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Te problem of boundary values for implicit diferential equations with nonlinear fractions involving the variable order and the
Riemann–Liouville derivative is examined in this article along with its existence and stability. Specifcally, the locally solvability,
which is equivalent to the existence of solutions, is related to the symmetry of a transformation of a nonlinear equations system. To
demonstrate the reliability of the found results, we design an example.

1. Introduction

Te subject of fractional calculus has gained much attention
and importance among the society of researchers.Te existing
diferential equations in this theory are determined by gen-
eralizing integer-order derivatives to arbitrary order ones. For
the sake of the efective memory of the fractional derivation
operator, such classes of equations have been widely used
in mathematical modeling including parameter identifcation
in the 2D fractional system and modeling of heat distribution
in porous aluminum (see [1–5]).

Recently, several researchers contributed in this feld with
many published papers that are concerned with the study to
many diferent problems of fractional diferential equations,
e.g., Borisut et al. [6] presented the ψ-Hilfer fractional dif-
ferential equation with nonlocal multipoint condition, Ahmad
et al. [7] investigated a fractional-order compartmental HIV
and malaria coinfection epidemic model using the Caputo

derivative, and Özer et al. [8–12] established the existence and
uniqueness of the common fxed point theorem in c∗-algebra
valued b-metric spaces, see [6, 13–26].

Te existence of the solutions variable-order problems is
rarely discussed in literature [27–37]; specifcally, Souid et al.
[38, 39] presented the existence, uniqueness, and stability of
solutions to many diferent problems (implicit, thermostat,
and resonance).

Ulam-type stability is often studied in the context of
various types of diferential equations, including ordinary,
partial, fractional, and integrodiferential equations, among
others. Tis concept has broad applications in various felds
of science and engineering, such as the control theory, signal
processing, and physics, where the stability of solutions
under small perturbations is a crucial consideration [40].

In [41, 42], the presence of implicit nonlinear diferential
equations involving fractional of constant order is studied by
Benchohra et al.
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c
D

u
0+κ(s) � ℏ s, κ(s),

c
D

u
0+κ(s)( 􏼁, s ∈ c ≔ [0,Υ], 0<Υ< +∞, 1< u≤ 2,

κ(0) � κ0, κ(Υ) � κ1.
􏼨 (1)

When ℏ: c × R × R⟶ R is defned, κ0, κ1 ∈ R, and
cDu

0+ is the Caputo fractional derivative.
From [41, 42] and [32, 43–45], we solved the boundary

value problem (PVB) as follows:

D
u(s)
η+ κ(s) + ℏ s, κ(s), D

u(s)
η+ κ(s)􏼐 􏼑 � 0, s ∈ c ≔ [η,Υ],

κ(η) � 0, κ(Υ) � 0,

⎧⎨

⎩

(2)

where 0< η<Υ< +∞, 1< u(s)≤ 2, ℏ: c × R × R⟶ R is
a continuous function, and D

u(s)
η+ and I

u(s)
η+ are the Rie-

mann–Liouville fractional derivative and variable-order
integral u(s).

Te organization of this paper is outlined as follows.
Basic and crucial topics, including defnitions and theorems,
are covered in Section 2. Te main results, which ofer two
main theorems of uniqueness and existence, are found in
Section 3. Section 4 discusses stability in the sense of Ulam
and Hyres. One example is presented in Section 5 to show
the efciency and validity of the proposed results. Finally,
some conclusion notes are given in Section 6.

2. Preliminaries

Tis section introduces a few crucial, essential defnitions
that are necessary to understand in order to get our out-
comes in the next sections.

Te representation of the space of continuous Banach
functions C(c,R) is y: c⟶ R using the norm

‖y‖ � sup |y(s)|: s ∈ c􏼈 􏼉. (3)

In the case of − ∞< σ1 < σ2 < +∞, we take into account
u(s): [σ1, σ2]⟶ (0, +∞) and v(s): [σ1, σ2]⟶ (n − 1, n).
Te functionΨ1(s) is, therefore, represented by the variable-
order left Riemann–Liouville fractional integral (FIRL) u(s)

(see [32, 44, 46]).

I
u(s)
σ+
1
Ψ1(s) � 􏽚

s

σ1

(s − π)
u(s)− 1

Γ(u(s))
Ψ1(π)dπ, s> σ1, (4)

and the variable-order v(s) of the functionΨ1(s)’s fractional
derivative of Riemann–Liouville on the left (FDRL) (see
[32, 44, 46]) is

D
u(s)
σ+
1
Ψ1(s) �

d
ds

􏼠 􏼡

n

I
n− u(s)
σ+
1
Ψ1(s) �

d
ds

􏼠 􏼡

n

􏽚
s

σ1

(s − π)
n− u(s)− 1

Γ(n − u(s))
Ψ1(π)dπ, s> σ1, (5)

where Γ(.) is the gamma function.
As expected, FDRL and FIRL correspond to the usual

Riemann–Liouville fractional derivative and integral, to-
gether, in the case where u(s) and v(s) are constant; for
example, see [43, 44, 46].

Remember the succeeding crucial fnding.

Lemma 1 (see [43]). Let α, β> 0, σ1 > 0, Ψ1 ∈ L(σ1, σ2), and
Dα

σ+
1
Ψ1 ∈ L(σ1, σ2). Consequently, the diferential equation

D
α
σ+
1
Ψ1 � 0 (6)

has a singular solution

Ψ1(s) � Π1 s − σ1( 􏼁
α− 1

+ Π2 s − σ1( 􏼁
α− 2

+ · · · + Πn s − σ1( 􏼁
α− n

,

I
α
σ+
1
D

α
σ+
1
Ψ1(s) � Ψ1(s) +Π1 s − σ1( 􏼁

α− 1
+ Π2 s − σ1( 􏼁

α− 2
+ · · · + Πn s − σ1( 􏼁

α− n
,

(7)

where Πm ∈ R, m � 1, 2, . . . , n; here, n − 1< α≤ n.

Furthermore,

D
α
σ+
1
I
α
σ+
1
Ψ1(s) � Ψ1(s),

I
α
σ+
1
I
β
σ+
1
Ψ1(s) � I

β
σ+
1
I
α
σ+
1
Ψ1(s) � I

α+β
σ+
1
Ψ1(s).

(8)

Remark 2 (see [47, 48]). Be aware that the general functions
u(s) and v(s) do not satisfy the semigroup property, i.e.,

I
u(s)
σ+
1

I
v(s)
σ+
1
Ψ1(s)≠ I

u(s)+v(s)
σ+
1
Ψ1(s). (9)

Example 1. Assuming that

u(s) �
1, s ∈ [0, 1],

1, s ∈ ]1, 2],

⎧⎨

⎩

v(s) �
2, s ∈ [0, 1],

3, s ∈ ]1, 2],

⎧⎨

⎩

(10)
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and Ψ1(s) � s/3, s ∈ [0, 2]. Ten, we get

I
u(s)
0+ I

v(s)
0+ Ψ1(s) � 􏽚

1

0

(s − ])
u(s)− 1

Γ(u(s))
􏽚
]

0

(] − τ)
v(])− 1

Γ(v(]))
Ψ1(τ)dτd]

+ 􏽚
s

1

(s − ])
u(s)− 1

Γ(u(s))
􏽚
]

0

(] − τ)
v(])− 1

Γ(v(]))
Ψ1(τ)dτd]

� 􏽚
1

0

(s − ])
0

Γ(1)
􏽚
]

0

(] − τ)
1

Γ(2)

τ
3
dτd]

+ 􏽚
s

1

(s − ])
0

Γ(1)
􏽚
1

0

(] − τ)
1

Γ(2)

τ
3
dτ + 􏽚

]

1

(] − τ)
2

Γ(3)

τ
3
dτ􏼢 􏼣d]

�
1
3

􏽚
1

0

]3

2
−
]3

3
􏼠 􏼡d] + 􏽚

s

1

1
3

]3

2
−
]3

3
􏼠 􏼡 +

1
6

]4

12
−
]2

2
+
2
3
] −

1
4

􏼠 􏼡􏼢 􏼣d].

(11)

It can be seen that the following equations are satisfed:

I
u(s)
0+ I

v(s)
0+ Ψ1(s)|s�2 �

1
72

+
1
3

􏽚
2

1

]4

24
+
]3

6
−
]2

4
+

s

3
−

1
24

􏼠 􏼡d]

�
96
360

,

I
u(s)+v(s)
0+ Ψ1(s)|s�2 � 􏽚

1

0

(2 − ])
1+2− 1

Γ(1 + 2)

]
3
d] + 􏽚

2

1

(2 − ])
1+3− 1

Γ(1 + 3)

]
3
d]

�
11
72

+
3
180

�
61
360

.

(12)

Terefore, we obtain

I
u(s)
0+ I

v(s)
0+ Ψ1(s)|s�2 ≠ I

u(s)+v(s)
0+ Ψ1(s)|s�2. (13)

Lemma 3 (see [45]). Let u: c⟶ (1, 2] be a continuous
function, then the variable order fractional integral I

u(s)
0+

y(s) exists for any points on gamma if y ∈ Cρ(c, X) �

y(s) ∈ C(c, X),􏼈 sρy(s) ∈ C(c, X)}, (0≤ ρ≤mins∈c|u(s)|).

Lemma 4 (see [45]). Let u: c⟶ (1, 2] be a continuous
function, then I

u(s)
0+ y(s) ∈ C(c, X) for y ∈ C(c, X).

Defnition 5 (see [49–51]). If I of R is either an interval,
a point a1􏼈 􏼉, or the empty set, it is referred to as a generalized
interval. A partition of I is a fnite setP if every x in I falls in
precisely one of the generalized intervals E in P. If
a function g: I⟶ X is constant on E for every E ∈ P, it is
referred to as a piecewise constant with regards to the
partition of I.

Theorem 6 (see [43]). Let G be a Banach space and P be
a convex subset of Gand L: P⟶ P is compact and is the
continuous map. Ten, L has at least one fxed point in P.

Defnition 7 (see [52]). If there is a real number cZ > 0 such
that (for each) ϵ> 0 and (for each) solution χ ∈ C(cm,R),
then problem (1) is Ulam–Hyers stable. For the price of the
inequality

D
umχ(s) + ℏ s, χ(s), D

umχ(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϵ, s ∈ cm, (14)

there exists a solution κ ∈ C(cm,R) of PVB (2) with

|χ(s) − κ(s)|≤ cℏϵ, s ∈ cm. (15)

3. Main Results

Let us state the underlying presumptions:

(P1) Let n be an integer in N, P � c1 ≔ [η,Υ1],􏼈

c2 ≔ (Υ1,Υ2], c3 ≔ (Υ2,Υ3], . . . cn ≔ (Υn− 1,Υ]} be
a partition of c, and u(s): c⟶ (1, 2] be a piecewise
constant function, i.e.,

Complexity 3



u(s) � 􏽘
n

m�1
umIm(s) �

u1, if s ∈ c1,

u2, if s ∈ c2,

.

.

.

un, if s ∈ cn,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where 1< um ≤ 2 are constants, and Im is the indicator
of the interval cm ≔ (Υm− 1,Υm], m � 1, 2, . . . , n (with
Υ0 � η,Υn � Υ) such that

Im(s) �
1, for s ∈ cm,

0, for elsewhere.
􏼨 (17)

(P2) Let sρℏ: c × R × R⟶ R be a continuous func-
tion (0≤ ρ< 1) and there exists ϖ1,ϖ2 > 0, with

0< s− ρϖ2 < 1, such that sc|ℏ(s, u1, v1) − ℏ(s, u2, v2)|

≤ϖ1|u1 − u2| + ϖ2|v1 − v2|, for any u1, u2, v1, v2 ∈ R,
and s ∈ c.

Te Banach space of continuous functions from cm into
R is denoted by Em � C(cm,R), where m ∈ 1, 2, . . . , n{ } with
the norm

‖κ‖Em
� sup

s∈cm

|κ(t)|. (18)

We frst provide an essential study concerning (2) in
order to arrive at our main fndings.

For any s ∈ (Υm− 1,Υm], m � 1, . . . , n, the FDRL of the
variable order u(s) for κ(s) ∈ C(c,R), given by (5), is the
sum of the FDRLs of the constant orders u1, . . . , um, i.e.,

d2

ds
2 􏽚

s

η

(s − ])
1− u(])

Γ(2 − u(]))
κ(])d] �

d2

ds
2 􏽚
Υ1

η

(s − ])
1− u1

Γ 2 − u1( 􏼁
κ(])d] + · · · + 􏽚

s

Υm− 1

(s − ])
1− um

Γ 2 − um( 􏼁
κ(])d]􏼠 􏼡. (19)

Tus, according to (19), the (2) of the variable order can
be written for any s ∈ (Υm− 1,Υm] in the form

d2

ds
2 􏽚
Υ1

η

(s − ])
1− u1

Γ 2 − u1( 􏼁
κ(])d] + · · · + 􏽚

s

Υm− 1

(s − ])
1− um

Γ 2 − um( 􏼁
κ(])d]􏼠 􏼡 + ℏ s, κ(s), D

um

η+ κ(s)􏼐 􏼑 � 0. (20)

Here is a defnition of the solution to PVB (2).

Defnition 8. If there are functions κm(m � 1, 2, . . . , n), then
we can say that the boundary value problem (1) has a so-
lution such that κm ∈ C([η,Υm],R) satisfying equation (5)
and κm(η) � 0 � κm(Υm).

According to the abovementioned analysis, the equation
of PVB (2) can be expressed as (??), which is translated as
(20) in cm, m ∈ 1, 2, . . . , n{ }.

For η≤ s≤Tm− 1, we take κ(s) ≡ 0, then (20) is written as
follows:

D
um

Υ+
m− 1

κ(s) + ℏ s, κ(s), D
um

Υ+
m− 1

κ(s)􏼒 􏼓 � 0, s ∈ cm. (21)

Now, we consider the following boundary value problem:

D
um

Υ+
m− 1

κ(s) + ℏ s, κ(s), D
um

Υ+
m− 1

κ(s)􏼒 􏼓 � 0, s ∈ cm

κ Υm− 1( 􏼁 � 0, κ Υm( 􏼁 � 0.

⎧⎪⎨

⎪⎩
(22)

We utilize auxiliary lemma to prove that there are so-
lutions to problem (22).

Lemma 9. If and only if a function κ ∈ Em holds the following
integral equation:

κ(s) � 􏽚
Υm

Υm− 1

Gm(s, s)ℏ s, 􏽚
Υm

Υm− 1

Gm(s, τ)ϑ(τ)dτ, ϑ(s)􏼠 􏼡ds,

(23)

it forms the solution to problem (22), where D
um

Υ+
m− 1

κ(s) � ϑ(s)

and Gm(s, ]) is the Green’s function defned as follows:

4 Complexity



Gm(s, ]) �

1
Γ um( 􏼁

Υm − Υm− 1( 􏼁
1− um s − Υm− 1( 􏼁

um− 1 Υm − ]( 􏼁
um − 1

− (s − ])
um − 1

􏽨 􏽩,

Υm− 1 ≤ ]≤ s≤Υm,

1
Γ um( 􏼁
Υm − Υm− 1( 􏼁

1− um s − Υm− 1( 􏼁
um − 1 Υm − ]( 􏼁

um − 1
,

Υm− 1 ≤ s≤ ]≤Υm.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Proof. Let κ ∈ Em be a solution of the PVB (22). Now, we
take D

um

Υ+
m− 1

κ(s) � ϑ(s) and use the I
um

Υ+
m− 1

operator to each of
these sides of (22). According to Lemma 1, we obtain

κ(s) � Π1 s − Υm− 1( 􏼁
um − 1

+ Π2 s − Υm− 1( 􏼁
um− 2

− I
um

Υ+
m− 1

ϑ(s), s ∈ cm. (25)

By κ(Tm− 1) � 0 and the assumption of function ℏ, we
could get Π2 � 0.

If κ(s) is satisfying κ(Υm) � 0, thus we can get
Π1 � (Υm − Υm− 1)

1− um I
um

Υ+
m− 1

ϑ(Υm). So, we obtain

κ(s) � Υm − Υm− 1( 􏼁
1− um s − Υm− 1( 􏼁

um − 1
I

um

Υ+
m− 1

ϑ Υm( 􏼁 − I
um

Υ+
m− 1

ϑ(s), s ∈ cm. (26)

Te problem’s solution (22) is then provided by

κ(s) � Υm − Υm− 1( 􏼁
1− um s − Υm− 1( 􏼁

um− 1 1
Γ um( 􏼁

􏽚
Υm

Υm− 1

Υm − ]( 􏼁
um− 1ϑ(])d]

−
1
Γ um( 􏼁

􏽚
s

Υm− 1

(s − ])
um − 1ϑ(])d]

�
1
Γ um( 􏼁

􏽚
s

Υm− 1

􏼢 Υm − Υm− 1( 􏼁
1− um s − Υm− 1( 􏼁

um − 1 Υm − ]( 􏼁
um− 1

− (s − ])
um− 1

􏽨 􏽩ϑ(])d]

+ 􏽚
Υm

s
Υm − Υm− 1( 􏼁

1− um s − Υm− 1( 􏼁
um− 1 Υm − ]( 􏼁

um − 1ϑ(])d]].

(27)

For the implied continuity of Green’s function,

κ(s) � 􏽚
Tm

Υm− 1

Gm(s, ])ℏ ], 􏽚
Υm

Υm− 1

Gm(s, τ)ϑ(τ)dτ, ϑ(])􏼠 􏼡d].

(28)

On the other hand, consider κ ∈ Em as the integral
equation’s solution (23). Ten, it is evident that κ is the

solution to problem (22) due to the continuity of the
function tρℏ and Lemma 1.

Tere will be a need for the following proposition. □

Proposition 1 (see [51]). Considering that sρZ: c × R×

R⟶ R, (0≤ ρ< 1) is a continuous function and
u(s): c⟶ (1, 2] meets P1, the following criteria are met by
Green’s functions of problem (6):

Complexity 5



(1) ∀Υm− 1 ≤ s, ]≤Υm, Gm(s, ])≥ 0,
(2) maxs∈cm

Gm(s, ]) � Gm(], ]), ] ∈ cm,
(3) Gm(], ]) has one unique maximum given by

max
s∈cm

Gm(], ]) �
1
Γ um( 􏼁

Tm − Υm− 1

4
􏼒 􏼓

um− 1
, (29)

for m � 1, 2, . . . , n.

According to Teorem 6, our frst existence result is as
follows:

Theorem 11. Suppose the hypotheses (P1) and (P2) are
valid and the following inequality is satisfed

ϖ1 Υm − Υm− 1( 􏼁
um− 1 Υ1− ρ

m − Υ1− ρ
m− 1􏼐 􏼑

(1 − ρ) 1 − ϖ2Υ
− ρ
m− 1( 􏼁Γ um( 􏼁

<
1

41− um
. (30)

Ten, at least one solution for the PVB (6) exists on Em.

Proof. Consider the operator

S1: Em⟶ Em, (31)

defned by

S1κ(s) � 􏽚
Υm

Υm− 1

Gm(s, ])ϑ(])d], s ∈ cm, (32)

where

ϑ(s) � ℏ(s, κ(s), ϑ(s)). (33)

Te operator S1: Em ⟶ Em defned in (32) is well
defned, as evidenced by the characteristics of fractional
integrals and the continuity of the function sρℏ.

Now, let us consider

Rm ≥
ℏ∗ Υm − Υm− 1( 􏼁

um /4um − 1 1 − ϖ2Υ
− ρ
m− 1( 􏼁Γ um( 􏼁

1 − ϖ1 Υm − Υm− 1( 􏼁
um− 1 Υ1− ρ

m − Υ1− ρ
m− 1􏼐 􏼑/4um − 1

(1 − ρ) 1 − ϖ2T
− ρ
m− 1( 􏼁Γ um( 􏼁

, (34)

where

ℏ∗ � sup
s∈cm

|ℏ(s, 0, 0)|. (35)

We pay regard to the set

BRm
� κ ∈ Em, ‖κ‖Em

≤Rm􏽮 􏽯. (36)

Tere is no doubt that BRm
is closed, convex, bounded,

and nonempty.
We will now demonstrate that S1 meets theTeorem 11’s

fundamental assumption. Tree steps will be taken to
provide the proof. □

Step 12. S1(BRm
)⊆ (BRm

).
Let κ ∈ BRm

and s ∈ cm. From Proposition 10, we have

S1κ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
Υm

Υm− 1

Gm(s, ])ϑ(])d]
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽚
Υm

Υm− 1

Gm(s, ])|ϑ(])|d]

≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1
􏽚
Υm

Υm− 1

|ϑ(])|d],

(37)

where

ϑ(s) � ℏ(s, κ(s), ϑ(s)). (38)

By P2, we have

|ϑ(s)| � |ℏ(s, κ(s), ϑ(s))|

≤ |ℏ(s, κ(s), ϑ(s)) − ℏ(s, 0, 0)| + |ℏ(s, 0, 0)|

≤ s
− ρ ϖ1|κ(s)| + ϖ2|ϑ(s)|( 􏼁 + ℏ∗

≤ s
− ρ ϖ1Rm + ϖ2|ϑ(s)|( 􏼁 + ℏ∗.

(39)

Ten,

|ϑ(s)|≤
ϖ1Rms

− ρ
+ ℏ∗

1 − ϖ2s
− ρ . (40)

Tus,

S1κ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um − 1
􏽚
Υm

Υm− 1

ϖ1Rm]
− ρ

+ ℏ∗

1 − ϖ2]
− ρ􏼠 􏼡d]

≤
ϖ1 Υm − Υm− 1( 􏼁

um− 1 Υ1− ρ
m − Υ1− ρ

m− 1􏼐 􏼑

4um − 1
(1 − ρ) 1 − ϖ2Υ

− ρ
m− 1( 􏼁Γ um( 􏼁

Rm +
ℏ∗ Υm − Υm− 1( 􏼁

um

4um − 1 1 − ϖ2Υ
− ρ
m− 1( 􏼁Γ um( 􏼁

≤Rm.

(41)
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It means that S1(BRm
)⊆BRm

.

Step 13. S1 is continuous.
Te sequence (κn) is assumed to converge to κ in Em and

s ∈ cm. Due to Proposition 10, we have

S1κn( 􏼁(s) − S1κ( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
Υm

Υm− 1

Gm(s, ])ϑn(])

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽚
Υm

Υm− 1

Gm(s, ])ϑ(])d]
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(42)

where

ϑn(s) � ℏ s, κn(s), ϑn(s)( 􏼁,

ϑ(s) � ℏ(s, κ(s), ϑ(s)).
(43)

Ten,

S1κn( 􏼁(s) − S1κ( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
Υm

Υm− 1

Gm(s, ]) ϑn(]) − ϑ(])
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌d]

≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1
􏽚
Υm

Υm− 1

ϑn(]) − ϑ(])
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌d].

(44)

P2 gives us

ϑn(s) − ϑ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � ℏ s, κn(s), ϑn(s)( 􏼁 − ℏ(s, κ(s), ϑ(s))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ s
− ρ ϖ1 κn(s) − κ(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ϖ2 ϑn(s) − ϑ(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(45)

Tus,

ϑn(s) − ϑ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
ϖ1s

− ρ

1 − ϖ2s
− ρ κn(s) − κ(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (46)

Hence,

S1κn( 􏼁(s) − S1κ( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1
􏽚
Υm

Υm− 1

ϖ1]
− ρ

1 − ϖ2]
− ρ κn(]) − κ(])

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌d]

≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1 ϖ1
1 − ϖ2Υ

− ρ
m− 1

􏼠 􏼡
Υ1− ρ

m − Υ1− ρ
m− 1

1 − ρ
􏼠 􏼡 κn − κ

����
����Em

≤
ϖ1 Υm − Υm− 1( 􏼁

um − 1 Υ1− ρ
m − Υ1− ρ

m− 1􏼐 􏼑

4um− 1
(1 − ρ) 1 − ϖ2Υ

− ρ
m− 1( 􏼁Γ um( 􏼁

κn − κ
����

����Em
,

(47)

i.e., we obtain

S1κn( 􏼁 − S1κ( 􏼁
����

����Em
⟶ 0 as n⟶∞. (48)

Te operator S1 is hence a continuous on Em.

Step 14. S1(BRm
) is relatively compact.

We must now demonstrate that S1(BRm
) is relatively

compact. Due to step 13, it is obvious that S1(BRm
) is

uniformly bounded. As a result, we obtain S1(BRm
) �

S1(κ): κ ∈ BRm
􏽮 􏽯⊆BRm

, and for any κ ∈ BRm
, we have

‖S1(κ)‖Em
≤Rm, indicating that S1(BRm

) is uniformly
bounded. It needs to be demonstrated that S1(BRm

) is
equicontinuous.

For s1, s2 ∈ cm, s1 < s2 and κ ∈ BRm
, we have

S1κ( 􏼁 s2( 􏼁 − S1κ( 􏼁 s1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
Υm

Υm− 1

Gm s2, ]( 􏼁ϑ(])d] − 􏽚
Υm

Υm− 1

Gm s1, ]( 􏼁ϑ(])d]
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (49)

Complexity 7



where

ϑ(s) � ℏ(s, κ(s), ϑ(s)). (50)

Ten,

S1κ( 􏼁 s2( 􏼁 − S1κ( 􏼁 s1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽚
Υm

Υm− 1

Gm s2, ]( 􏼁 − Gm s1, ]( 􏼁( 􏼁ϑ(])
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌d]

≤ 􏽚
Υm

Υm− 1

Gm s2, ]( 􏼁 − Gm s1, ]( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ϖ1Rm]

− ρ
+ ℏ∗

1 − ϖ2]
− ρ􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
d]

≤
ϖ1Rm Υm− 1( 􏼁

− ρ
+ ℏ∗

1 − ϖ2 Υm− 1( 􏼁
− ρ 􏽚

Υm

Υm− 1

Gm s2, ]( 􏼁 − Gm s1, ]( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌d],

(51)

considering Green’s functions’ continuity Gm. Tus, |(S1κ)

(s2) − (S1κ)(s1)|⟶ 0 as |s2 − s1|⟶ 0, which indicates
that S1(BRm

) is equicontinuous.
We arrived at the conclusion that S1 is completely

continuous due to steps 12 through 14 and the Arzela–Ascoli
theorem.

Problem (22) has at least one solution (􏽦κm in BRm
)

according to Teorem 11.
We let

κm �
0, s ∈ η, Tm− 1􏼂 􏼃,

􏽥κm, t ∈ cm.
􏼨 (52)

Tus, we know that κm ∈ C([η,Υm],R) satisfes equation

d2

ds
2 􏽚
Υ1

η

(s − ])
1− u1

Γ 2 − u1( 􏼁
κm(])d] + · · · + 􏽚

s

Υm− 1

(s − ])
1− um

Γ 2 − um( 􏼁
κm(])d]􏼠 􏼡 + ℏ ], κm(]), D

um

η+ κm(])􏼐 􏼑 � 0, (53)

for which s ∈ cm, indicating that κm is a solution of (20) with
κm(η) � 0, κm(Tm) � 􏽦κm(Υm) � 0.

Ten, we obtain

κ(s) �

κ1(s), s ∈ c1,

κ2(s) �
0, s ∈ c1,

􏽥κ2, s ∈ c2
􏼨

.

.

.

κn(s) �
0, s ∈ η,Υm− 1􏼂 􏼃,

􏽦κm, s ∈ cm,
􏼨

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

which is a form of the solution of PVB (2).
Now, the following result can be defned using the

Banach contraction principle.

Theorem 15. Let us consider the assumptions (P1), (P2)

hold and

ϖ1 Υm − Υm− 1( 􏼁
um− 1 Υ1− ρ

m − Υ1− ρ
m− 1􏼐 􏼑

4um− 1
(1 − ρ) 1 − ϖ2Υ

− ρ
m− 1( 􏼁Γ um( 􏼁

< 1. (55)

Problem (22) then has a solution on Em.

Proof. Te Banach contraction principle demonstrates that
S1 has a singular fxed point as stated in (32).

We have for κ, y ∈ Em, and s ∈ cm.

S1κ( 􏼁(s) − S1y( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
Υm

Υm− 1

Gm(s, ])ϑ(])d]
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽚
Υm

Υm− 1

Gm(s, ])ψ(])d]
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(56)

where

ϑ(s) � ℏ(s, κ(s), ϑ(s)),

ψ(s) � ℏ(s, y(s),ψ(s)).
(57)

By P2, we have

|ϑ(s) − ψ(s)| � |ℏ(s, κ(s), ϑ(s)) − ℏ(s, y(s),ψ(s))|

≤ s
− ρ ϖ1|κ(s) − y(s)| + ϖ2|ϑ(s) − ψ(s)|( 􏼁.

(58)

Ten,

|ϑ(s) − ψ(s)|≤
ϖ1s

− ρ

1 − ϖ2s
− ρ |κ(s) − y(s)|. (59)
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Tus,

S1κ( 􏼁(s) − S1y( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
Υm

Υm− 1

Gm(s, ])|ϑ(]) − ψ(])|d]

≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1
􏽚

Tm

Tm− 1

ϖ1]
− ρ

1 − ϖ2]
− ρ􏼠 􏼡|κ(]) − y(])|d]

≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1 ϖ1
1 − ϖ2Υ

− ρ
m− 1

􏼠 􏼡‖κ − y‖Em
􏽚
Υm

Υm− 1

s
− ρd]

≤
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1 ϖ1
1 − ϖ2Υ

− ρ
m− 1

􏼠 􏼡
Υ1− ρ

m − Υ1− ρ
m− 1

1 − ρ
􏼠 􏼡‖κ − y‖Em

≤
ϖ1 Υm − Υm− 1( 􏼁

um − 1 Υ1− ρ
m − Υ1− ρ

m− 1􏼐 􏼑

4um− 1
(1 − ρ) 1 − ϖ2Υ

− ρ
m− 1( 􏼁Γ um( 􏼁

‖κ − y‖Em
.

(60)

Consequently, by (55), the operator S1 is condensed. As
a result, according to the Banach contraction principle, S1
has a singular fxed point 􏽦κm∈ Em, which is a singular so-
lution to problem (22).

We let

κm �
0, s ∈ η,Υm− 1􏼂 􏼃,

􏽥κm, s ∈ cm.
􏼨 (61)

We are clear that the following equation, which is de-
fned by (61), is satisfed by κm ∈ C([η,Υm],R):

d2

ds
2 􏽚
Υ1

η

(s − ])
1− u1

Γ 2 − u1( 􏼁
κm(])d] + · · · + 􏽚

s

Υm− 1

(s − ])
1− um

Γ 2 − um( 􏼁
κm(])d]􏼠 􏼡 + ℏ ], κm(]), D

um

η+ κm(])􏼐 􏼑 � 0, (62)

for s ∈ cm, which denotes that κm is a singular solution of
(20) with κm(η) � 0, κm(Υm) � 􏽦κm(Υm) � 0.

Ten, it is seen that

κ(s) �

κ1(s), s ∈ c1,

κ2(s) �
0, s ∈ c1,

􏽥κ2, s ∈ c2,
􏼨

.

.

.

κn(s) �
0, s ∈ η,Υm− 1􏼂 􏼃,

􏽦κm, s ∈ cm

􏼨

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

is the form of unique solution of PVB (1). □

4. Stability of Ulam–Hyers

Theorem 16. Assuming P1, P2, and (10) are valid. Ten,
PVB (1) is Ulam–Hyers stable.

Proof. Let χ ∈ Em be a solution of the inequality. So, we have

D
umχ(s) + ℏ s, χ(s), D

umχ(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϵ, s ∈ cm. (64)

Let us use κ ∈ Em to represent the problem’s singular
solution (22). By using Lemma 9, we have

κ(s) � 􏽚
Υm

Υm− 1

Gm(s, ])ϑ(])d], (65)

where

ϑ(s) � ℏ(s, κ(s), ϑ(s)). (66)

By integration of (64), we also obtain

χ(s) + 􏽚
Υm

Υm− 1

Gm(s, ])ψ(])d]
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ϵ
Υm − Υm− 1( 􏼁

um

Γ um + 1( 􏼁
, (67)

where

ψ(s) � ℏ(s, χ(s),ψ(s)). (68)
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However, we also have

|χ(s) − κ(s)|≤ |χ(s) − 􏽚
Υm

Υm− 1

Gm(s, ])ψ(])d]| + | 􏽚
Υm

Υm− 1

Gm(s, ])ψ(])d]

− 􏽚
Υm

Υm− 1

Gm(s, ])ϑ(])d]|

≤ |χ(s) + 􏽚
Υm

Υm− 1

Gm(s, ])ψ(])d]| + | 􏽚
Υm

Υm− 1

Gm(s, ])ψ(])d]

− 􏽚
Υi

Υm− 1

Gm(s, ])ϑ(])d]|

≤
ϵ Υm − Υm− 1( 􏼁

um

Γ um + 1( 􏼁
+

1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1
􏽚
Υm

Υm− 1

|ψ(]) − ϑ(])|.

(69)

According to P2, for any s ∈ cm, we have

|ψ(s) − ϑ(s)| � |ℏ(s, χ(s),ψ(s)) − ℏ(s, κ(s), ϑ(s))|

≤ s
− ρ ϖ1|χ(s) − κ(s)| + ϖ2|ψ(s) − ϑ(s)|( 􏼁.

(70)

Ten,

|ψ(s) − ϑ(s)|≤
ϖ1s

− ρ

1 − ϖ2s
− ρ |χ(s) − κ(s)|. (71)

Tus,

|χ(s) − κ(s)|≤
ϵ Υm − Υm− 1( 􏼁

um

Γ um + 1( 􏼁
+

1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um − 1
􏽚
Υm

Υm− 1

ϖ1]
− ρ

1 − ϖ2]
− ρ |χ(]) − κ(])|d]

≤
ϵ Υm − Υm− 1( 􏼁

um

Γ um + 1( 􏼁

+
1
Γ um( 􏼁

Υm − Υm− 1

4
􏼒 􏼓

um− 1 ϖ1
1 − ϖ2Υ

− ρ
m− 1

􏼠 􏼡 􏽚
Υm

Υm− 1

]− ρ
|χ(]) − κ(])|d]

≤
ϵ Υm − Υm− 1( 􏼁

um

Γ um + 1( 􏼁
+
ϖ1 Υm − Υm− 1( 􏼁

um− 1 Υ1− ρ
m − Υ1− ρ

m− 1􏼐 􏼑

(1 − ρ)4um − 1Γ um( 􏼁 1 − ϖ2Υ
− ρ
m− 1( 􏼁

‖χ − κ‖Em
.

(72)

Hence, we get

‖χ − κ‖Em
1 −
ϖ1 Υm − Υm− 1( 􏼁

um − 1 Υ1− ρ
m − Υ1− ρ

m− 1􏼐 􏼑

(1 − ρ)4um − 1 1 − ϖ2Υ
− ρ
m− 1( 􏼁Γ um( 􏼁

⎡⎢⎣ ⎤⎥⎦≤
ϵ Υm − Υm− 1( 􏼁

Γ um + 1( 􏼁
. (73)

Ten, it is obtained that

‖χ − κ‖Em
≤ 1 −
ϖ1 Υm − Υm− 1( 􏼁

um − 1 Υ1− ρ
m − Υ1− ρ

m− 1􏼐 􏼑

(1 − ρ)4um − 1 1 − ϖ2Υ
− ρ
m− 1( 􏼁Γ um( 􏼁

⎡⎢⎣ ⎤⎥⎦

− 1
Υm − Υm− 1( 􏼁

Γ um + 1( 􏼁
ϵ ≔ cℏϵ, (74)
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for each t ∈ cm. So, problem (22) is SUH. Consequently, the
equation of (2) is SUH. □

5. Example

Let us look at the following fractional boundary problem:

D
u(t)
1/2+κ(s) +

1

(s + 1)
1/2

e
s+1/2 1 +|κ(s)| + D

u(s)
0+ κ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

� 0, s ∈ c ≔
1
2
, 2􏼔 􏼕,

κ
1
2

􏼒 􏼓 � 0, κ(2) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(75)

with

ℏ(s, y, z) �
1

(s + 1)
1/2

e
s+1/2

(1 +|y| +|z|)
, (t, y, z) ∈

1
2
, 2􏼔 􏼕 ×[0, +∞) ×[0, +∞), (76)

u(s) �

3
2
, s ∈ c1 ≔

1
2
, 1􏼔 􏼕,

7
4
, s ∈ c2 ≔ ]1, 2].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(77)

Ten, we get

s
1/2 ℏ s, u1, v1( 􏼁 − ℏ s, u2, v2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � s

1/2 1
(s + 1)

1/2
e

s+1/2 1 + u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
−

1
(s + 1)

1/2
e

s+1/2 1 + u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

e
s+1/2 u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
e

s+1/2 v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
1
e

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
e

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(78)

As a result, condition P2 is satisfed when c � 1/2 and
ϖ1 � ϖ2 � 1/2 are used.

Te equation for problem (75) is split into two parts as
follows by (77):

D
3/2
1/2+κ(s) +

1

(s + 1)
1/2

e
s+1/2 1 +|κ(s)| + D

3/2
0+ κ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

� 0, s ∈ c1,

D
7/4
1+ κ(s) +

1

(s + 1)
1/2

e
s+1/2 1 +|κ(s)| + D

7/4
1+ κ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

� 0, s ∈ c2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)
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For s ∈ c1, problem (75) is equivalent to the following
problem:

D
3/2
1/2+κ(s) +

1

(s + 1)
1/2

e
s+1/2 1 +|κ(s)| + D

3/2
0+ κ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

� 0, s ∈ c1,

κ
1
2

􏼒 􏼓 � 0, κ(1) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(80)

We will ascertain whether or not condition (55) is met.

ϖ1 Υ1 − Υ0( 􏼁
u1− 1 Υ1− ρ

1 − Υ1− ρ
0􏼐 􏼑

4u1− 1
(1 − ρ) 1 − ϖ2Υ

− ρ
0( 􏼁Γ u1( 􏼁

�
1/e

40.51/2Γ(1.5)
≃ 0.4151< 1.

(81)

According to Teorem 15, problem (80) has a solution
κ1 ∈ E1, and from Teorem 16, problem (80) is SUH.

Problem (75) can be expressed as the following piecewise
function for s ∈ c2.

D
7/4
1+ κ(s) +

1

(s + 1)
1/2

e
s+1/2 1 +|κ(s)| + D

7/4
1+ κ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

� 0, s ∈ c2,

κ(1) � 0, κ(2) � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(82)

It can be seen that

ϖ1 Υ2 − Υ1( 􏼁
u2− 1 Υ1− ρ

2 − Υ1− ρ
1􏼐 􏼑

4u2− 1
(1 − ρ) 1 − ϖ2Υ

− ρ
1( 􏼁Γ u2( 􏼁

�
1/e 20.5

− 10.5
􏼐 􏼑

40.751/2(1 − 1/e)Γ(1.75)
≃ 0.1854< 1. (83)

Tus, condition (55) is satisfed.
ByTeorem 15, problem (82) has a solution 􏽥κ2 ∈ E2, and

from Teorem 16, problem (82) is SUH.
As is well known,

κ2(s) �
0, s ∈ c1,

􏽥κ2(s), s ∈ c2.
􏼨 (84)

So, there is a solution to problem (75) that takes the form

κ(s) �

κ1(s), s ∈ c1,

κ2(s) �
0, s ∈ c1,

􏽥κ2(s), s ∈ c2.
􏼨

⎧⎪⎪⎨

⎪⎪⎩
(85)

According to Teorem 16, problem (75) is SUH.

6. Conclusion

Te semigroup properties of the Riemann–Liouville frac-
tional integral have played a key role in dealing with the
existence of solutions to diferential equations of fractional

order. Based on some results of some experts, we know that
the Riemann–Liouville variable order fractional integral does
not have semigroup property, thus bringing us extreme
difculties in considering the existence of solutions of var-
iable order fractional diferential equations. In this work, we
presented results about the existence and the uniqueness of
solutions for implicit nonlinear fractional diferential equa-
tions of variable order u(t), where u(t): [η,Υ]⟶ (1, 2] is
a piecewise constant function.

All our results are based on the Schauder’s fxed-point
theorem and the Banach contraction principle. Lastly, we
conducted a research on SUH, our problem’s stability; f-
nally, we illustrated the theoretical fndings by an example.

All the results in this work show a great potential to be
applied in various applications of sciences. Moreover, we
will extend our studies in reducing chaos and stabilising the
system of the utilisation of a Chua oscillator in the future.
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[9] Ö. Özer and S. Omran, “A note on C∗- algebra valued
G-metric space related with fxed point theorems,” Bulletin of
the Karaganda Uniiversity- Mathematics, vol. 3, no. 95,
pp. 44–50, 2019.
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