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An implementable algorithm for solving nonsmooth nonconvex constrained optimization is proposed by combining bundle
ideas, proximity control, and the exact penalty function. We construct two kinds of approximations to nonconvex objective
function; these two approximations correspond to the convex and concave behaviors of the objective function at the current point,
which captures precisely the characteristic of the objective function. Te penalty coefcients are increased only a fnite number of
times under the conditions of Slater constraint qualifcation and the boundedness of the constrained set, which limit the un-
necessary penalty growth. Te given algorithm converges to an approximate stationary point of the exact penalty function for
constrained nonconvex optimization with weakly semismooth objective function.We also provide the results of some preliminary
numerical testing to show the validity and efciency of the proposed method.

1. Introduction and Motivation

Nonsmooth optimization problems (NSO) arise from many
felds of applications in engineering [1], economics [2],
mechanics [3], and optimal control [4]. For example,
multiobjective nonsmooth optimization has also been ap-
plied in many felds of engineering where optimal decisions
need to be taken in the presence of trade-ofs between two or
more conficting objectives [5]. Tere exist several ap-
proaches to solving NSO, see [6–10]. Bundle methods are
currently among the most efcient optimization methods;
they can be used to study the engineering problem of the safe
evaluation technology for concrete dams by applying
nonsmooth bundle ideas to hydrostructure antiseismic felds
[11–14]. Tese methods are based on the cutting plane
method [15, 16], where the convexity of the objective
function is the fundamental assumption. If the objective
function f is convex, the model functions are lower ap-
proximations to the objective function.Tis feature is crucial
to prove the convergence of most bundle methods. Tere
exist lots of bundle methods [7, 17–19] for solving convex
constrained optimization problems. In [7], the author

presents a version of proximal bundle method for convex
constrained optimization, where l1 and l∞ exact penalty
functions are employed and a new penalty update is used to
limit unnecessary penalty growth; the global convergence of
the method is established. In [17], an infeasible bundle
method for convex constrained optimization is proposed,
which does not use either a penalty function or a flter, and in
fact the method can be viewed as an unconstrained proximal
bundle method applied directly to the improvement func-
tion, and it should be noted that the serious steps need
neither be monotone nor feasible. Te algorithm presented
in [18] inherits attractive features from the proximal bundle
methods and the flter strategy, whichmakes the criterion for
accepting a candidate point as a serious step easier to satisfy.

However, for nonconvex cases, the corresponding model
function does not stay below the objective function f and
may even cut of a region containing a minimizer. Tere are
few systematic studies for extending convex bundle methods
to nonconvex cases. Most authors have considered forcing
linearization errors to be positive by replacing negative
values with a quadratic term or with the absolute value of the
linearization errors; the piecewise afne models embedding
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possible downward shifting of the afne pieces are also
considered [20, 21]. In [22], the author presents a substitute
for the cutting plane without convexity assumption and
proves that every accumulation point of the sequence of
serious steps is critical. Based on cutting plane models,
a local convexifcation model of the objective function is
constructed in [23]; it opens a new way to create nonconvex
algorithms; Fuduli et al. [24] partitioned the bundle in-
formation into two subsets to capture convex and concave
behaviors of the objective function around the current point.
Other literatures about bundle methods for nonsmooth
nonconvex optimization can be found in [25–28].

In this paper, we propose a new algorithm for con-
strained nonconvex optimization. Te algorithm is based on
the construction of two kinds of approximations to the
objective function, and these two kinds of approximations
correspond to the convex and concave behaviors of the
objective function at the current point. If the linearization
error is positive, we build a local lower approximation to the
objective function, otherwise a local upper approximation is
constructed. Besides that, the method employs l1 exact
penalty functions with a new penalty update rule that limits
unnecessary penalty growth. Our method extends the exact
penalty function algorithms for constrained convex mini-
mization to nonconvex optimization. Te following is the
main diference of our paper in many respects from the
existing ones [6, 7, 19, 29]. Te proposed algorithm in this
paper is quite diferent from the ones in [7, 17–19] since the
objective function in our paper is nonconvex although the
constraint function is convex, while both the objective
function and the constraint function are convex in
[7, 17–19]. In [7, 19], the l1 and l∞ exact penalty functions
are employed to consider convex constraint optimization
problems by combining with proximal bundle method. In
this paper, we also use the similar exact penalty functions for
solving nonconvex optimization problems, but we have to
adjust suitably the construction of quadratic programming
subproblems since the presence of nonconvexity can make
the linearization errors negative, which enhances the dif-
culty to solve the problem. To solve this problem, we divide
the bundle index set into two sets according to the signs of
linearization errors and use the partitioned bundles during

the process of the construction of the objective function
model. Terefore, the direction fnding subproblem is quite
diferent from the existing ones, which leads to the overall
changes for the design of the algorithm. Te algorithms in
[17, 18] use neither penalty functions nor relatively complex
flters; they build on the theory of the well-developed un-
constrained bundle methods by introducing the improve-
ment function, which is essential for the convergence of the
proposed algorithm. It is another approach proposed in
recent years for solving nonsmooth convex constrained
optimization problems. It should be noted that the descent
condition in our method used to decide when the candidate
point can be accepted as the next serious step is diferent
from the ones in [17, 18], where the improvement function
involving the objective function is employed to form the
descent criterion, but in our method, the penalty function is
used to serve the same role.

Tis paper is organized as follows: in Section 2, the
model for constrained nonconvex optimization is estab-
lished by using the exact penalty function. Te nonconvex
bundle algorithm is presented in Section 3. In Section 4, we
prove that the sequence of serious steps generated by the
proposed algorithm converges to an approximate stationary
point of exact penalty function with weakly semismooth
objective functions. Preliminary numerical experiments are
provided in Section 5. Finally, some conclusions are given in
Section 6.

2. Derivation of the Model

Consider the following constrained nonconvex optimization
problem:

min
x∈Rn
 f(x),

s.t. F(x)≤ 0,
(1)

where f: Rn⟶ R is a real-valued locally Lipschitz function
and F: Rn⟶ R is a real-valued convex function. It is well
known that for a locally Lipschitz function f, the generalized
subdiferential (Clarke’s subdiferential) at each point x is
defned by

zCf(x) � conv g | g ∈ R
n
,∇f x

k
􏼐 􏼑⟶ g, x

k⟶ x, x
k ∉ Ωf􏽮 􏽯, (2)

where “conv” denotes the convex hull of a set andΩf is the set
where f is not diferentiable. Te set zCf(x) is locally
bounded [30]. An extension of the generalized subdiferential
is the Goldstein ε-subdiferential zG

ε f(x) defned as

z
G
ε f(x) � conv zCf(y) | ‖y − x‖≤ ε􏼈 􏼉. (3)

For convex function F, the subdiferential of F at x is
defned by

zF(x) � g | g ∈ R
n
, F(y)≥F(x) +〈g, y − x〉,∀y ∈ R

n
􏼈 􏼉,

(4)

which is locally bounded. Assume that we are able to
compute at each point x both the function values f(x), F(x)

and subgradients gf(x) ∈ zCf(x), gF(x) ∈ zF(x). We de-
note the current iteration point (stability center) and the trial
point by xi and yj, respectively. Te bundles of available
information are the sets Bfi and BFi of elements
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y
j
, f y

j
􏼐 􏼑, g

j

f, αj

f, a
j

f􏼒 􏼓, j ∈ Bfi, y
j
, F y

j
􏼐 􏼑, g

j
F, αj

F􏼐 􏼑, j ∈ BFi,

(5)

where g
j

f ∈ zCf(yj), g
j
F ∈ zF(yj), αj

f � f(xi) − f(yj) −

〈g
j

f, xi − yj〉, a
j

f � ‖xi − yj‖, αj

F � F(xi)+ − F(yj) − 〈g
j

F,

xi − yj〉, and F(xi)+ � max F(xi), 0􏼈 􏼉.
If f and F are real-valued convex functions on Rn, under

Slater constraint qualifcation, problem (1) can be solved by
minimizing the following l1 exact penalty function

e(x, c) � f(x) + cF(x)+, (6)

where c is the penalty parameter which is greater than the
Lagrange multiplier of problem (1), see [7]. For real-valued
locally Lipschitz function f: Rn⟶ R and real-valued
convex function F: Rn⟶ R, we try to combine the ideas
of bundle methods, proximity control, and exact penalty
functions to solve problem (1). We defne the cutting plane
approximations of f, F, and e(x, c) by their linearizations:

f̂
i
(x) � max

j∈Bfi

f y
j

􏼐 􏼑 +〈gj

f, x − y
j〉􏼚 􏼛,

F̂
i
(x) � max

j∈BFi

F y
j

􏼐 􏼑 +〈gj

F, x − y
j〉􏽮 􏽯,

ê
i

x, ci( 􏼁 � f̂
i
(x) + ci

􏽢F
i
(x)+,

(7)

where Bfi, BFi ⊂ 1, 2, . . . , i{ }, ci is the corresponding penalty
parameter. Te next trial point yj+1 is obtained by solving
the following problem:

min
x∈Rn

ê
i

x, ci( 􏼁 +
ui

2
x − x

i
����

����
2

􏼚 􏼛, (8)

where ui > 0 is the proximal parameter. Note that if x is
feasible, F(x)+ � 0. Terefore, we introduce additionally
a trial point y0, the subgradient g0

F � 0, and the linearization
error α0F � F(xi)+(�0) with respect to y0, and then we
defne BFi0 � BFi ∪ 0{ }. Hence, problem (8) can be written in
equivalent form

min vf + civF +
ui

2
‖d‖

2
,

s.t. − αj

f + g
j

f􏼒 􏼓
⊤

d≤ vf, j ∈ Bfi,

− αj

F + g
j

F􏼐 􏼑
⊤

d≤ vF, j ∈ BFi0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where d � x − xi. Te introduction of index set 0{ } into BFi0

can make sure vF ≥ 0 in (9) for j � 0.
It should be noted that αj

f may be negative since f is
nonconvex; we divide Bfi into two sets B+

fi and B−
fi defned

by

B
+
fi � j ∈ Bfi | αj

f ≥ 0􏼚 􏼛, B
−
fi � j ∈ Bfi | αj

f < 0􏼚 􏼛, (10)

where B+
fi is nonempty since i ∈ B+

fi. We defne the following
two piecewise afne functions:

H
+
(d) � max

j∈B+
fi

g
j

f􏼒 􏼓
⊤

d − αj

f􏼚 􏼛, H
−

(d) � min
j∈B−

fi

g
j

f􏼒 􏼓
⊤

d − αj

f􏼚 􏼛. (11)

Let h(d) � f(xi + d) − f(xi), the afne function H+(d),
be considered as the approximation of h(d) since h(d) �

f(xi + d) − f(xi) � f(x) − f(xi) and H+(d) � maxj∈B+
fi

(g
j

f)⊤d − αj

f􏼚 􏼛 � maxj∈B+
fi

f(yj) +(g
j

f)⊤(x − yj)􏼚 􏼛 − f(xi).

Because H+(0)< 0, H− (0)> 0 if B−
fi ≠∅, therefore H+(0)

<H− (0). Summing up, around d � 0 (around the stability
center xi), it appears that the set Sf � d ∈ Rn|H+(d)≤{

H− (d)} is more important and reliable.
Let (vfui

, vFui
, dui

) be the optimal solution to the fol-
lowing problem:

QP ui( )

zui
� min vf + civF +

ui

2
‖d‖

2
,

s.t. − αj

f + g
j

f􏼒 􏼓
⊤

d≤ vf, j ∈ B
+
fi,

− αj

f + g
j

f􏼒 􏼓
⊤

d≥ vf, j ∈ B
−
fi,

− αj

F + g
j

F􏼐 􏼑
⊤

d≤ vF, j ∈ BFi0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Let yj+1 � xi + dui
. Since vFui

is the optimal solution of

problem (12), vFui
� 􏽢F

i
(yj+1)+ − F(xi)+, similarly, vfui

� f̂
i

(yj+1) − f(xi). We defne the predicted descent vui
� ê

i

(yj+1, ci) − e(xi, ci), it is not difcult to fnd that vui
�

vfui
+ civFui

. We notice that zui
≤ 0 (therefore, vui

≤ 0) since
(vf, vF, d) � (0,0,0) is a feasible point of problem (12). Set

L vf, vF, d, λ, μ, c􏼐 􏼑 � vf + civF +
ui

2
‖d‖

2

− 􏽘
j∈B+

fi

λj vf − g
j

f􏼒 􏼓
⊤

d + αj

f􏼒 􏼓

− 􏽘
j∈B−

fi

μj g
j

f􏼒 􏼓
⊤

d − αj

f − vf􏼒 􏼓

− 􏽘
j∈BFi0

cj vF − g
j
F􏼐 􏼑
⊤

d + αj
F􏼒 􏼓.

(13)

Let ∇dL � 0; we obtain
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d �
1
ui

− G
f
+λ + G

f
− μ − G

F
c􏽨 􏽩, (14)

where G
f
+ , Gf

− and GF are matrices whose columns are the
vectors g

j

f, j ∈ B+
fi, g

j

f, j ∈ B−
fi and g

j
F, j ∈ BFi0. λ, μ and c are

the vectors with components λj, j ∈ B+
fi, μj, j ∈ B−

fi and
cj, j ∈ BFi0, respectively. Let ∇vf

L � 0; we obtain

􏽘
j∈B+

fi

λj − 􏽘
j∈B−

fi

μj � 1,
(15)

i.e., 􏽥e⊤λ − 􏽥e⊤μ � 1, where 􏽥e � (1,1, . . . , 1)T. Let ∇vF
L � 0; we

obtain

ci � 􏽥ci + c0, 􏽥ci � 􏽘
j∈BFi

cj ≥ 0. (16)

Substituting (14)–(16) into L, we have

L vf, vF, d, λ, μ, c􏼐 􏼑 � −
1
2ui

G
f
+λ − G

f
− μ + G

F
c

�����

�����
2

− α⊤f+λ + α⊤f− μ − α⊤Fc, (17)

where αf+, αf− and αF are vectors whose components are
αj

f, j ∈ B+
fi; α

j

f, j ∈ B−
fi and αj

F, j ∈ BFi0, respectively. Ten,
the duality problem of QP(ui)

is the following minimization
problem:

DP ui( )

min
1
2ui

G
f
+λ − G

f
− μ + G

F
c

�����

�����
2

+ α⊤f+λ − α⊤f− μ + α⊤Fc,

s.t. λ, μ, c≥ 0,

􏽥e
⊤λ − 􏽥e

⊤μ � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

and the primal optimal solution (vfui
, vFui

, dui
) is related to

the dual optimal solution (λ, μ, c) by the following formulae:

dui
�

1
ui

− G
f
+λ + G

f
− μ − G

F
c􏽨 􏽩, (19)

vui
� vfui

+ civFui
� − ui dui

�����

�����
2

− α⊤f+λui
+ α⊤f− μui

− α⊤Fcui
.

(20)

3. Algorithm

In this section, we present a nonconvex bundle algorithm for
constrained nonconvex optimization problem (1). Our
method is based on repeatedly solving problem (12).

A few comments on Algorithm 1 are in order.
Te stopping criterion in Step 1 is used to assess the

stationarity of current stability center. If it is satisfed, the
approximate stationarity of exact penalty function is
achieved, Algorithm 1 stops, and the approximate solution is
obtained.

Te solution (d
j

û
, v

j

fû
, v

j

Fû
) of QP(û) at Step 2 may be

obtained by using the dual quadratic programming method
of [29] or [31], which can efciently solve sequences of
subproblems QP(ui)

with varying ui and ci.

Te result d
j

û
≤ θ is never a consequence of the choice of

too big û. In fact, we note that if ‖gi
f + cig

i
F‖> δ, it holds that

dumax

�����

�����≤
2

umax
g

i
f + cig

i
F

�����

����� �
2θ g

i
f + cig

i
F

�����

�����

rδ
. (21)

Te right-hand side of the above inequality is more than
θ, so too big û may not lead to d

j

û
≤ θ, therefore we intend to

decrease the value of u in Step 2.
Large ci may force the iterate points generated by Al-

gorithm 1 to approach closely to the boundary of the feasible
set SF � x ∈ Rn|F(x)≤ 0{ } and may damage the fast con-
vergence of Algorithm 1. Our rule increases ci (from ci− 1)
only to ensure a signifcant predicted decrease in constraint
violation of the form 􏽢F

i
(yi+1)≤ κiF(xi)+, where κi ∈ [0,1) is

a contraction factor, see Step 3.
Finally, note that the insertion of a bundle index into B+

fi

or B−
fi at Step 6 is not simply based on the sign of αj

f, see [15].

4. Convergence Results

Te presented work in this section follows a line of in-
vestigation initiated in [6, 7], where nonconvex bundle algo-
rithm is used to solve unconstrained minimization problem
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and the idea of exact penalty function is employed in proximal
bundle method for constrained convex minimization problem.
Here, we expand and generalize the central idea [6] to con-
strained nonconvex minimization problems; some techniques

have to be adjusted to the new situations for the presence of
constraints and nonconvexity.

Troughout the section, we make the following
assumptions:

Step 0 (Initialization):
Choose x1 such that F(x1)≤ 0. Choose the stationarity tolerance δ > 0, the proximity measure ε≥ 0, the improvement parameter

m ∈ (0,1), the cut parameter ρ ∈ (m, 1), the reduction parameter r ∈ (0,1), the increase parameter R> 1, the infeasibility contraction
bound kmax ∈ [0,1), the initial penalty coefcient c1 > 0, and the maximal number of stored subgradients M≥ n + 2. Set
y1 � x1, B+

f1 � 1{ }, B−
f1 � ∅, BF1 � 1{ }. Set the outer iteration counter i � 1, the inner iteration counter j � 1.

Step 1 (Safeguard parameters setting):
If ‖gi

f + cig
i
F‖≤ δ, terminate; otherwise set umax � (‖gi

f + cig
i
F‖/rε), umin � (umax/R), θ � (rδ/umax).

Step 2 (Direction fnding):
Solve QP(ui)

repeatedly by choosing decreasing value of ui ∈ [umin, umax] (for the frst time choose ui � umax) and fnd the solution
(v

j

fui

, v
j
Fui

, dj
ui

) of problem (12) for u � ui until e(xi + dj
ui

, ci)> e(xi, ci) + mv
j
ui

,

where v
j
ui

� v
j

fui

+ civ
j
Fui

. If such ui does exist, let û equals the maximum value of ui ∈ [umin, umax]; otherwise set û � umin. Denote
the optimal solution of QP(û) by (v

j

fû
, v

j

Fû
, d

j

û
), and set yj+1 � xi + d

j

û
. If ‖d

j

û
‖> θ, go to Step 5.

Step 3 (Penalty updating):

If 􏽢F
i
(yj+1)> κiF(xi)+, choose κi ∈ [0, κmax] and replace ci by 2ci, go to Step 2.

Step 4 (Stationarity test):
Set

B+
fi � B+

fi\ j ∈ B+
fi|a

j

f > ε􏼚 􏼛, B−
fi � B−

fi\ j ∈ B−
fi|a

j

f > ε􏼚 􏼛.

Calculate
g∗ � min ‖g‖|g ∈ conv g

j

f + cig
j
F􏼚 􏼛, g

j

f, j ∈ B+
fi; g

j
F, j ∈ BFi􏼚 􏼛

If ‖g∗‖≤ δ, terminate; else set umin :� uminumax/((1 − r)umax + rumin), go to Step 2.
Step 5 (Trial point calculating):

Compute g
j+1
f ∈ zCf(yj+1), g

j+1
F ∈ zF(yj+1) and set αj+1

f � f(xi) − f(yj+1) + (g
j+1
f )Td

j

û
, αj+1

F � F(xi)+ − F(yj+1) + (g
j+1
F )Td

j

û
.

Step 6 (Insertion of index):
(a) If αj+1

f < 0 and ‖d
j

û
‖> ε, insert the element (yj+1, f(yj+1), g

j+1
f , αj+1

f , ‖d
j

û
‖) into the bundle for an appropriate value of j ∈ B−

fi

and set û :� ûumax/((1 − r)umax + rû).

(b) Else, if (g
j+1
f + cig

j+1
F )Td

j

û
≥ ρv

j

û
, insert the element (yj+1, f(yj+1), g

j+1
f , max 0, αj+1

f􏼚 􏼛, ‖d
j

û
‖) into the bundle for an appropriate

value of j ∈ B+
fi.

(c) Else fnd a scalar t ∈ (0,1) such that (g1(t) + cig2(t)) ∈ ze(xi + td
j

û
, ci) satisfes the condition (g1(t) + cig2(t))Td

j

û
≥ ρv

j

û
, where

g1(t) ∈ zCf(xi + td
j

û
), g2(t) ∈ zF(xi + td

j

û
), and insert the element (xi + td

j

û
, f(xi + td

j

û
), g1(t), max 0, αt􏼈 􏼉, t‖d

j

û
‖) into the bundle

for an appropriate value of j ∈ B+
fi, where αt � f(xi) − f(xi + td

j

û
) + tg1(t)Td

j

û
.

(d) Insert the element (yj+1, F(yj+1), g
j+1
F , αj+1

F ) into the bundle BFi.
Step 7 (Descent test):
If

e(xi + d
j

û
, ci)≤ e(xi, ci) + mv

j

û
,

set ui � û, di
ui

� d
j

û
, the new stability center xi+1 � xi + di

ui
(serious step); otherwise set xi+1 � xi (null step).

Step 8 (Bundle updating):

Select sets 􏽥
Bfi,

􏽥
BFi such that 􏽢Bfi ⊂

􏽥
Bfi ⊂ Bfi, 􏽢BFi ⊂

􏽥
BFi ⊂ BFi and |

􏽥
Bfi| + |

􏽥
BFi|≤M − 2, where 􏽢Bfi ⊂ Bfi,

􏽢BFi ⊂ BFi corresponding to
nonzero multipliers satisfy |􏽢Bfi| + |􏽢BFi|≤ n + 2. Set Bf(i+1) �

􏽥
Bfi ∪ i + 1{ }, BF(i+1) �

􏽥
BFi ∪ i + 1{ }. Set ci+1 � ci. If a serious step is taken,

increase i by 1 and go to Step 1, otherwise increase j by 1 and go to Step 2.
End of Algorithm 1

ALGORITHM 1: A proximal bundle algorithm for nonconvex functions.
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(A1) f and F are weakly semismooth (f is said to be
weakly semismooth if the directional derivative
f′(x; d) � limt↓0t

− 1[f(x + td) − f(x)] exists for all x

and d, and f′(x; d) � limt↓0g(x + td)Td where g(x +

td) ∈ zf(x + td)).
(A2) Te set S1 � x ∈ Rn|f(x) ≤f(x1)􏼈 􏼉 is compact,
where x1 is the initial point provided by the user in
Algorithm 1.
(A3)Te feasible set SF � x ∈ Rn|F(x)≤ 0{ } is bounded.
(A4)Te Slater constraint qualifcation holds, i.e., there
exists 􏽥x∈ Rn such that F(􏽥x)< 0.

Te assumption that the feasible set of problem (1) is
bounded is usual and reasonable; it was also assumed in
[7, 32–34]. In [27], the boundedness of the feasible set was
assumed in order to guarantee the existence of the
supremum of the range of a set-valued mapping on the
feasible set. In [32], the authors assumed the feasible sets
were bounded closed convex for fnding the saddle point of
the objective function.

Lemma 1. Let (d
j

û
, v

j

û
) be the sequence generated within an

inner iteration such that ‖d
j

û
‖> θ and

e x
i
+ d

j

û
, ci􏼐 􏼑> e x

i
, ci􏼐 􏼑 + mv

j

û
, (22)

with Algorithm 1 looping between Step 2 and Step 8.Ten, the
following conclusions hold:

(i) Tere is an index 􏽢j such that for each j≥ 􏽢j, every new
bundle index with respect tof is inserted into B+

fi and
û remains unchanged.

(ii) Step 6(c) is appropriate, feasible, and not difcult to
realize.

(iii) Whenever a new bundle index is inserted into B+
fi , the

condition (g
j+1
f + cig

j+1
F )⊤d

j

û
≥ ρv

j

û
holds, where

g
j+1
f , g

j+1
F are the subgradients of f and F at yj+1,

respectively.

Proof

(i) Since û increases at Step 6(a) of Algorithm 1, the
situation that infnite bundle indices are inserted
into B−

fi can not happen. Hence, once û exceeds
((ε/2‖gi

f + cig
i
F)‖)− 1, no bundle index with respect

to f can be inserted into B+
fi.

(ii) According to Assumption (A1), e(x, c) is weakly
semismooth, the directional derivative e′(xi + tid

j

û
,

ci; d
j

û
) exists for any ti > 0. It follows from the mean

value theorem that e(xi + d
j

û
, ci) − e(xi, ci) � c for

some c ∈ (einf′ , esup′ ), where

einf′ � inf
0≤ ti ≤ 1

e′ x
i
+ tid

j

û
, ci; d

j

û
􏼐 􏼑, esup′ � sup

0≤ti≤1
e′ x

i
+ tid

j

û
, ci; d

j

û
􏼐 􏼑. (23)

Since the sufcient decrease condition Algorithm 1
is not satisfed, we have

ρv
j

û
<mv

j

û
< e x

i
+ d

j

û
, ci􏼐 􏼑 − e x

i
, ci􏼐 􏼑, (24)

there exists a scalar ti ∈ (0,1) such that ρv
j

û
< e′(xi +

tid
j

û
, ci; d

j

û
). By weak semismoothness of e(x, c), it is

not difcult to fnd a scalar t ∈ (0,1) such that
(g1(t) + cig2(t)) ∈ ze(xi + td

j

û
, ci) satisfes the

condition (g1(t) + cig2(t))Td
j

û
≥ ρv

j

û
, where

g1(t) ∈ zC f(xi + td
j

û
), g2(t) ∈ zF(xi + td

j

û
).

(iii) By construction of Algorithm 1, we have (g
j+1
f + ci

g
j+1
F )⊤d

j

û
≥ ρv

j

û
. If αj+1

f − ciα
j+1
F ≥ 0 (the next Lemma

4 shows that ci can not be increased for infnitely
many times, therefore, αj+1

f − ciα
j+1
F ≥ 0 is possible),

we also have

g
j+1
f + cig

j+1
F􏼒 􏼓
⊤

d
j

û
≥ g

j+1
f + cig

j+1
F􏼒 􏼓
⊤

d
j

û
− αj+1

f + ciα
j+1
F � e x

i
+ d

j

û
, ci􏼐 􏼑 − e x

i
, ci􏼐 􏼑>mv

j

û
> ρv

j

û
, (25)

the condition (g
j+1
f + cig

j+1
F )⊤d

j

û
≥ ρv

j

û
also holds.

Te next lemma shows the fnite termination of the inner
iteration. □

Lemma 2. Te inner iteration terminates after a fnite
number of steps.

Proof. It is enough to demonstrate that, in a fnite number of
steps, either the condition of the stop at Step 1 or the exit at
Step 4 is satisfed. Firstly, we prove Algorithm 1 cannot pass
through Step 4 infnitely many times. Assume that such
a case occurs, since at each iteration, the algorithm enters
Step 4, then we have ‖d

j

û
‖≤ θ and ‖g∗‖> δ. Observe that

û≥ umin and umin will exceed the threshold (2‖gi
f + cig

i
F‖/ε)
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in a fnite number of steps. It follows that ‖dj
ui

‖≤ (2/ui)

‖g
j

f + cigf
j
F‖, therefore we obtain ‖d

j

û
‖≤ ε, whichmeans that

the indices of the new bundle elements are inserted into B+
fi

and are never removed.
According to Step 6, we insert an index into B−

fi only if
‖d

j

û
‖> ε, which implies that whenever entering Step 4, all the

elements in i ∈ B−
fi are removed. Taking into account (15),

(16), (19), and (20), there is an index 􏽥j such that for all j≥ 􏽥j,

d
j

û
� −

1
û

G
f
+λ + G

F
c􏽨 􏽩 � −

1
û

g
i
cf + cig

i
cF􏽨 􏽩, (26)

where gi
cf � conv g

j

f|j ∈ B+
fi􏼚 􏼛, gi

cF � conv g
j
F|j ∈ BFi􏽮 􏽯. But

since ‖d
j

û
‖≤ θ and ‖g∗‖> δ, we have

θ≥ d
j

û

�����

����� �
1
û

g
i
cf + cig

i
cF

�����

�����≥
1

umax
g
∗����
����>

θ
rδ

δ > θ, (27)

which leads to a contradiction.
Next, we show that it is impossible to have d

j

û
> θ for

infnitely many times and the descent condition Algorithm 1
is not satisfed with the algorithm looping between Step 4
and Step 8. Indexing by j ∈ BFi ∪Bfi, the jth passage through
such a loop, we observe that, by Lemma 1(i), there exists an
index j such that for every j≥ j, the index of each new
bundle element is put into B+

fi with û remaining unchanged.
Terefore, for j≥ j, the sequence z

j

û
􏽮 􏽯 is nondecreasing and

bounded and hence convergent. Since d
j

û
􏽮 􏽯 is bounded,

suppose d
j

û
􏽮 􏽯

j∈BFi ∪Bfi

is its convergent subsequence. Te

sequence v
j

û
􏽮 􏽯

j∈BFi∪Bfi

also converges to a nonpositive limit v.

Now assume that v< 0. Let s and t be two successive indices

in BFi ∪Bfi and let βs
f � max 0, αs

f􏼚 􏼛 with αs
f � e (xi, ci) −

e(xi + ds
û, ci) + (gs

f + cig
s
F)Tds

û and gs
f ∈ zCf (xi + ds

û),
gs

F ∈ zF(xi + ds
û); we have

v
t
û ≥ g

s
f + cig

s
F􏼐 􏼑
⊤

d
t
û − βs

f, (28)

e(xi + ds
û, ci) − e(xi, ci)>mvs

û
, and (gs

f + cig
s
F)Tds

û ≥ ρvs
û
. If

βs
f � 0; we have

g
s
f + cig

s
F􏼐 􏼑
⊤

d
t
û − βs

f ≥ ρv
s
û, (29)

if βs
f � αs

f, it holds that

g
s
f + cig

s
F􏼐 􏼑
⊤

d
s
û − βs

f � e x
i
+ d

s
û, ci􏼐 􏼑 − e x

i
, ci􏼐 􏼑>mv

s
û > ρv

s
û.

(30)

Combing (28) and (29), we obtain vt
û

− ρvs
û
≥ (gs

f +

cig
s
F)⊤(dt

û − ds
û), hence by taking the limits (1 − ρ)v≥ 0, it

contradicts v< 0, hence v � 0. It follows from z
j

û
≤ 0 that

|v
j

û
|≥ (û/2)‖d

j

û
‖2, which contradicts the fact that ‖d

j

û
‖> θ.

Te next lemma shows that the penalty coefcients are
increased fnitely many times under the conditions of Slater
constraint qualifcation and the boundedness of SF. □

Lemma 3. Tere exists c<∞ such that 􏽢F
i
(yj+1)≤ 0 if ci ≥ c.

Proof. Denote the Lagrangian of QP(ui)
by

L vf, vF, d, λ, μ, c􏼐 􏼑 � vf + civF +
ui

2
‖d‖

2
− 􏽘

j∈B+
fi

λj vf − g
j

f􏼒 􏼓
⊤

d + αj

f􏼒 􏼓

− 􏽘
j∈B−

fi

μj g
j

f􏼒 􏼓
⊤

d − αj

f − vf􏼒 􏼓 − 􏽘
j∈BFi0

cj vF − g
j

F􏼐 􏼑
⊤

d + αj

F􏼒 􏼓.

(31)

Te Lagrange multipliers satisfy the usual saddle-point
condition:

L vfui
, vFui

, dui
, λi, μi, ci􏼐 􏼑≤ L vf, vF, d, λi, μi, ci􏼐 􏼑, (32)

for all d, vf, vF. For the above inequality, we take d � 􏽥dui

� 􏽥x − xi, where 􏽥x is the one in Assumption (A4), and then by
using (15) and (16), we obtain

ui

2
dui

�����

�����
2

+ p
i
f􏼐 􏼑

T
dui

− 􏽘
j∈B+

fi

λjα
j

f + 􏽘
j∈B−

fi

μjα
j

f + ci g
j
F􏼐 􏼑

T
dui

− αj
F􏼒 􏼓

≤
ui

2
􏽥dui

�����

�����
2

+ p
i
f􏼐 􏼑

T􏽥dui
− 􏽘

j∈B+
fi

λjα
j

f + 􏽘
j∈B−

fi

μjα
j

f + ci g
j
F􏼐 􏼑

T􏽥dui
− αj

F),􏼒

(33)
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where pi
f � 􏽐j∈B+

fi
λjg

j

f − 􏽐j∈B−
fi
μjg

j

f. Remove the same

terms from both sides of (33) and note that (g
j
F)Tdui

−

αj

F � vFui
� 􏽢F

i
(yj+1)+ − F(xi)+, (g

j

F)T􏽥dui
− αj

F � (g
j

F)T􏽥dui

− F(xi)+ + F(yj) + 〈g
j
F, xi − yj〉, and the subgradient in-

equality of convex function F(yj) + 〈g
j
F, xi − yj〉 + 〈g

j
F,

􏽥x − xi〉≤F(􏽥x); we have

1
2
ui dui

�����

�����
2

+ p
i
f􏼐 􏼑

T
dui

+ ci
􏽢F

i
y

j+1
􏼐 􏼑

+
≤
1
2
ui

􏽥dui

�����

�����
2

+ p
i
f􏼐 􏼑

T􏽥dui
+ ciF(􏽥x). (34)

Since ci � 􏽥ci + c0, c0 ≥ 0, and Assumption (A4) tells us
that F(􏽥x)< 0, the following inequality holds:

1
2
ui dui

�����

�����
2

+ p
i
f􏼐 􏼑

T
dui

+ ci
􏽢F

i
y

j+1
􏼐 􏼑

+
≤
1
2
ui

􏽥dui

�����

�����
2

+ p
i
f􏼐 􏼑

T􏽥dui
+ 􏽥ciF(􏽥x). (35)

Recalling that g
j

f is locally bounded, let D � sup

‖x − y‖|x, y ∈ SF􏼈 􏼉 and Cg � sup ‖g
j

f‖|j ∈ Ifi􏼚 􏼛. Te exis-

tence of Cg can be guaranteed by the aggregate technique of
bundle methods. Ten,

􏽥ci(− F(􏽥x)) + ci
􏽢F

i
y

j+1
􏼐 􏼑

+
≤
1
2

�uD
2

+ DCg≕ L, (36)

where �u is the upper bound of ui. Now, if we take
c � (− L)/(F(􏽥x)), the conclusion can be obtained. □

Lemma 4. Tere exist an index i and c> 0 such that ci � c for
all i≥ i.

Proof. According to the result of Lemma 3, there exists one
c> 0 such that 􏽢F

i
(yj+1)> κiF(xi) does not hold for ci ≥ c.

Terefore, Step 3 in Algorithm 1 will not be executed once
ci ≥ c. Te penalty coefcient ci remains constant c.

Note that Lemmas 3 and 4 ensure the number of iter-
ations between Step 2 and Step 3 is fnite, and the penalty
coefcients stay unchanged after fnitely many iterations.

Now, we are ready to prove the overall fniteness of
Algorithm 1. □

Theorem 5. Suppose Assumptions (A1)–(A4) hold, then for
any ε> 0 and δ > 0, Algorithm 1 stops at a point satisfying the
approximate stationarity condition

g
∗����
����≤ δ, (37)

with g∗ ∈ zG
ε f(xi) + ciz

G
ε F(xi).

Proof. For contradiction, assume that the approximate
stationarity condition (37) cannot be satisfed for an infnite
number of iterations. In other words, the termination
condition ‖g∗‖≤ δ in Step 4 is not satisfed for each iteration.
Terefore, Algorithm 1 is executed for infnitely many times.

It follows from Lemma 2 that the descent condition Algo-
rithm 1 is satisfed for each iteration. Let xi be the stability
center at the jth iteration through inner iteration, then
‖d

j

û
‖> θ and e(xi+1, ci+1)≤ e(xi, ci) + mv

j

û
, hence

e x
i+1

, ci+1􏼐 􏼑 − e x
1
, c1􏼐 􏼑≤m 􏽘

j

s�1
v

s
û. (38)

Since umax � (2‖gi
f + cig

i
F‖/rε) and θ � rδ(1/umax), it

follows that, if i is big enough,

θ �
r
2εδ

2 g
i
f + cig

i
F

�����

�����
≥

r
2εδ

2 Lf + ciLF

�����

�����
≥

r
2εδ

2 Lf + �cLF

�����

�����
, (39)

where c is the constant appeared in Lemma 3 and Lf and LF

are the locally Lipschitz constants of f and F on S1.
Terefore, ‖d

j

û
‖ is bounded away from zero. It follows from

z
j

û
≤ 0 that |v

j

û
|≥ (û/2)‖d

j

û
‖2. Hence, v

j

û
is bounded away

from zero as well. Terefore, by passing to the limit, we
obtain

lim
i⟶∞

e x
i+1

, ci+1􏼐 􏼑 − e x
1
, c1􏼐 􏼑≤ − ∞. (40)

Note that f is bounded from below as a consequence of
the semismoothness off and the compactness of the level set
S1 of f. By combining the fact f(xi+1)≤ e(xi+1, ci+1) and
(40), we obtain limi⟶∞f(xi+1) � − ∞, and f is un-
bounded, which leads to a contradiction. Hence, Algo-
rithm 1 cannot be executed for infnitely many times; it stops
at a point satisfying condition (37). □

5. Numerical Experiments

To assess practical performance of the presented method, we
coded Algorithm 1 in MATLAB and ran it on a PC with
1.80GHz CPU.
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5.1. Examples for Nonconvex Optimization Problems. In this
subsection, we frst introduce the nonconvex test problems.
We prefer a series of polynomial functions developed in [35],
also see [23, 36]. For each i � 1, 2, . . . , n, the function
hi: Rn⟶ R is defned by

hi(x) � 􏽘
n

j�1
xj + ix

2
i − 2xi􏼐 􏼑. (41)

Tere are four classes of test functions defned by hi in
[36] as objective functions. It has been proved in [23, 36] that
they are nonconvex, globally lower − C1, level coercive, and
bounded on compact X � B15(0). We use one of these test
functions to verify the validity and efciency of the proposed
method.

Example 1. Consider problem (1):

min
x∈Rn
 f(x),

s.t. F(x)≤ 0.
(42)

For objective function, we defne the nonconvex function

f(x) ≔ 􏽘
n

i�1
hi(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
‖x‖2, n � 4. (43)

For constraint function, we consider the pointwise
maximum of a fnite collection of quadratic functions:

F(x) � max F1(x), F2(x), F3(x), F4(x)􏼈 􏼉,

F1(x) � − x
2
1 − 27∗x1 − 2∗x

2
4 − 22∗x4 − 23∗x2 − 21∗x3 − x2 ∗ x2 + x3( 􏼁 − 9;

F2(x) � − x
2
1 − 28∗x1 − 2∗x

2
2 − 29∗x2 − x

2
4 − 21∗x4 − 21∗x3 − 3;

F3(x) � − 27∗ x1 − 22∗ x2 − 21∗x3 − 24∗x4 − x3 ∗ x2 + 2∗x3( 􏼁 − x
2
2 − 5;

F4(x) � − 22∗ x1 − 23∗ x2 − 31∗x3 − 22∗x4 − x1 ∗ x1 + x3( 􏼁 − x1 ∗x2 − x
2
3 − x

2
4 − 3.

(44)

For problem (1) with (43) and (44), we can obtain that
0 � min

F(x)≤ 0
f(x) and 0{ }⊆ argmin

F(x)≤ 0
f(x). Te results of nu-

merical experiment are as follows:

Te initial point: x0 � (3,3,3,3);
Optimal solution: xfinal � 1.0e − 03 × (0.63,0.50,

0.74,0.36);
Te fnal objective function value: ffinal � 0.0056;
Te fnal constraint function value: Ffinal � − 3.0051;
Te CPU time: 0.25 seconds.

Example 2. Consider problem (1):

min
x∈Rn
 f(x),

s.t. F(x)≤ 0.
(45)

For objective function, we defne the nonconvex function

f(x) ≔ 􏽘
n

i�1
hi(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
‖x‖2, n � 6. (46)

For constraint function, we consider the pointwise
maximum of a fnite collection of quadratic functions:

F(x) � max F1(x), F2(x)􏼈 􏼉,

F1(x) � − 37∗ x1 − 33∗ x2 − 41∗x3 − 32∗x4 − 33∗x5 − 36∗x6 − x2 ∗ x4 − x5 ∗ x6

− x1 ∗ x1 + 2∗x5( 􏼁 − x6 ∗ 3∗x2 + x5( 􏼁 − x4 ∗ x1 + x3 + x4( 􏼁

− x3 ∗ x2 + x5 + x6( 􏼁 − 19;

F2(x) � − 39∗ x1 − 52∗ x2 − 27∗x3 − 32∗x4 − 26∗x5 − 32∗x6 − x3 ∗ x4 + x6( 􏼁

− x2 ∗ x2 − x3 + 3∗ x5( 􏼁 − x4 ∗ 2∗x2 + 2∗ x5 + x6( 􏼁 − x1 ∗ x1 − x6( 􏼁

− x5 ∗ 2∗ x1 + x3 + x4( 􏼁 − 11.

(47)
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For problem (1) with (46) and (47), we can obtain that
0 � minF(x)≤0f(x) and 0{ }⊆argminF(x)≤0f(x). Te results of
the numerical experiment are as follows:

Te initial point: x0 � (1, 1, 1, 1, 1, 1);
Optimal solution: xfinal � 1.0e − 05 × (0.12, − 0.07,0.09,

− 0.02,0.00, − 0.02);
Te fnal objective function value: ffinal � 9.78e − 06;
Te fnal constraint function value: Ffinal � − 11.00;
Te CPU time: 15.47 seconds.

Te above two examples show that the proposed Algo-
rithm 1 does perform not badly since the optimal solutions
1.0e − 03 × (0.63, 0.50, 0.74, 0.36) and 1.0e − 05 × (0.12,

− 0.07, 0.09, − 0.02, 0.00, − 0.02) computed, respectively, by
Algorithm 1 are not far away from the true optimal solution to
problem (1).

6. Conclusion

For constrained nonconvex optimization problem, we
propose an implementable algorithm by combining bundle
ideas, proximal control, and exact penalty functions. Te
results extend the ideas of cutting plane and proximity
control to the constrained nonconvex case. We present some
techniques for choosing penalty coefcients which ensures
the limitation of penalty growth. Te penalty parameters are
increased only a fnite number of times which prevents the
algorithm from following closely the curvature boundary of
the constrained set. For weakly semismooth functions, the
convergence of the presented algorithm to an approximate
stationary point of the exact penalty function is proved
without any additional assumptions except for the condi-
tions of Slater constraint qualifcation and the boundedness
of the constrained set.
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