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In this paper, some mathematical properties and dynamic investigations of a Cournot–Bertrand duopoly game using a computed
nonlinear cost are studied.+e game is repeated and its evolution is presented by noninvertible map.+e fixed points for this map
are calculated and their stability conditions are discussed. One of those fixed points is Nash equilibrium, and the discussion shows
that it can be unstable through flip and Neimark–Sacker bifurcation. +e invariant manifold for the game’s map is analyzed.
Furthermore, the case when both competing firms are independent is investigated. Due to unsymmetrical structure of the game’s
map, global analysis gives rise to complicated basin of attraction for some attracting sets.+e topological structure for these basins
of attraction shows that escaping (infeasible) domain for some attracting sets becomes unconnected and the rise of holes is
obtained. +is confirms the existence of contact bifurcation.

1. Introduction

Cournot–Bertrand games have been analyzed and reported
in several studies in the literature. +ey have been named
after Cournot, the famous French economist, who first
introduced duopoly games. Cournot work opened the route
for many studies of the quantity competition between
economic competitors. +e current paper discusses
a Cournot–Bertrand duopoly game based on a computed
quantity cost. Cournot–Bertrand games take place when
economic market contains two competitors producing the
same type of commodity but with different strategies. +ese
strategies are represented by quantity-setting and price-
adjusting for achieving maximum profit.

+e literature reported few studies on such games fo-
cusing on modelling the game and studying the Nash
equilibrium point. For example, a simple Cournot duopoly
model, which should actually be attributed to Bertrand, was
considered in [1]. In [2], different cases of competitor’s
behaviors have been studied to show that the results de-
veloped in [3] are sensitive to the duopoly assumption. +e

work by Singh and Vives [3] was extended based on the
asymmetry on cost and demand between competing firms in
[4]. In [5], another extension of work of Singh and Vives [4]
has been analyzed based on the role of outsourcing to
a competitor. Based on a differentiation of production,
Tremblay et al. [6] have modelled a Cournot–Bertrand game
and have studied the stability condition of the game’s Nash
point in the static case. Askar in [7] has introduced
a Cournot–Bertrand competition using three different
mechanisms that are bounded rationality, best-reply re-
action, and adaptive adjustment. In [7], the author proved
that under certain conditions, the stability of Nash equi-
librium point became asymptotically stable using the best-
reply reaction and adaptive adjustment mechanism while
bounded rationality method yielded a stable equilibrium
point. Naimzada and Tramontana [8] studied some dynamic
characteristics of Cournot–Bertrand game under differen-
tiated products. +ey called two different mechanisms that
are the best response and adaptive rule to build the game’s
model. +ey also compared their obtained results with re-
sults in the literature. In [9], other Cournot–Bertrand game
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under certain market share has been established. +at work
has shown that the instability of Nash equilibrium point is
obtained due to increase in the average utility. Other studies
that have shown interesting results to those games and
related games are reported in the literature such as Askar
et al. [10–14], Wang and Ma [15], Ueda [16], Puu [17],
Elsadany [18], Awad et al. [19], Zhou and Li [20], and
Brianzani et al. [21]. For recent studies, the authors suggest
the following works: Wei et al. [22] and Sarafopoulos and
Papadopoulos [23].

+e above studies have discussed different dynamic
characteristics. Study of such dynamics often begins with the
analysis of stability of the game equilibrium. Different types
of bifurcations appear as a result of instability of the
equilibrium point. +ey include period-doubling and Nei-
mark–Sacker bifurcations. Important observations related
the economic behavior of such games are detected due to
deep investigation of attracting sets and chaotic behaviors of
the games’ discrete models.+is also motivates searching for
specific model dynamics and other phenomena such as
synchronization, multistability, and contact bifurcation.
Here one has to highlight important utility functions
adopted in those games. +ere are several functions that
have been the core in many studies such as the
Cobb–Douglas function [8], constant elasticity of sub-
stitution or CES function [6], and Singh and Vives function
[24]. +e Cobb–Douglas one that is adopted here in this
study has been intensively used because it has been for-
mulated based on the technological constraints between the
inputs and outputs of production. Furthermore, there have
been certain mechanisms that have been adopted to estimate
the behavior of firms (or economic competitors) such as
naive rule [25], tit-for-tat method [26], local monopolistic
approximation mechanism [27], and bounded rationality
approach [28]. In this paper, we recall the bounded ratio-
nality approach to measure the competition between two
firms. Our paper belongs to the above category of research
direction but differs from them in which the cost function
adopted by competing firms is not linear as many works in
the literature have assumed. +e firms’ cost function in this
game is computed based on Cobb–Douglas preference
utility.

In this paper, we call the Cobb–Douglas utility function
to evaluate the competitors’ cost function. Based on certain
economic constraints, a quadratic cost is used in the
competition model. Using such cost with linear prices, the
bounded rationality approach gives a nonlinear dynamic
map describing the whole competition in discrete time
periods. Our analysis shows that the model possesses three-
corner fixed points and interior one representing Nash
equilibrium. We use local and global analysis to investigate
the stability of these points with intensive discussion on the
basin of attraction due to the appearance of contact bi-
furcation under certain initial conditions.

In short, the current paper is organized as follows. In
Section 2, the cost function is derived from the
Cobb–Douglas function. +e nonlinear discrete dynamic
map describing the repetition of competition in discrete time
periods with local analysis of its fixed points is given in

Section 3. In Section 4, the invariant manifold is discussed.
In some situations, the basin of attraction and global analysis
around Nash point are investigated in Section 5. Finally,
Section 6 discusses the obtained results.

2. Market Competition

Suppose a duopoly competition of two competing firms (or
players) whose quantities are denoted by q1 and q2. Suppose
also that the prices of those quantities are restricted as
follows:

p1 � a − q1 − dq2,

p2 � a − q2 − dq1.
(1)

+e parameter a> 0 refers to a maximum price (in case
there are no commodities sent to the market, i.e.,
q1 � q2 � 0). +e parameter d denotes a degree of pro-
duction whether it is a differentiation or substitution. In case
of d � 1, the two competing players are identical and then
homogeneous goods are raised while at d � 0, the two
players are independent in prices and one gets a situation of
two monopolistic players. When d ∈ (0, 1), the competition
turns into the case of substitutability. In this work, we study
a mixed-type competition (or one can say a Cour-
not–Bertrand game). We assume that the first firm focuses
on the quantity produced while the second firm puts its
quantity’s price forward as its decision variable. So, (1) can
be rewritten in the form

p1 � a(1 − d) − 1 − d
2

􏼐 􏼑q1 + dp2,

q2 � a − p2 − dq1.
(2)

2.1. Computation of Cost and Profit Functions. According to
the Cobb–Douglas utility, the quantities can be represented
as follows [8]:

qi � EiL
α
K

1− α
; i � 1, 2, (3)

where Ei, i � 1, 2 denotes the total-factor productivity, L

represents the total labor while the total capital is given by K,
and α is taken as constant. For simplicity, we assume α � 0.5.
On the other hand, total cost can be given by

TC � wL + rK, (4)

where w and r refer to the wage per unit labor and the rental
price per unit capital, respectively. From (3) and (4), one gets

TCi �
wq

2
i

E
2
i K

+ rK; i � 1, 2, (5)

while the marginal cost is given by MCi � (dTCi/dqi) �

ciqi; i � 1, 2 and ci � (2w/E2
i K)> 0. So, one can obtain the

total profit of each firm as follows:

πi � TRi − TCi; i � 1, 2, (6)

where the total revenue is given by TRi � piqi. Now, (6) can
be rewritten in the following form:
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π1 � a(1 − d) − 1 − d
2

􏼐 􏼑q1 + dp2􏽨 􏽩q1 −
1
2

c1q
2
1 − rK,

π2 � a − p2 − dq1( 􏼁p2 −
1
2

c2 a − p2 − dq1( 􏼁
2

− rK.

(7)

3. The Model

Studying the game’s evolution requires recalling some
production updating mechanisms which are used in forming
discrete dynamic maps simulating this evolution. +ere are
several mechanisms that have been reported in the literature,
but in this paper, we recall the most popular one known as
the bounded rationality mechanism. Such mechanism de-
pends on the marginal profits, (η1 � (zπ1/zq1), η2 � (zπ2
/zp2)), given by

η1 � a(1 − d) − 2 + c1 − 2d
2

􏼐 􏼑q1 + dp2,

η2 � a 1 + c2( 􏼁 − 2 + c2( 􏼁p2 − d 1 + c2( 􏼁q1.
(8)

Such marginal profits must be watched by firms for the
production updating process. If both η1 and η2 are in-
creasing, this means both profits are increasing and this
encourages firms to increase their productions in the next
time stage. For the case η1 > 0 and η2 < 0, only the first firm
will increase its production while the second firm may leave
competition and so the market. Similarly, the case η1 < 0 and
η2 > 0 is clear. If η1 < 0 and η2 < 0, both firms may exit the
competition. So, let us consider the case η1 > 0 and η2 > 0,
and hence the updating process is given by

q1(t + 1) � q1(t) + k1q1η1,

p2(t + 1) � p2(t) + k2p2η2,
(9)

where ki > 0, i � 1, 2 is called the speed of adjustment pa-
rameter. +is means that both the relative production and
price are directly proportional to η1 and η2, i.e., q1(t + 1) −

q1(t)/q1(t)∝ η1 and p2(t + 1) − p2(t)/p2(t)∝ η2.
Substituting (8) in (9), one gets the following map:

T q1, p2( 􏼁:
q1(t + 1) � q1(t) + k1q1(t) a(1 − d) − 2 + c1 − 2d

2
􏼐 􏼑q1(t) + dp2(t)􏽨 􏽩,

p2(t + 1) � p2(t) + k2p2(t) a 1 + c2( 􏼁 − 2 + c2( 􏼁p2(t) − d 1 + c2( 􏼁q1(t)􏼂 􏼃.

⎧⎨

⎩ (10)

It is a two-dimensional nonlinear discrete map and is
used to simulate the game’s repetition (or the game’s evo-
lution with respect to time t, t � 0, 1, 2, . . .).

3.1. FixedPoints and,eir Stability. At q1(t + 1) � q1(t) and
p2(t + 1) � p2(t), map (10) admits four fixed points given by

O � (0, 0),

e1 �
a(1 − d)

2 + c1 − 2d
2, 0􏼠 􏼡,

e2 � 0,
a 1 + c2( 􏼁

2 + c2
􏼠 􏼡,

e∗ �
a 2 + c2 − d( 􏼁

2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2,

a 1 + c2( 􏼁 2 + c1 − d − d
2

􏼐 􏼑

2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2

⎛⎝ ⎞⎠.

(11)

Since a> 0, ci > 0, i � 1, 2, and d ∈ (0, 1), simple calcu-
lations show that the above fixed points are positive. In
addition, the points O, e1, and e2 imply that at least one firm
will exit the market. Now, some propositions are obtained
and their proofs are presented in Appendix.

Proposition 1. ,e boundary O � (0, 0) is unstable
repelling node.

Proposition 2. ,e boundary e1 is saddle point if
0< k1 < 2/a(1 − d). Otherwise, it is an unstable node.
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Proposition 3. ,e boundary e2 is saddle point if
0< k2 < 2/a(1 + c2). Otherwise, it is an unstable node.

Proposition 4. ,e point e∗ is known as Nash equilibrium
point and is asymptotically stable if 0< 1 − δ < 4where δ is the
determinant of Jacobian matrix at e∗.

Proposition 5. Due to flip bifurcation, Nash point becomes
unstable if

k1k2 <
k1 2 + c1 − 2d

2
􏼐 􏼑

a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁
+

k2 2 + c2( 􏼁

a 2 + c2 − d( 􏼁
. (12)

Proposition 6. Due to Neimark–Sacker bifurcation, the
Nash point becomes unstable if

k1k2 >
k1 2 + c1 − 2d

2
􏼐 􏼑

a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁
+

k2 2 + c2( 􏼁

a 2 + c2 − d( 􏼁
. (13)

Figures 1(a)–1(c) show the region of stability for e∗ at the
values a � 0.65, c1 � 0.1, c2 � 0.2 and different values for d.
It is clear that as d increases, the region of stability increases
and vice versa. Numerical simulation shows also that any
increase in a while the other parameters are fixed reduces the
region of stability. Figure 1(d) presents the basin of

attraction of the point e∗ that is comprised of two regions,
feasible and infeasible regions. More discussion on those
regions will be given later in the Global Analysis section.

3.2. Critical Curves and Noninvertible Property. It is clear
that map (10) belongs to the class C1 (continuously dif-
ferentiable). +is means that the set LC−1 can be defined as
follows:

LC−1 ⊆ q1, p2( 􏼁 ∈ R2
: det J q1, p2( 􏼁( 􏼁 � 0􏽮 􏽯, (14)

where J(q1, q2) represents the Jacobian matrix which con-
tains the locus of all points at which the determinant of
Jacobian vanishes. +e critical curves depend on this set and
are used to give more information on the decision space of
the map. Knowing those curves gives more information on
the regions (or zones) dividing the decision space. +e rank-
1 of critical curves is denoted by LC and is defined as the
locus of all rank-1 preimages located on the set LC−1. So, LC
represents all the rank-1 images of LC−1 under the map T

given in (10), i.e., LC � T(LC−1). For (10), LC−1 is given by

Aq
2
2 + Bp

2
1 + Cq1p2 − Dq1 − Ep2 + F � 0, (15)

where

A � 2k1k2d 1 + c2( 􏼁 2 + c1 − 2d
2

􏼐 􏼑,

B � −2k1k2d 2 + c2( 􏼁,

C � 4k1k2 2 + c2( 􏼁 2 + c1 − 2d
2

􏼐 􏼑,

D � −k1k2a 1 + c2( 􏼁 4 + 2c1 + d(1 − 5d)( 􏼁 − k2d 1 + c2( 􏼁 − 2k1 2 + c1 − 2d
2

􏼐 􏼑,

E � −k1k2a 4 + 2c2 − d 5 + 3c2( 􏼁( 􏼁 − 2k2 2 + c2( 􏼁 + dk1,

F � k1k2aa
2
(1 − d) 1 + c2( 􏼁 + k2a 1 + c2( 􏼁 + k1a(1 − d) + 1.

(16)

Fixing the parameters values a � 0.65, c1 � 0.1, c2
� 0.2, k1 � 3.99, k2 � 2.94, and d � 0.25, 0.50, both LC−1
and LC are depicted in Figures 2(a)–2(d). At d � 0.25, it is
obvious that LC−1 � LCa

−1 ∪LCb
−1 and LC � LCa ∪ LCb (as

given in Figures 2(a) and 2(b)). One can see that the decision
space of map (10) is divided into three zones known with
Z4, Z2, and Z0. +erefore, the map belongs to Z4 − Z2 − Z0
type, and hence it is a noninvertible map. +e shape of those

zones is affected once an increase in the parameter d takes
place (see Figures 2(c) and 2(d)).

Furthermore, from the structure of map (10), one can see
that at q1(t) � 0 or p2(t) � 0, one gets q1(t + 1) � 0 or
p2(t + 1) � 0 and this makes us to calculate the four real
rank-1 preimages of the origin point. Putting q1(t + 1) � 0
and p2(t + 1) � 0 in (10) and solving the corresponding
algebraic system, we get

O � (0, 0),

O
(1)
−1 �

1 + k1a(1 − d)

k1 2 + c1 − 2d
2

􏼐 􏼑
, 0⎛⎝ ⎞⎠,

O
(2)
−1 � 0,

1 + k2a 1 + c2( 􏼁

k2 2 + c2( 􏼁
􏼠 􏼡,

O
(3)
−1 �

k1ka 2 + c2 − d( 􏼁2 + 2 + c2( 􏼁k2 + dk1

k1k2 2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2

􏽨 􏽩
,
k1k2a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁 − k2d 1 + c1( 􏼁 + k1 2 + c1 − 2d

2
􏼐 􏼑

k1k2 2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2

􏽨 􏽩
⎛⎝ ⎞⎠.

(17)
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For convenience, let w1 � OO1
−1 and w2 � OO2

−1 repre-
sent two line segments on the invariant axes q1 and p2. Let
w−1

1 and w−1
2 be their rank-1 preimages, respectively. So, for

any points in the form (q, 0) ∈ w1 and (0, p) ∈ w2, their
rank-1 preimages can satisfy the following algebraic systems:

q � q1 + k1q1 a(1 − d) − 2 + c1 − 2d
2

􏼐 􏼑q1 + dp2􏽨 􏽩,

0 � p2 + k2p2 a 1 + c2( 􏼁 − 2 + c2( 􏼁p2 − d 1 + c2( 􏼁q1􏼂 􏼃,

⎧⎨

⎩

0 � q1 + k1q1 a(1 − d) − 2 + c1 − 2d
2

􏼐 􏼑q1 + dp2􏽨 􏽩,

p � p2 + k2p2 a 1 + c2( 􏼁 − 2 + c2( 􏼁p2 − d 1 + c2( 􏼁q1􏼂 􏼃.

⎧⎨

⎩

(18)

So, both w−1
1 and w−1

2 can be presented by

w
−1
1 : p2 � 0 or 1 + k2 a 1 + c2( 􏼁 − 2 + c2( 􏼁p2 − d 1 + c2( 􏼁q1􏼂 􏼃 � 0,

w
−1
2 : q1 � 0 or 1 + k1 a(1 − d) − 2 + c1 − 2d

2
􏼐 􏼑q1 + dp2􏽨 􏽩 � 0.

(19)

In Figure 3, those line segments are plotted at the values
a � 0.65, c1 � 0.1, c2 � 0.2, k1 � 3.99, k2 � 2.94, andd � 0.25.
+ey divide the phase plane into two regions known as feasible

(orange color) and infeasible (light brown color) regions as
shown in Figure 3. It is also clear that bothw−1

1 andw−1
2 intersect

in the point O
(3)
−1 . Furthermore, the feasible region for any

a=0.65, c1=0.1, c2=0.2, d=0.25

0 1 2 3 4 5
k1

0

1

2

3

4

5

k2

Stable region

(a)

a=0.65, c1=0.1, c2=0.2, d=0.50

k1

k2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Stable region

(b)

a=0.65, c1=0.1, c2=0.2, d=0.75

0 2 4 6 8 10
k1

Stable region

k2

0

1

2

3

4

5

6

7

(c)

q1

0 0.1 0.2 0.3 0.4 0.5 0.6

p2

0

0.1

0.2

0.3
e*

0.4

0.5

0.6

Feasible region

Infeasible
region

a=0.65, c1=0.1, c2=0.2, k1=3, k2=2, d=0.25

(d)

Figure 1: +e region of stability for e∗ at the values a � 0.65, c1 � 0.1, c2 � 0.2 and (a) d � 0.25. (b) d � 0.50. (c) d � 0.75. (d) +e attractive
basin of the equilibrium point e∗ at the values, k1 � 3, k2 � 2 and d � 0.25. (a–c)+e phase portrait for the stability region at different values
of the parameter d while the other parameter values are fixed.
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attractor κ that may be Nash point, periodic cycle, or complex
attractor will be bounded by a convex quadrilateral shape whose
nodes are O, O

(1)
−1 , O

(2)
−1 , and O

(3)
−1 .

3.3. Local Bifurcation. As one can see, the game’s map (10)
contains many parameters, but we focus here on the complex
behavior that can be raised due to the change in k1, k2, and a.
Both parameters k1 and k2 are known as speed of adjustments
and most studies in the literature have concentrated on their
influences on the time evolution of their games due to their
economic meanings. In this section, we investigate the great
change that may occur in the map’s dynamics due to slight
variations on those parameters.+ose parameters are selected
to be the principle cause of the types of bifurcations that may
be raised. Let us begin with the following parameters values:
a � 0.65, c1 � 0.1, c2 � 0.2, d � 0.25. It is clear in Figure 4(a)
that when fixing k2 � 2, the Nash point e∗ becomes locally
stable with respect to the speed parameter k1 till this pa-
rameter reaches the value of period-2 cycle. As the parameter
k1 increases further, different types of periodic cycles such as

period 4 and period 8 appeared. After period 8, higher period
cycles appear, followed by chaos and then the point becomes
unstable. Indeed, this type of bifurcation is called period-
doubling (or flip) bifurcation and its Lyapunov exponent
diagram is associated in this figure. Figure 4(b) shows the
influence of the other speed parameter at the same parameters
values but at k1 � 2. It shows a flip bifurcation on varying the
parameter k2. In addition, simulation shows that the stability
region with respect to the speed parameters is affected by the
two parameters a and d. +e simulation shows that as the
parameter a increases, the stability region decreases and vice
versa while as d increases, the region of stability increases and
vice versa. For the dynamics of the map, another type of
bifurcation is obtained. Let us keep the parameter values as
previously but change k2 � 2.7. As one can see, Figure 4(c)
presents a stable Nash point that loses its stability through
Neimark–Sacker (NS) bifurcation as k1 increases. Figure 4(d)
shows this type of bifurcation at the same values with respect
to k2 by fixing k1 � 3.2. +e same observation on the in-
fluences of the parameters a and d on this type of bifurcation
is obtained. To end this subsection, Figure 4(e) shows the

0 0.5
0

0.5

q1

p2

a = 0.65, c1 = 0.1, c2 = 0.2, k1 = 3.99, k2 = 2.94, d =0.25

LCb
-1

LCa
-1

(a)

0 0.5
q1

0

0.5

p2

a = 0.65, c1 = 0.1, c2 = 0.2, k1 = 3.99, k2 = 2.94, d =0.25

Z2
Z4

Z0

LCa

LCb

(b)

0 0.5
q1

0

0.5

p2

a = 0.65, c1 = 0.1, c2 = 0.2, k1 = 3.99, k2 = 2.94, d =0.50

LCb
-1

LCa
-1

(c)

0 0.5
q1

a = 0.65, c1 = 0.1, c2 = 0.2, k1 = 3.99, k2 = 2.94, d =0.50

LCa

LCb

0

0.5

p2

Z4 Z2

Z0

(d)

Figure 2: Both LC−1 and LC for map (10) at the parameters values a � 0.65, c1 � 0.1, c2 � 0.2, k1 � 3.99, k2 � 2.94. (a, b) d � 0.25.
(c, d) d � 0.50.
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influence of the parameter a on the map’s dynamics when
fixing the parameters to c1 � 0.1, c2 � 0.2, d � 0.25, k1 � 2,
and k2 � 2. It shows that the Nash point becomes unstable
due to NS-bifurcation.

To end this section, we discuss the codimension that
occurs according to the above analysis. We recall standard
software package MATCONT [29]. First, we can determine
the curve of period-doubling bifurcations for the Nash point
e∗ by using one of the following PD points as initial point
and adjusting the parameters k1 and k2 as free parameters.

+e associated normal form coefficient of PD �

4.994128e + 01.
+e associated normal form coefficient of PD �

4.012625e + 01.
Figure 4(f ) displays the calculated PD curve. Notable
features of the PD bifurcation curve include the fold-
flip bifurcation (labeled as LPPD), the 1 : 2 resonance
(labeled as R2), and the generalized flip bifurcation
(labeled as GPD). +e MATCONTM outputs are re-
ported as follows.
label � LPPD, x � (q1, q2, k1, k2) � (0.286765,

0.315441, 3.531321, 0.000000).
Normal form coefficient for LPPD: [a/e, be] �

[4.118997e − 09, −4.733743e − 10].
label � R2, x � (0.286765, 0.315441, 3.991320,

2.506554).
Normal form coefficient for R2: [c, d] � [−8.674046
e + 00, −2.515713e + 02].
label � GPD, x � (0.286765, 0.315441, 4.043296,

2.536229).
Normal form coefficient of GPD � −2.943603e + 04.

Second, we conduct the Neimark–Sacker bifurcation
curve for the Nash point e∗.
By picking up one of the following NS points as initial
point and varying k1 and k2 as free parameters.
+e associated normal form coefficient of NS �

− 6.219393e + 01.
+e associated normal form coefficient of NS �

− 6.528657e + 01.
+e associated normal form coefficient of NS �

− 2.658829e + 01.
Figure 4(g) depicts the calculated NS curve. +e label
R2 refers to the 1: 2 resonance on the Neimark–Sacker
bifurcation curve. +e MATCONTM outputs are re-
ported as follows.
label � R2, x � (0.286765, 0.315441, 3.071322,

3.257379).
Normal form coefficient of R2: [c, d] � [2.610720e +

00, −2.704883e + 02].
label � R2, x � (0.2867650.3154413.9913202.506554).
Normal form coefficient of R2: [c, d] � [−8.665654e +

00, −2.515804e + 02].

4. The Invariant Manifold

Initiating map (10) at the initial state q1(t) � 0 or p2(t) � 0
makes it getting trapped to the point (0, 0). +at is to say, if
q1(t) � 0 or p2(t) � 0, then q1(t + 1) � 0 or p2(t + 1) � 0

and then the axes Oq1
���→

and Op2
���→

become invariant axes.+ose
invariant axes will form an invariant manifold for map (10)
and then its dynamics will be governed by one of the fol-
lowing one-dimensional maps:

q1(t + 1) � 1 + k1a(1 − d)􏼂 􏼃 q1(t) 1 −
k1 2 + c1 − 2d

2
􏼐 􏼑

1 + k1a(1 − d)
q1(t)⎛⎝ ⎞⎠, (20)

0.6
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O
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q1
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-1

O-1
(2)

O-1
(3)

O-1
(1)

a=0.65, c1=0.1, c2=0.2, k1=3.99, k2=2.94, d=0.25

Infeasible
region

Feasible
region

Figure 3: +e line segments w1 and w2 and their preimages w−1
1 and w−1

2 at the parameters values a � 0.65, c1 � 0.1, c2 � 0.2, k1 � 3.99, k2
� 2.94, and d � 0.25.
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Figure 4: Continued.
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or

p2(t + 1) � 1 + k2a 1 + c2( 􏼁􏼂 􏼃 p2(t) 1 −
k2 2 + c2( 􏼁

1 + k2a 1 + c2( 􏼁
p2(t)􏼠 􏼡, (21)

which can be rewritten in the following forms:

x(t + 1) � μ1x(t)(1 − x(t)),

y(t + 1) � μ2y(t)(1 − y(t)),
(22)

where

μ1 � 1 + k1a(1 − d),

μ2 � k2a 1 + c2( 􏼁,

q1(t) �
1 + k1a(1 − d)

k1 2 + c1 − 2d
2

􏼐 􏼑
x(t),

p2(t) �
1 + k2a 1 + c2( 􏼁

k2 2 + c2( 􏼁
y(t).

(23)

+e linear transformation given in (23) makes both (20)
and (21) topologically equivalent to the well-known
logistic map.

4.1. Dynamic Analysis. Let us discuss the complex dynamics
of the one-dimensional map (20). +is map possesses two
fixed points that are q1 � 0 and q1 � a(1 − d)/2 + c1 − 2d2.
Simple calculations show that |dq1(t + 1)/dq1(t)|

q1�0 � |1
+ k1a(1 − d)|> 1 and hence q1 � 0 becomes unstable node.
For the second fixed point, one gets |dq1(t + 1)/dq1(t)| �

|1 − k1a(1 − d)| which is stable if k1 < 2/a(1 − d). If k1 � kf

� 2/a(1 − d), a period-doubling bifurcation emerges. +is
means that at the critical value k1 � 2/a(1 − d), the trajectories

of map (20) commencing on the invariant axis Oq1
���→

diverge
when k1 ∈ (2/a(1 − d), +∞). Furthermore, the preimages of
q1(t + 1) � 0 are 0 and q � 1 + k1a(1 −d)/k1(2 + c1 − 2d2)

which means it belongs to Z2 zone. Any point q1 such that
q1 > q will have no preimages and therefore map (20) will
belong to Z2 − Z0 type.+e same discussion is for map (21). It
has two fixed points, p2 � 0 and p2 � a(1 + c2)/2 + c2. +e
point p2 � 0 is unstable node since |dp2(t + 1)/dp2(t)|p2�0
� |1 + k2a(1 + c2)|> 1. At the other point, one gets |dp2(t +

1)/dp2(t)| � |1 − k2a(1 + c2)| and hence it is stable if
k2 < 2/a(1 + c2). If k2 � kf � 2 /a(1 + c2), a period-doubling
bifurcation emerges. +is means that at the critical value
k2 � 2/a(1 + c2), the trajectories of map (21) commencing on

the invariant axis Op2
���→

diverge when k2 ∈ (2/a(1 +c2), +∞).
+e preimages of p2(t + 1) � 0 are 0 and p � 1 + k2a(1 +

c2)/k2(2 + c2) which means it belongs to Z2 zone. Any point
p2 such that p2 >p will have no preimages and therefore map
(21) will belong to Z2 − Z0 type. Figures 5(a) and 5(b) show
a simulation of chaotic attractors for maps (20) and (21) at the
parameters values, a � 0.65, c1 � 0.1, k1 � 6.1, d � 0.25 for
Figure 5(a) and a � 0.65, c2 � 0.2, k2 � 3.83 for Figure 5(b). As
one can see, the feasible regions are bounded by [0, q] × [0, q]

and [0, p] × [0, p] that separate Z2 and Z0 zones. +e orange
color denotes diverging points belonging to the infeasible
region.

2 2.5 3 3.5 4

R2

R2

4.5 5 5.5 6
k1

6

5.5

5

4.5

4

3.5

3

2.5

2

k2

(g)

Figure 4:+e bifurcation diagrams at a � 0.65, c1 � 0.1, c2 � 0.2, d � 0.25, and (a) on varying k1 with k2 � 2. (b) On varying k2 with k1 � 2.
(c) On varying k1 with k2 � 2.7. (d) On varying k2 with k1 � 3.2. (e) +e influence of the parameter a on the dynamics of map (9) at the
values, c1 � 0.1, c2 � 0.2, d � 0.25, k1 � 2 and k2 � 2. (f ) Period doubling bifurcation curve with Fold-Flip bifurcation (LPPD), 1 : 2 res-
onance (R2), and generalized flip bifurcation (GPD) are centered on the PD point. (g) +e 1: 2 resonance (R2) comprises the majority of
the Neimark–Sacker bifurcation curve.
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4.2. Independent Firms. At d � 0, map (10) is reduced to two
monopolistic firms with independent products. It becomes
as follows:

T(d � 0):
q1(t + 1) � q1(t) + k1q1(t) a − 2 + c1( 􏼁q1(t)􏼂 􏼃,

p2(t + 1) � p2(t) + k2p2(t) a 1 + c2( 􏼁 − 2 + c2( 􏼁p2(t)􏼂 􏼃.
􏼨 (24)

Each part in map (24) conjugates the logistic map, zi(t +

1) � viz(t)(1 − z(t)), i � 1, 2 and v1 � 1 + ka and v2 � 1
+ k2a(1 + c2).+e same discussion and analysis for each part in
map (24) can be carried out as above but we here give a sim-
ulation for two chaotic attractors for (24). +e preimages of
q1(t + 1) � 0 are 0 and u � 1 + k1a/k1(2 + c1). +e preimages
of p2(t + 1) � 0 are 0 and p. Figures 5(c) and 5(d) show
a simulation of chaotic attractors for each part inmap (24) at the
parameters values, a � 0.65, c1 � 0.1, k1 � 4.54 for Figure 5(c)
and a � 0.65, c2 � 0.2, k2 � 3.8 for Figure 5(d). As one can see,
the feasible regions are bounded by [0, u] × [0, u] and [0, p] ×

[0, p] that separate Z2 and Z0 zones. +e orange color denotes
diverging points belonging to the infeasible region.

5. Basin of Attraction and Global Analysis

Let us suppose that H is an attractor for map (10). +e
attractor H may represent Nash point, periodic cycle, or
other complex attractor. +e basin of attraction of H

possesses all points forming bounded trajectories converging
to H and is defined as

B(H) � q1, q2( 􏼁 ∈ R2
+: T

n
q1, q2( 􏼁⟶ H, n⟶∞􏽮 􏽯.

(25)
Suppose there is a neighborhood Ω(H) of the attractor

H such thatΩ(H) ⊂ B(H); then, one can represent B(H) as
B(H) � ∪∞t�0T− n(Ω(H)). For a topological structure, the
phase space map is divided into two regions, the feasible and
infeasible regions. +e feasible region possesses points with
bounded trajectories and is formed by the attractive basin of
all existing attractors. It is denoted by the closure set
5 � ∪ n

k�1B(Hk). +e infeasible region possesses points with
unbounded (or divergent) trajectories and is denoted by
B(∞). Both the boundaries of 5 and B(∞) denoted by
zB(5) and zB(∞), respectively, separate 5 from B(∞) and
vice versa. So, we have zB(5) � zB(∞) � zB which is called
the boundary of basin. For map (10), this boundary is de-
fined by

0.4

0.4

q1 (t+1)

a=0.65, c1=0.1, k1=6.1, d=0.25

O q

q

q1 (0) q1 (t)
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p2 (t+1)

p2 (0) p2 (t)

Z0

Z2

0.5O p

p

(b)

q1 (t+1)

a=0.65, c1=0.1, k1=4.54

0.5q1 (0) q1 (t)

Z0

Z2

0.5

O u

u
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Figure 5: Chaotic situation for the maps (20) and (21) occurred at the parameters values (a) a � 0.65, c1 � 0.1, k1 � 6.1, d � 0.25 and
(b) a � 0.65, c2 � 0.2, k2 � 3.83. Chaotic situation for each part of the map (24) occurred at the parameters values (c) a � 0.65, c1 �

0.1, k1 � 4.54 and (d) a � 0.65, c2 � 0.2, k2 � 3.8.
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zB � ∪
∞

n�0
T

− n
w1( 􏼁􏼒 􏼓∪ ∪

∞

n�0
T

− n
w2( 􏼁􏼒 􏼓. (26)

In Figure 3, the basin of attraction of Nash point is
plotted. As one can see, both w−1

1 and w−1
2 separate B(E∗)

colored by orange from B(∞) colored by brown. It is also
clear that the basin of infeasible region is connected. So, in
the next subsection, more details about the topological
structure of the basin of attraction are discussed.

5.1. Global Analysis. Global analysis gives more information
about the complex characteristics of an attractor H. It
provides some topological structures regarding the basin of
attraction of such attractor. +ese structures do not appear

when performing local analysis on map (10) through
changes in the map’s parameters. +is requires to investigate
the qualitative changes occurring in these topological
structure in the long term due to initial conditions taken far
away from the map’s equilibrium point. Let us assume the
following parameters values: (a, c1, c2, d, k1, k2) � (0.65,

0.1, 0.2, 0.25, 4.1, 3.5). Figure 6(a) shows a chaotic attractor
born based on these values. As one can see, it presents
a chaotic attractor (gray color) whose basin of attraction is
represented by two colors (orange and brown). +e feasible
region is represented by orange and is bounded by the
quadrilateral shape whose vertices are O, O

(1)
−1 , O

(2)
−1 , andO

(3)
−1 ,

while the infeasible region (or the escaping domain) is
plotted by brown. Furthermore, the escaping domain forms
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Figure 6: +e basin of attraction of chaotic attractor at the values (a, c1, c2, d, k2) � (0.65, 0.1, 0.2, 0.25, 3.5) and (a) k1 � 4.1, (b) k1 � 4.7.
For (a, c1, c2, d, k2) � (0.65, 0.1, 0.2, 0.5, 3.05) the basin of attraction of (c) a ring at k1 � 4.498, (d) a period-5 cycle at k1 � 5, (e) a five-
bands chaotic attractor at k1 � 5.28, (f ) a chaotic attractor at k1 � 5.3.
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a connected set and hence there is no sign of the appearance
of contact bifurcation. +e nonexistence of contact bi-
furcation is due to the fact there is no contact between the
branch LCa and the boundary line w−1

2 . Keeping the pa-
rameters values fixed and increasing k1 to 4.7, the chaotic
attractor becomes more complex and contact bifurcation
takes place due to the appearance of the region h0 between
the branch LCa and the boundary line w−1

2 . It is clear in
Figure 6(b) that the region h0 enters from Z0 into Z2 zone
and hence the escaping domain will become a disconnected
set. +at is to say, each point in h0 will possess two distinct
real rank-1 preimages. Because of the disconnection of es-
caping domain, some holes are born in the feasible region.
Each point belonging to h0 possesses two preimages of rank-
1 that are used to form the main hole h−1. +is main hole
consists of two parts h

(1)
−1 and h

(2)
−1 that are connected by the

branch LCb
−1. It is clear from Figure 6(b) that the points of

the main hole belong to two different zones that are Z2 and
Z0. +e points belonging to Z2 have two distinct real rank-2
preimages and are used to construct the hole whose two
parts are h

(1)
−2 and h

(2)
−2 which are entirely in Z4 zone and are

used to form the other small holes in the feasible regions h
(1)
−3 ,

h
(2)
−3 , h

(3)
−3 , and h

(4)
−3 .

Let us assume the following parameters values, (a, c1, c2,

d, k1, k2) � (0.65, 0.1, 0.2, 4.498, 3.05) but d � 0.5.
Figure 6(c) shows that at these values, a closed ring is born due
to Neimark–Sacker bifurcation.+e basin of attraction of this
ring shows also the appearance of main hole due to the region
h0 obtained as a result of contact bifurcation. Keeping the
values fixed and increasing k1, numerical simulation confirms
this closed ring till k1 � 5 where period-5 cycle emerges.
Figure 6(d) presents the basin of attraction of this period
cycle. As one can see, region h0 gets larger and the number of
holes increases. At k1 � 5.2, this period cycle turns into a five-
band chaotic attractor whose attractive basin is given in
Figure 6(e). Further increase in k1 to 5.3 gives a chaotic
attractor with complicated basin of attraction full of many
holes (see Figure 6(f)). Economically, the appearance of such
complicated structures of basin of attractions makes the fu-
ture evolution of game hard to predict if competing firms take
initial states belonging to those holes.

6. Conclusion

+is paper has presented a dynamic view for a Cour-
not–Bertrand duopoly game based on a computed nonlinear
cost function derived from Cobb–Douglas utility. As in related

studies in the literature, the fixed points for the game’s map
have been obtained and their stabilities using eigenvalues and
Jury conditions have been discussed.+e discussion has shown
through local analysis that the Nash equilibrium point can be
unstable due to flip and Neimark–Sacker bifurcation. Fur-
thermore, we have found that when the competing firms have
increased the parameter of degree of production, the region of
stability becomes larger with respect to the speed parameters.

+e global analysis of map has shown some complicated
basin of attraction of some attracting sets. +e noninvertible
phenomena of the map and its critical curves have shown
that its phase plane has been divided into three regions
Z0, Z2, and Z4.+e basin of attraction of some attracting sets
under certain parameters’ value has shown the existence of
holes from the escaping domain. +ese obtained holes are
the preimages of the area of intersection formed by the
critical curves, the boundary of the basin, and the invariant
axis. Such raising holes are due to the existence of contact
bifurcation, and as these holes increase, the future prediction
of the game evolution becomes impossible if competing
firms select initial states from those holes.

Appendix

+e Jacobian matrix of map (10) becomes

J q1, p2( 􏼁 �
j11 k1dq1

− 1 + c2( 􏼁k2dp2 j22
􏼠 􏼡, (A.1)

where

j11 � 1 + k1 a(1 − d) − 2 2 + c1 − 2d
2

􏼐 􏼑q1 + dp2􏽨 􏽩,

j22 � 1 + k2 a 1 + c2( 􏼁 − 2 2 + c2( 􏼁p2 − d 1 + c2( 􏼁q1􏼂 􏼃.

(A.2)

Proof 1. At O, one gets

J(O) �
1 + k1a(1 − d), 0,

0, 1 + k2a 1 + c2( 􏼁.
􏼢 􏼣. (A.3)

+e above matrix represents a diagonal matrix with two
eigenvalues, λ1 � 1 + k1a(1 − d) and λ2 � 1 + k2a(1 + c2)

with eigenvectors (1,0) and (0, 1). It is simple to check that
|λi|> 1, i � 1, 2 and then O is unstable repelling node.

Proof 2. At e1, one gets

J e1( 􏼁 �

1 − k1a(1 − d),
k1ad(1 − d)

2 + c1 − 2d
2 ,

0, 1 +
k2a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

2 + c1 − 2d
2 .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)
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As one can see, matrix (A.4) is an upper triangular whose
eigenvalues become

λ1 � 1 − k1a(1 − d),

λ2 � 1 +
k2a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

2 + c1 − 2d
2 ,

(A.5)

with corresponding eigenvectors given by

λ
→

1 � (1, 0),

λ
→

2 � 1,
k1d(1 − d)

k2(1 − d) 2 + c1 − 2d
2

􏼐 􏼑 + k2 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁
⎛⎝ ⎞⎠.

(A.6)

It is clear that |λ2|> 1 for all auxiliary parameters and
|λ1|< 1 gives 0< k1 < 2/a(1 − d) which means that e1 is
a saddle point. In case k1 > 2/a(1 − d), then e1 becomes an
unstable node.

Proof 3. +e proof is similar to Proposition 2.

Proof 4. At e∗, one gets

J E∗( 􏼁 �
l11 l12

l21 l22
􏼢 􏼣, (A.7)

where

l11 � 1 −
k1a 2 + c2 − d( 􏼁 2 + c1 − 2d

2
􏼐 􏼑

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
,

l12 �
k1ad 2 + c2 − d( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
,

l21 � −
k2ad 1 + c2( 􏼁

2 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
,

l22 � 1 −
k2a 1 + c2( 􏼁 2 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
,

(A.8)

and then the trace τ and determinant δ take the following
forms:

τ � 2 −
k1a 2 + c2 − d( 􏼁 2 + c1 − 2d

2
􏼐 􏼑

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
−

k2a 1 + c2( 􏼁 2 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
,

δ � 1 −
k1a 2 + c2 − d( 􏼁 2 + c1 − 2d

2
􏼐 􏼑

2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2 −

k2a 1 + c2( 􏼁 2 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2

+
k1k2a

2 1 + c2( 􏼁 2 + c2 − d( 􏼁 2 + c1 − d(1 + d)( 􏼁( 􏼁

2 + c1( 􏼁 2 + c2( 􏼁 − 3 + c2( 􏼁d
2 .

(A.9)
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Now the Jury conditions [10] can be calculated as
follows:

1 − τ + δ �
k1k2a

2 2 + c2 − d( 􏼁 2 + c1 − d(d + 1)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
, (A.10a)

1 + τ + δ � 4 −
2k1a 2 + c2 − d( 􏼁 2 + c1 − 2d

2
􏼐 􏼑

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
−
2k2a 1 + c2( 􏼁 2 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
+

+
k1k2a

2 1 + c2( 􏼁 2 + c2 − d( 􏼁 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
,

(A.10b)

1 − δ � −
k1k2a

2 1 + c2( 􏼁 2 + c2 − d( 􏼁 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
+

k1a 2 + c2 − d( 􏼁 2 + c1 − 2d
2

􏼐 􏼑

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
+

+
k2a 1 + c2( 􏼁 2 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁

4 + 2c1 − 3d
2

+ c2 2 + c1 − d
2

􏼐 􏼑
.

(A.10c)

Simple calculations show that condition (A.10a) is always
positive. +e point e∗ becomes asymptotically stable if the
conditions (A.10b) and (A.10c) are nonnegative. Combining
those two conditions gives

0< 1 − δ < 4. (A.11)

Proof 5. Suppose that condition (A.10b) is nonpositive and
condition (A.10c) is kept nonnegative; then, combining
those conditions gives

k1k2 <
k1 2 + c1 − 2d

2
􏼐 􏼑

a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁
+

k2 2 + c2( 􏼁

a 2 + c2 − d( 􏼁
.

(A.12)

Proof 6. Suppose that condition (A.10b) is nonnegative and
condition (A.10c) is kept nonpositive; then, combining those
conditions gives

k1k2 >
k1 2 + c1 − 2d

2
􏼐 􏼑

a 1 + c2( 􏼁 2 + c1 − d(1 + d)( 􏼁
+

k2 2 + c2( 􏼁

a 2 + c2 − d( 􏼁
.

(A.13)
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