmax) against SNR levels
(i.e., MC � 􏽐

δmax
δ�1 MCδ), where the MCδ means the coefcient

of determination (R2) of the linear regression with the
reservoir state vector xk to predict driving input signal uk− δ
with a delay of δ; δmax was set to 20 in Figure 2(a) and each of
MCδ values against SNR levels are displayed in Appendix
B. Te mapping score (SM) of the driving input signal also
decreased by promoting the AWGN levels (Figure 2(b)).Te
score quantifes how much information of the driving input
signal is mapped to the reservoir against noise by comparing
the reservoir state induced by the driving inputs with and
without the noise. It is defned as SM � 1/(1 + D(􏽥x, x)),
where D denotes the Euclidean distance and 􏽥x and x mean
the state vector by the input sequence without noise (􏽥uk) and
that by the noisy input sequence (uk � 􏽥uk + ξk), respectively.
Te trends of these two information processing indices of the
reservoir are in good agreement with the deterioration

pattern of the classifcation accuracy due to the noise
(Figure 1(c)). Tis indicates that the addition of noise
strongly infuences the information processing of the res-
ervoir via changing the neural activities, which in turn
impacts the computational performance.

As a way to assess the computational capability of the
reservoir, the echo state property (ESP) index for noisy
driving input which refects the dynamical changes of the
reservoir is devised based on the work by Gallicchio [48].
Te ESP index measures the average deviation of noise-
driven trajectories induced by random initial states from
a noiseless trajectory starting from the zero state (see Section
3.1 for a formal defnition). It thus captures the existence of
the ESP: intuitively, an ESP index value close to zero strongly
suggests that the ESN possesses the ESP, while a larger value
means the reservoir is far from having the ESP. Figure 3
displays the ESP index and test accuracy for noisy driving
input as functions of spectral radius and input scaling at
diferent noise conditions—no addition of noise and adding
the AWGN with SNR from 4.0 to 0.1. Te reservoirs were
generated by varying spectral radii and input scaling values
as follows: the elements of the input matrix Win were
randomly sampled from a uniform distribution on the in-
terval [− a, a], where a represents the input scaling. Te
internal weight matrix W was randomly generated so that
1% of the elements are nonzero, and these nonzero values
are uniformly sampled from the range [− 1, 1]. Ten, W was
rescaled to achieve the desired spectral radius. For the case
without noise (Figure 3(a)), both the ESP index for noisy
driving input and the original index by Gallicchio [48]
generally agree with the distribution of the test accuracies on
the spectral radius-input scaling plane: the index value
becomes higher (i.e., less tendency to have ESP) as the
spectral radius increases and the input scaling decreases (i.e.,
towards the top-left corner on the plane). However, when
increasing the noise level (Figures 3(b)–3(d)), the ESP in-
dices for noisy input well capture the collapse of compu-
tational properties of the reservoirs (i.e., deterioration of test
accuracies), while the original index did not capture the
efect of noise on the computation.

Te detailed dynamical properties of ESNs upon noisy
driving input are investigated using the one-dimensional
(N� 1) and two-dimensional (N� 2) ESN models in
agreement with Yildiz’s method for zero input cases [42]. In
N� 1 case, W � ρ(W) is a constant scalar and it is the
spectral radius itself. x � 0 is a trivial fxed point in this
system for arbitrary W.Te stability of a trivial fxed point is
determined by the spectral radius; x � 0 is stable if
|ρ(W)|< 1 and unstable if |ρ(W)|> 1; additional nonzero
stable fxed points emerge for |ρ(W)|> 1. Te evolution of
the reservoir states obtained by numerical simulations
confrmed these results. Figure 4 exhibits the dynamics of
one-dimensional ESNs with zero input and with only the
white Gaussian noise. For the zero input case, one-
dimensional ESNs converge to trivial fxed point x � 0 for
ρ(W) � 0.9 (frst column in Figure 4(a)) or two nonzero
fxed points for ρ(W) � 1.1 (second column in Figure 4(a)).
Te reservoir states manifested a pitchfork bifurcation (last
column in Figure 4(a)): the states converged to a stable fxed
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point x � 0 for ρ(W)< 1. As spectral radius increases, an
unstable fxed point emerges around ρ(W) � 1 and two
nonzero stable fxed points emerge for ρ(W)> 1
(Figure 4(a)). Upon white Gaussian noise, while the overall
tendencies were similar to the zero input case, the reservoir
states fuctuated by the noise: diferent initial states, in turn,
converged to an asymptotically same trajectory for all noise
levels (SNR� 4.0, 1.0, and 0.1), and the degree of fuctuation
increased with the noise level (Figures 4(b)–4(d)). In the
cases of ρ(W) � 0.9 (frst column in Figures 4(b)–4(d)),
reservoir states fuctuate around x � 0 and the degree of
fuctuation increases as the noise level increases. In the cases
of ρ(W) � 1.1 (second column in Figures 4(b)–4(d)), states
fow into the vicinity of one of the two original fxed points.
As the noise level increases (or SNR decreases), noise

induces more blurring of fxed points, while we can still see
the footprints of fxed points observed in the dynamics of
ESNs without input. Te last 100 steps are used to test the
convergence of the reservoir states upon 10 diferent white
Gaussian noise levels (third column in Figures 4(b)–4(d)).
For given spectral radius ρ(W), states are colored with dark
green if states are bounded within tolerance ϵ � 0.05, i.e.,
|xk|< ϵ � 0.05 for 200< k≤ 300. Otherwise, states are col-
ored light green if they are not bounded. In a noisy envi-
ronment, states can deviate from the origin (i.e.,
|xk|≥ ϵ � 0.05) even at ρ(W)< 1.

We extend our analysis into two-dimensional ESNs
where two neighboring nodes (N� 2) are connected. InN� 2
case, W is a 2× 2 matrix and the reservoir state in each step k
can be represented by a two-dimensional vector xk �
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Figure 1: Infuence of signal-to-noise ratio (SNR) on the handwritten digit classifcation: (a) (left) training (cyan) and test (blue) accuracies
against training/test dataset size and (right) the activity of a neuron in the reservoir given input digits without noise and in cases of additive
white Gaussian noise (AWGN) with SNR� 4.0, SNR� 1.0, and SNR� 0.1.Te size of the training dataset varied from 120 to 240, . . ., 30,000,
and the test data sizes were one-sixth of the training size (i.e., from 20 to 40, . . ., 5,000).Te accuracies using the largest dataset are displayed
in each panel. (b) Te mean absolute value of cross-correlations with a lag of zero (Cabs) among the neuronal activities in the reservoir at

diferent SNR levels (SNR� 4.0, 3.0, . . ., 0.2, 0.1): cross-correlations with a lag of zero between ith and jth neurons are defned as Cij �

Ek[(xi
k − xi

k)(x
j

k − x
j

k)]/
�������������������������

Ek[(xi
k − xi

k)2]Ek[(x
j

k − x
j

k)2]

􏽱

and Cabs � Eij[|Cij|]. (c) Training and test accuracies over SNR levels for 30,000
training examples and 5,000 test examples.Te horizontal dashed line indicates the test accuracy without noise, the same as indicated by the
blue color on the top left panel in (a). Error bars indicate the standard error over 20 independent simulations, which are negligible in
all cases.
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Figure 2: Memory capacity and mapping score of the input digit against SNR levels. (a) Short-term memory capacity (MC).
MC � 􏽐

20
δ�1MCδ, where MCδ denotes the coefcient of determination (R2) of the linear regression with the reservoir state vector xk to

predict driving input signal uk− δ with a delay of δ. (b) Mapping score SM of driving input signals. Te score is defned as
SM � 1/(1 + D(􏽥x, x)), whereD denotes the Euclidean distance and 􏽥x and x are the state vectors compatible with the input sequence without
noise (􏽥uk) and the noisy input sequence (uk � 􏽥uk + ξk), respectively. Error bars indicate the standard error over 20 independent simulations;
the values were negligible in most cases.

Without noise

ESP index for noisy input

4

3

2

1
1 2

Input Scaling

30

20

10

0

Sp
ec

tr
al

 R
ad

iu
s 30

20

10

0

4

3

2

1
1 2

Input Scaling

Sp
ec

tr
al

 R
ad

iu
s 4

3

2

1
1 2

Input Scaling

Sp
ec

tr
al

 R
ad

iu
s

Original ESP index Test accuracy

0.4

0.6

0.8

1.0

(a)

SNR = 4.0

ESP index for noisy input

4

3

2

1
1 2

Input Scaling

30

20

10

0

Sp
ec

tr
al

 R
ad

iu
s 30

20

10

0

4

3

2

1
1 2

Input Scaling

Sp
ec

tr
al

 R
ad

iu
s 4

3

2

1
1 2

Input Scaling

Sp
ec

tr
al

 R
ad

iu
s

Original ESP index Test accuracy

0.4

0.6

0.8

1.0

(b)

SNR = 1.0

ESP index for noisy input

4

3

2

1
1 2

Input Scaling

30

20

10

0

Sp
ec

tr
al

 R
ad

iu
s 30

20

10

0

4

3

2

1
1 2

Input Scaling

Sp
ec

tr
al

 R
ad

iu
s 4

3

2

1
1 2

Input Scaling

Sp
ec

tr
al

 R
ad

iu
s

Original ESP index Test accuracy

0.4

0.6

0.8

1.0

(c)
Figure 3: Continued.
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Figure 3: Te echo state property (ESP) index for noisy driving input, original ESP index [48], and test accuracies of the handwritten digit
classifcation tasks against spectral radius and input scaling: (a) MNISTexamples without noise; (b) those with additive white Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR)� 4.0; (c) AWGN with SNR� 1.0; (d) AWGN with SNR� 0.1. Te mean ESP index and test
accuracies were obtained over 5 independent simulations with diferent random initial states, each using 30,000 training examples and 5,000
test examples.
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Figure 4: Reservoir states of one-dimensional ESNs with zero input and with only the white Gaussian noise. Evolution of reservoir states
with diferent initial states for one white Gaussian noise input against the spectral radius of the internal weight matrix ρ(W) � 0.9 (left), 1.1
(center), and reservoirs states against ρ(W) (right) in the last 100 steps (201≤ k≤ 300; green shaded area for the frst and second columns):
(a) reservoir states without noise; (b) reservoir states driven by white Gaussian input noise with SNR� 4.0; (c) with SNR� 1.0; (d) SNR� 1.0.
Each panel of the frst and second columns displays 100 reservoir states starting from random initial states, while that of the third column
includes 1000 diferent states (100 randomized reservoir states× 10 randomized noise generations at each SNR). Te noise levels are the
same asMNISTtasks in Section 3.3.Te last 100 states are colored dark green if they are bounded with tolerance ϵ � 0.05, i.e., |xk|< ϵ � 0.05,
and otherwise light green.
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[x1
k, x2

k]T. Refecting that the stabilities of N� 2 cases are not
solely determined by ρ(W), the models exhibit various types
of bifurcations compared to theN� 1 systems. In addition to
constant rescaling, there are more bifurcation parameters
such as tr(W) [42]. Here, we analyze the system which
exhibits a Hopf bifurcation under a noise-free environment.
In a Hopf bifurcation, a stable fxed point becomes unstable,
and a limit cycle arises around the fxed point as the bi-
furcation parameter crosses the critical value. Internal

weight matrix W � c
0.274 − 1.09
0.83 0.35􏼢 􏼣 was used and spectral

radius ρ(W) is rescaled by multiplying the constant c> 0.
Te reservoir states in two-dimensional ESNs without noise
converge to the trivial fxed point x � [0, 0]T for ρ(W) � 0.9
as in the one-dimensional case (frst column in Figure 5(a)).
However, the reservoir states in two-dimensional ESNs with
ρ(W) � 1.1 oscillate (second column in Figure 5(a)).Te last
100 steps from diferent initial states converge (third column
in Figure 5(a)).Tey exhibit a Hopf bifurcation; a stable fxed
point becomes unstable, and a limit cycle arises around the
fxed point as ρ(W) crosses 1. For spectral radii ρ(W)> 1,
the states are distributed around the origin, implying the
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Figure 5: Reservoir states xk � [x1
k, x2

k]T of two-dimensional ESNs with zero input and with only the white Gaussian noise. Evolution of
reservoir states with diferent initial states for one white Gaussian noise input against the spectral radius of the internal weight matrix
ρ(W) � 0.9 (left), 1.1 (center), and reservoirs states against ρ(W) (right) in the last 100 steps (201≤ k≤ 300; green shaded area for the frst
and second columns): (a) reservoir states without noise; (b) reservoir states driven by white Gaussian input noise with SNR� 4.0; (c) with
SNR� 1.0; (d) SNR� 1.0. Each panel of the frst and second columns displays 100 reservoir states starting from random initial states, while
that of the third column includes 1000 diferent states (100 randomized reservoir states× 10 randomized noise generations at each SNR).Te

internal weight matrix was chosen to W� c
0.274 − 1.09
0.83 0.35􏼢 􏼣, for all simulations, where c is a positive constant to rescale the spectral radius

ρ(W). Te noise levels are the same as MNIST tasks in Section 3.3. Te last 100 states are colored dark green if they are bounded with
tolerance ϵ � 0.05, i.e., |xk|< ϵ � 0.05, and otherwise light green.
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existence of a limit cycle. Tis result indicates that ESP does
not hold if ρ(W)> 1. In the case of white Gaussian noise
with diferent levels (i.e., SNR� 4.0, 1.0, 0.1), the reservoir
states in two-dimensional ESNs start to fuctuate
(Figures 5(b)–5(d)). For ρ(W) � 0.9 (frst column in
Figures 5(b)–5(d)), reservoir states fuctuate around the
fxed point x � [0, 0]T and the degree of fuctuation in-
creases as the noise level increases. In the cases of ρ(W) �

1.1 (second column in Figures 5(b)–5(d)), the states quickly
oscillate within the bounded range. Te last 100 steps upon
10 diferent white Gaussian noise levels are examined to
confrm the convergence of the reservoir states (third col-
umn in Figures 5(b)–5(d)). For given spectral radius ρ(W),
states are colored with dark green if states are bounded
within tolerance ϵ � 0.05; |xk|< ϵ � 0.05 for 200< k≤ 300

(third column in Figures 5(b)–5(d)). Otherwise, states are
colored light green if they are not bounded. As in the case of
the one-dimensional model, ESNs for some initial states can
deviate from the origin (i.e., |xk|≥ ϵ � 0.05) even for
ρ(W)< 1 as the noise level increases.

Results from the bifurcation analysis are related to the
ESP index for noisy driving input (equation (5)) and the
original index by Gallicchio [48]. Te reservoir states in
bifurcation analysis (i.e., last 250 time steps
(T � 51, L � 300)) in Figures 4 and 5 were used to compute
the ESP indices. As expected, both ESP indices well agreed
with the case of zero input (i.e., no addition of white
Gaussian noise) (Figure 6(a)). Te values become dras-
tically increased as the spectral radius is promoted beyond
the unity (i.e., ρ(W)> 1), whereby ESP is easily destroyed.
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Figure 6: ESP index for noisy driving input against spectral radius in one-dimensional (N � 1) and two-dimensional ESNs (N � 2):
(a) without noise; (b) driven by white Gaussian input noise with SNR� 4.0; (c) with SNR� 1.0; (d) SNR� 0.1.Te noise levels are the same as
MNIST tasks. All reservoir parameters are the same as in Figure 4 for N � 1 and in Figure 5 for N � 2; 100 independent simulations with
diferent initial states for each spectral radius and each noise level were done. Te original ESP index [48] values were compared for the last
250 time steps.
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In the presence of noise, only the ESP index for noisy
driving input could capture the deterioration of the ESP
with the noise level for ρ(W)< 1; the original ESP index
remained almost zero for this regime (Figures 6(b)–6(d)).
For ρ(W)> 1, both indices increase with the spectral
radius.

5. Discussion and Conclusions

Despite the importance of the empirical assessment of the
ESP for the logical design and optimal operation of reservoir
computers, the commonly used conditions for the ESP do
not explicitly account for the interference from the input
noise which can signifcantly afect their performance. To
provide useful information about the empirical and ana-
lytical assessment of the computational capabilities of ESNs,
a series of extensive numerical simulations and analytic
characterization of the ESP were performed.

Te analysis began with the comparison of the primary
dynamical properties of the standard ESN model with dif-
ferent input noise levels (i.e., no addition of noise and adding
the AWGN with SNR from 4.0 to 0.1). Te signifcant and

distinct relationship between the dynamical measures and
the MNIST classifcation accuracy indicated that the noise-
induced dynamical changes and the computational capa-
bility of the reservoir are fundamentally intertwined. We
then provided the ESP index for noisy driving input,
refecting these dynamical changes based on the work by
Gallicchio [48], to help easily assess the computational ca-
pability of ESNs in practical applications. We have extended
the bifurcation analysis of Yildiz et al. [42] using the one-
dimensional and two-dimensional ESN models, by taking
into account the efects of AWGN on reservoir dynamics to
explicate the underlying physics of the noise efects and to
confrm the validity of the proposed ESP index. For both
cases in one-dimensional ESN (Figure 4) and two-
dimensional ESN (Figure 5), the convergence of ESN bi-
furcates with an increasing spectral radius of the internal
weight matrix ρ(W): pitchfork bifurcations and Hopf bi-
furcations were observed and the origin was a unique fxed
point for small ρ(W) without noise. However, the fxed
point was distracted by the AWGN (Figures 4 and 5); this
means that all state vectors driven by any input sequence
from a compact set U would not asymptotically converge to
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Figure 7: δ-delay short-termmemory capacity MCδ against SNR levels. MCδ is defned as the coefcient of determination (R2) of the linear
regression with the reservoir state vector xk to predict the driving input signal uk− δ with a delay of δ. Error bars indicate the standard error
over 20 independent simulations; the values were negligible in most cases.
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the same state due to the interference of the noise. For both
one- and two-dimensional ESNs, when they have a fxed
point at ρ(W) � 0.9, the reservoir states were bounded
within the tolerance of ϵ � 0.05 without AWGN
(Figures 4(a) and 5(a)), yet some reservoir states deviated
from the fxed point under SNR� 4, 1, 0.1 (Figures 4(b)–4(d)
and 5(b)–5(d)). Tis loss of ESP by the AWGN signifcantly
changed the dynamical properties and information pro-
cessing of the reservoir as captured by the neural correlations
(Figure 1(b)), the memory capacity (Figure 2(a)), and the
mapping of the noisy input to the reservoir (Figure 2(b)),
and these, in turn, led to the collapse of computational
capability as indicated by the deterioration of MNIST
classifcation accuracy against noise (Figure 1(c)). Te
proposed ESP index was defned as the average deviation of
noise-driven trajectories from a noiseless trajectory (see
Section 3.1 for a formal defnition), and the index well
characterized the collapse of the computational properties of
the reservoirs (Figures 3 and 6). While the original ESP index
[48] was designed for noise-free conditions, the proposed ESP
index considered the changes in the dynamical properties due
to the input noise (Figures 1, 2, 4, and 5) to better characterize
the computational capabilities of ESNs, especially in dealing
with real-world problems where the interference from the
input noise signifcantly afect the performance of ESNs. As
exhibited in Figures 4 and 5, the reservoir states are strongly

entrained by the noise and the strongly entrained fuctuating
patterns of the reservoir states would wash out their transient
initial states (Figures 4(b)–4(d) and 5(b)–5(d)). While the
original index does not diferentiate these efects of noise from
the convergence of relevant information of the driving input,
the newly proposed ESP index can circumvent these problems
by incorporating both trajectories of the reservoir states in-
duced by driving inputs with and without noise in defning the
index (equation (5)).

Our work provides a framework to understand ESP in
the context of a noisy driving input—the proposed defni-
tions of the ESP and ESP index may enable the empirical
assessments of the computational capabilities of the reser-
voirs for noisy input conditions. Tis may promote the
validity, reliability, and utility of reservoir computers for
real-world machine-learning applications.

Appendix

A. The Proof of Proposition for Defining the
Echo State Property upon Noisy Driving Input

Proof. For any two state vector sequences x− ∞ and
y− ∞ ∈ X− ∞ compatible with u− ∞ � 􏽥u

− ∞
+ ξ− ∞ and

v− ∞ � 􏽥u
− ∞

+ η− ∞, respectively.

xk+1 − yk+1
����

���� � F xk, uk( 􏼁 − F yk, vk( 􏼁
����

����

� tanh Wxk + W
in

uk􏼐 􏼑 − tanh Wyk + W
in

vk􏼐 􏼑
�����

�����

≤ W xk − yk( 􏼁 + W
in

uk − vk( 􏼁
����

����(∵ tanh(x) is a 1-Lipschitz function)

≤ W xk − yk( 􏼁
����

���� + W
in ξk − ηk( 􏼁

����
����(by triangular inequality)

� σmax
(W) xk − yk

����
���� + σmax

W
in

􏼐 􏼑 ξk − ηk

����
����.

(A.1)

Applying the inequality above, we obtain

x0 − y0
����

����≤ σmax
(W) x− 1 − y− 1

����
���� + σmax

W
in

􏼐 􏼑 ξ− 1 − η− 1
����

����

≤ lim
k⟶∞

σmax
(W)􏼂 􏼃

k
x− k − y− k

����
���� + σmax

W
in

􏼐 􏼑 􏽘

∞

k�1
σmax

(W)􏼂 􏼃
k ξ− k − η− k

����
����

� σmax
W

in
􏼐 􏼑 􏽘

∞

k�1
σmax

(W)􏼂 􏼃
k ξ− k − η− k

����
����.

(A.2)
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Terefore, if P(σmax(Win)􏽐
∞
k�1[σ

max(W)]k‖ξ− k − η− k‖≤
ϵ)≥ c, then P(‖x0 − y0‖≤ ϵ)≥P(σmax(Win)􏽐

∞
k�1[σmax(W)]k

‖ξ− k − η− k‖≤ ϵ)≥ c. □

B. Short-TermMemory Capacity for EachDelay

Short-term memory capacity for each delay is provided in
Figure 7.
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