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Stock ranking prediction is an efective method for achieving a high investment return and plays a crucial role in investment
decisions. However, previous studies have overlooked the interconnections among stocks or have solely relied on predefned
graphs for stock relationship information. Te predefned graphs may not capture all possible relationships and may not be
suitable for describing dynamic relationships. To address these issues, we propose a Static-Dynamic hypergraph neural network
framework based on Residual Learning (SD-RL). Compared with traditional methods, SD-RL has the following advantages. (1)
Stocks are no longer treated as isolated entities; instead, their static and dynamic relationship information is taken into account.
(2) Leveraging the data-driven methodology, SD-RL autonomously learns both the static graph and dynamic hypergraph through
dedicated graph learning and hypergraph learning modules, respectively. (3) By employing residual learning, various latent
relationship information fows are mined, which enhances the stock embedding’s capacity to capture trends. Extensive ex-
periments on the real data verify the efectiveness of our proposed methods.

1. Introduction

Stock investment has evolved into a signifcant avenue for
generating personal or institutional profts. As of the frst
quarter of 2022, the total market capitalization of major
global stock markets has surpassed an astounding $105
trillion. Predicting stock market trends accurately is a for-
midable task due to the nonstationary nature and the high
volatility of the market. While the feasibility of precise
prediction remains controversial, decades of ongoing re-
search in stock market prediction have yielded impressive
results. To a certain extent, it suggests that the stock market
is predictable.

Stock data are typically in time series format, which can
be analyzed by various methods such as autoregressive
models, recurrent neural networks (RNNs) [1, 2], and
transformer [3]. Tese methods have achieved successful
applications in trend prediction within the fnancial domain.
However, many previous studies that rely on neural network
methods frequently treat the prediction problem as an
isolated fnancial time series, which overlooked the intricate

relationships between stocks. Recent research has demon-
strated that the spatial dimension underlying time series data
in fnancial markets, which represents the relational in-
formation among stocks, signifcantly impacts the accuracy
of predictive models [4–6]. Tere are two main types of
relationships among the stocks: static relationships that
remain stable over extended periods and dynamic re-
lationships that continually evolve over short time frames.
For instance, the relationship between an upstream com-
pany and a downstream company in a supply chain is a static
relationship. On the other hand, dynamic relationships may
emerge due to unforeseen events, such as emergencies, and
disappear as the situation resolves. Graph neural networks
(GNNs) are extensively employedmodels [7, 8] for modeling
these relationships. It uses an adjacency matrix to illustrate
the correlations between pairs of stocks.Te nodes and edges
in the graph represent stocks and their relationships, re-
spectively. Te infuence between each pair of stocks can be
captured by node representation learning. However, stock
price movements can also be infuenced by synergistic
factors in real stock markets, such as industry-specifc
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policies or common suppliers among companies. Tese
synergistic relationships naturally group stocks together,
which extends beyond individual pairs. Te graphs of GNNs
may not be sufcient to describe these complex relationships
between stocks.

As a natural extension of GNNs, the hypergraph neural
networks (HGNNs) introduce an incidence matrix to
construct a relational representation of stock groups [9, 10].
Te incidence matrix is indexed using hyperedges for col-
umns and stocks (nodes) for rows. Within a hypergraph,
a stock (node) can be afliated with multiple hyperedges,
signifying that this stock possesses multiple attributes.
Similarly, a hyperedge can encompass multiple stocks
(nodes), indicating that the stocks sharing the same
hyperedge have the same properties. In contrast to GNNs,
HGNNs excel in capturing a broader spectrum of synergy
information. However, due to the complexity of the in-
teraction among stocks, there are still two major challenges
in this application:

(1) Te construction of the adjacency matrix for the
graph and the incidence matrix for the hypergraph
relies on preexisting information. It can potentially
lead to the omission of certain valuable relationships.
Consequently, this approach may not be well suited
for capturing dynamic relationships among stocks.
As shown in Figure 1, the stock 300750.SZ is the
leading lithium battery manufacturer. Te other two
stocks 300343.SZ and 603993.SH are two upstream
companies in its supply chain. Te price movements
of the stock 300750.SZ and the stock 603993.SH
exhibited a high degree of similarity during the time
period before the marked red box, which attributed
to the latter serving as a raw material supplier for the
former. After the marked red box, all three com-
panies’ stock prices displayed similar fuctuations
because stock 300343.SZ had become a signifcant
component of the supply chain for 300750.SZ. If
prior information is artifcially provided, there is
a risk that stock 300343.SZ might not be considered
in the stock prediction for 300750.SZ.Tis highlights
the limitations of relying solely on predetermined
relationships and the importance of adapting to
evolving dynamics in stock markets.

(2) Previous methods have segregated the utilization of
GNNs and HGNNs. Te former excels at capturing
pairwise relationships, while the latter shines in
capturing synergistic relationships. However, these
two signifcant advantages provided by each model
have not been combined yet.

To tackle the aforementioned challenges, we propose
a static-dynamic hypergraph neural network based on re-
sidual learning framework for the stock recommendation,
abbreviated as SD-RL. Te overall SD-RL framework is il-
lustrated in Figure 2. Specifcally, we break down fnancial
time series data along two dimensions: time and space. In the
time dimension, we begin by feeding historical data for each
stock into the GRU network. We employ an attention

mechanism to discern the varying signifcance of diferent
trading days. Concurrently, this network capture sequential
dependencies and acquire sequential embeddings of stocks.
Within the space dimension, we incorporate residual
learning to uncover latent relationship information [11]. We
employed a data-driven approach to learn both the inherent
static relationships between stocks and the time-evolving
dynamic relationships through the graph learning module
and the hypergraph learning module, respectively. Ulti-
mately, the prediction module amalgamated these latent
relationship information streams derived from multiple
modules (static graph and dynamic hypergraph modules) to
forecast stock trends and pinpoint stocks with promising
potential. In summary, our primary contributions can be
summarized as follows:

(1) An end-to-end framework with automatic learning
graph structures is proposed for modeling fnancial
time series data and stock recommendations. Te
proposed framework is more general than existing
spatiotemporal graph neural networks because it can
handle the fnancial time series without a predefned
graph structure.

(2) Te inherent static graph structure is learned in
a data-driven manner. An efcient hypergraph
generation algorithm is proposed to capture the
dynamic relationship of stocks evolving over time.
Te prediction module fuses multiple relationship
information fows and realizes the
recommendation task.

(3) Evaluation experiments of the proposed framework
have been conducted on two real-market datasets.
Te results demonstrate the efectiveness and ra-
tionality of our approach.

Te remainder of this paper is organized as follows. In
Section 2, we review the related work and highlight the
unresolved problem. Section 3 presents the technical details
of the proposed framework. Experimental setups are de-
scribed in Section 4. Section 5 concludes this study and
outlines future research directions.

2. Related Work

Tis section provides a review of traditional stock fore-
casting methods and the existing literature on graph neural
networks. Hypergraph learning is also briefy discussed.

In the feld of academic research on stock forecasting,
two main types of methods have been explored: statistical
methods and machine learning methods. Statistical models,
like the autoregressive moving average model, the autore-
gressive integrated moving average model, and its variants,
have been used to forecast moving average stock prices.
However, these early works relied on handcrafted features,
which frequently led to predictions lagging behind the actual
price movements. In recent years, machine learning algo-
rithms such as logistic regression (LR) and support vector
machine (SVM) have shown promising advancements in
stock forecasting. With the continuous enhancement of
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computing power, various deep learning techniques have
been applied to stock market forecasting. Nelson et al. [12]
utilized the long short-term memory (LSTM) network to
predict future stock trends by incorporating historical prices
and technical indicators. Shen et al. [13] employed a gated
recurrent unit (GRU) network and replaced its traditional
output layer with support vector machine (SVM). Feng et al.
[14] introduced an adversarial attention LSTM approach,
which utilized adversarial training to simulate the sto-
chasticity in the model training process. It enhanced the
stock movement prediction. Zhang et al. [15] presented
a method based on state frequency memory (SFM) to de-
compose the hidden state of LSTM memory cells into
multiple frequency components for identifying multifre-
quency trading patterns. Lin et al. [16] introduced a tem-
poral routing adapter (TRA) based on an optimal transfer
algorithm, enabling the learning of multiple trading patterns

in the stock market data to further enhance stock forecasting
performance. Additionally, the transformer architecture
proposed by Ding et al. [3] combined multiscale Gaussian
priors with a self-attention mechanism to model temporal
context information, and it had demonstrated remarkable
results in stock trend prediction.

Traditional stock forecasting methods frequently fall
short in leveraging the intricate interplay among stocks.
Chen et al. [17] innovatively established networks of
interconnected companies based on real-market investment
events. Ten, they enhanced the relationship between stocks
through graph convolutional neural networks, resulting in
more precise prediction outcomes. Based on this, Feng et al.
[4] framed stock prediction as a ranking task. Tey pro-
fciently addressed the interplay among distinct stocks by
aggregating company metadata and encoding time-sensitive
stock relationships. Similarly, Xu et al. [18] harnessed graph-
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Figure 1: Price volatility patterns of target stocks and related stocks in China’s A-share market.
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based techniques to model pairwise relations among stocks
by utilizing sector industry metadata and key business
data of companies. Additionally, Cheng et al. [19] me-
ticulously crafted a heterogeneous graph by amalgamating
events, news, relationships, and market data within
a knowledge graph. Tis multimodal input fusion sig-
nifcantly bolstered the fnancial prediction capabilities of
the model. However, one limitation of the graph-based
methods is their reliance on prior knowledge for con-
structing static relationships. To address this constraint,
various endeavors have been made to uncover hidden
relationships in graphs [20, 21].

In recent times, hypergraph learning has witnessed sub-
stantial advancements in addressing problems, which involve
relationships among data extending beyond pairwise in-
teractions. Applications span diverse domains, including visual
object recognition [22], trafc prediction [23], recommender
systems [24], and social networks [25]. In the context of stock
recommendation tasks, the utilization of hypergraphs involves
categorizing stocks into multiple groups and refning their
representations. Sawhney et al. [5] introduced a spatiotemporal
hypergraph convolutional network (STHGCN) based on the
predefned industrial relationships.Tis innovative method
combined gated temporal convolution with hypergraph
convolution in the spectral domain. It enabled capturing
the evolution of stock prices and relationships in a spa-
tiotemporal-aware manner. To further enhance the prop-
agation of hypergraph information, Cui et al. [26] put forth
a hypergraph triple attention network for stock trend
prediction based on the foundation of STHGCN. Tis
method augmented stock trend prediction by explicitly
modeling group industry afliations among stocks through
a hypergraph attention module. Moreover, Li et al. [27]
presented a reinforcement learning approach grounded in
hypergraph-based methods for stock portfolio selection.
Tis technique enhanced investment selection by in-
corporating a hypergraph attention module to represent
industry afliations efectively among stocks.

Based on the research mentioned earlier, it becomes evi-
dent that the majority of existing graph-based or hypergraph-
based deep learning methods necessitate the incorporation of
domain-specifc prior knowledge. However, the construction
of these models heavily relies on resource-intensive strategies
for acquiring relations. Additionally, a limitation of existing
hypergraph neural networks is their lack of specialization for
temporal learning involving time-evolving features, such as
daily stock prices. Hence, in this paper, we adopt a data-driven
approach to learn the inherent static connections among stocks
and design an efcient hypergraph construction algorithm to
capture the evolving dynamic relationships over time. As
a result, we achieve the recommendation task by integrating
information fows from both static and dynamic time series
sources.

3. Framework

In this section, we present a static-dynamic hypergraph
neural network framework based on residual learning for
end-to-end stock recommendation. As shown in Figure 2,

this framework comprises three parts: feature extraction,
residual learning, and ranking and optimizations.

3.1. Problem Formulation. Let a stock set S � s1, s2, . . . , sN􏼈 􏼉

denote N individual stocks. We collect the historical price
records of each stock in the past L days Χ ∈ RN×L×F.
Each stock can be represented as Χi �

[xi1, x
i
2, . . . , xiL], si ∈ S􏼈 􏼉 ∈ RL×F, where xit ∈ R

F is the set of
price features of stock si on the t-th trading day, and F is the
number of original features (such as opening price, closing
price, highest price, and lowest price).

We formulate stock recommendation as a learning-
to-rank problem. Te true ranking score is defned as the
magnitude of a stock’s rise and fall yt+1

i � (ct+1
i − ct

i)/c
t
i ,

where ct
i is the closing price of the stock si on trading day t.

Given Χt ∈ RN×F, the purpose of our model is to learn
a function f(Χt,Θ), which maps Χt to the ranking scores,
and get a score ranking list 􏽢yt+1 � 􏽢yt+1

1 , 􏽢yt+1
2 , · · · , 􏽢yt+1

N􏼈 􏼉,
whereΘ are the parameters of themodel. It recommends top
N stocks to investors.

3.2. Temporal Feature Extraction. Historical stock price data
have demonstrated their efcacy in forecasting future stock
price trends [28]. To capture the time series evolution
characteristics of individual stocks, we employ the Attentive
GRU model. Te Attentive GRU comprises two essential
components: the GRU layer and the temporal attention
mechanism. In contrast to conventional RNN models, this
confguration excels in capturing long-range dependencies
while maintaining a concise structure.

3.2.1. GRU Layer. For each stock (take stock si as an ex-
ample), the GRU Layer is used to map
[xi1, xi2, . . . , xiL] ∈ RL×F to [hi1, h

i
2, . . . , hiL] ∈ RL×Fh , where Fh

is the dimension of the hidden representations.

3.2.2. Temporal Attention Layer. Te attention mechanism
is widely employed in various sequence learning problems
[3, 14]. Over the last L trading days, the hidden represen-
tations of diferent time steps have varying degrees of in-
fuence on the overall hidden representations of the sequence.
As a result, we utilize the attention mechanism to combine
the hidden representations at diferent time steps in the
following manner:

􏽥hit � 􏽘
L

t�1
αi

th
i
t,

αi
t �

expsim hit ,h
i
L( )

􏽐
L
m�1 exp

sim him,hiL( )
,

sim hit,h
i
L􏼐 􏼑 � Wkh

i
t􏼐 􏼑

T
Wqh

i
L􏼐 􏼑,

(1)

where Wk and Wq ∈ RFh×Fh are parameters to be learned.
Finally, the overall hidden representations of N stocks in the
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past L days 􏽥h1t ,
􏽥h2t , . . . ,

􏽦hNt are obtained. 􏽥ht is a matrix of the
overall hidden representations of N stocks, which represents
the current state of each company under the movement of
the stock price, Xt,h � 􏽥ht, 􏽥ht∈ RN×Fh.

3.3. Static Graph Module

3.3.1. Static Graph Learning. Te graph module can be seen
as a connecting bridge for associating stocks in both tem-
poral and spatial dimensions. Prior research has empirically
demonstrated that static graphs learned through graph
learning methods outperform predefned graphs [29].
Motivated by this, we aim to leverage graph learning
methods to acquire static stock graphs. Tis process can be
described as follows:

M1 � tan h αE1θ1( 􏼁,

M2 � tan h αE2θ2( 􏼁,

A � φ M1M
T
2􏼐 􏼑 � LeakyReLU tan h α M1M

T
2􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(2)

where A is the adjacency matrix of the static graph;
Ei ∈ RN×Fe represents the randomly initialized stock em-
beddings; θi ∈ RFe×Fe are learnable parameters; tan h and
LeakyReLU are activation functions; and α is a hyper-
parameter for controlling the saturation rate of the activa-
tion function.

Because companies with diferent market capitalization
have diferent impacts on the market, static stock relations
should be asymmetric. We retain the positive relations
among the learned static relations to get the adjacency
matrix A+.

C � A + AT
+ I,

A
+
ij �

Aij, Cij⩾0,

0, otherwise.
􏼨

(3)

3.3.2. Static Graph Convolution. To ensure that the stock
nodes preserve their original information during the in-
formation propagation process, we retain a portion of the
original hidden state of the stock time series, which is il-
lustrated as follows:

Xl+1
t,s � λXl

t,s +(1 − λ)D− 1A+Xl
t,s􏼐 􏼑Ws, (4)

where Xl
t,s ∈ R

N×Fh represents the input of the lth static
graph convolution layer at time step t; X0

t,s � Xt,h;
A+

� A+ + I; Dii � 􏽐
N
j�0A

+

ij ;D is degree diagonal matrix; and
Ws ∈ RFh×Fh is a learnable parameter matrix.

We feed the output of static graph convolution Xl+1
t,s

into two fully connected layers with LeakyReLU activa-
tion functions σ(·) to generate backcast Xb

t,s and
forecast Yf

t,s:

Xb
t,s � σ Xl+1

t,s W
b
s􏼐 􏼑,

Yf
t,s � σ Xl+1

t,s W
f
s􏼐 􏼑,

(5)

where Wb
s and Wf

s are parameters to be learned.

3.4. Dynamic Hypergraph Module

3.4.1. Hypergraph. To model the stock market hypergraph
G � (V,E,W), we regard each stock as a node. Each
hyperedge e ∈ E represents a subset of related stocks
s1, s2, . . . , sk􏼈 􏼉 ∈ S. Each hyperedge is assigned to a positive
weight in the hyperedge set. All weights are stored in the
diagonal matrix W ∈ R|E|×|E|, and the initial weight of
matrix is one, which means that each hyperedge is treated
equally. It has been proved in [30] that a hypergraph de-
generates into an ordinary graph if and only if each
hyperedge is associated with two vertices.

3.4.2. Incidence Matrix. Te incidence matrix in hypergraph
theory reveals the relationship between hypergraph vertices
and hyperedges. For an undirected hypergraph incidence
matrix with no isolated points H ∈ R|V|×|E|, it is defned as:

Hij �
1, vi ∈ ej,

0, vi ∉ ej.

⎧⎨

⎩ (6)

For a vertex in a hypergraph, its degree is defned as the
sum of all hyperedge weights associated with the vertex:

Dii � 􏽘

|E|

i�1
WeeHie. (7)

Similarly, the degree of a hyperedge is defned as:

Bee � 􏽘

|V|

i�1
Hie, (8)

where D ∈ R|V|×|V| and B ∈ R|E|×|E| are both diagonal
matrices.

3.4.3. Dynamic Hypergraph Construction. Dynamic hyper-
graphs are devised to unveil additional information con-
cealed within static graphs. Notably, there are abundant
signals in the temporal price movements of related stocks. By
drawing inspiration from [18], we employ a residual ar-
chitecture to extract the information fow of each stock after
fltering out the static relationships.

As shown in Figure 3 (left frame), we initialize the
hypergraph structure with the input feature embedding
Xt,h − Xb

t,s. Dynamic hypergraphs are created through the
following steps. We start with N hyperedges, where each
hyperedge “e” is initialized with the feature embeddings of its
corresponding nodes “v.” Subsequently, each node identifes
the hyperedge closest to itself, excluding the hyperedge ini-
tialized with its own feature embedding. Following that, each
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node is incorporated into the closest hyperedge, potentially
leading to the removal of hyperedges which did not contain
any nodes. For those hyperedges that persist after this process,
the nodes used in their initialization are also added to them.
Lastly, it is worth noting that among these N nodes, some
nodes join a single hyperedge while others join two hyper-
edges (the ones whose initialization hyperedges have not been
deleted). For nodes joining two hyperedges, we employ the k-
nearest neighbor algorithm to fnd the k closest nodes to form
a new hyperedge. Te hyperedge set is dynamically adjusted
when the feature embeddings evolve with the network going
deeper. In our proposed method, the incidence matrix
Ηdynamic is obtained through the dynamic hypergraph con-
struction algorithm. Te entire process of dynamic hyper-
graph construction is shown in Algorithm 1.

3.4.4. Hypergraph Convolution. Hypergraph convolution is
rooted in spatial domain graph theory, which conceptualizes
hypergraph learning as a process of information exchange
among interconnected nodes with neighbor relationships
[10]. Te input of the lth hypergraph convolution layer is the
feature embedding Xl

t,d, X0
t,d � Xt,h − Xb

t,s. As shown in
Figure 3 (right frame), the hypergraph spatial domain
convolution updates the feature Xl

t,d to a new feature Xl+1
t,d .

Tis closed-loop message-passing cycle mechanism involves
two-stage directed message fow propagation, which can be
described in matrix form as follows.

Te frst stage: Yl
t,d � WB− 1H⊤Xl

t,d represents the ag-
gregation of each node feature Xl

t,d ∈ R
N×Fh into hyperedge

feature Yl
t,d ∈ R

N×Fh .
Te second stage: Xl+1

t,d � σ(D− 1HYl
t,dΘ) indicates that

each vertex updates its features by aggregating hyperedge
features. Also, σ(·) indicates the activation function.
Terefore, the entire update rule of hypergraph convolution
is obtained as follows:

Xl+1
t,d � LeakyReLU D− 1HWB− 1HTXl

t,dΘ􏼐 􏼑, (9)

where Θ is a learnable parameter matrix; LeakyReLU is
a rectifed linear unit activation function; and D, B, H, and
W have been defned in Sections 3.4.1 and 3.4.2. We set
W � I, H � Hdynamic.

Similar to the static graph module, the dynamic
hypergraph module also has two output branches, i.e.,
backcast Xb

t,d and forecast Yf
t,d:

Xb
t,d � σ Xl+1

t,d W
b
d􏼐 􏼑,

Yf
t,d � σ Xl+1

t,d W
f
d􏼐 􏼑,

(10)

where Wb
d and Wf

d are learnable parameter matrices.
To mitigate the impact of both static and dynamic re-

lationships, we introduce an independent module for cap-
turing individual stock time series information. Wf

i is
a learnable parameter matrix.

Xt,i � Xt,h − Xb
t,s − Xb

t,d,

Yf
t,i � σ Xt,iW

f
i􏼐 􏼑.

(11)

3.5.Learning toRankandNetworkOptimization. We sum up
three diferent stock representations Yf

t,s, Y
f
t,d, and Yf

t,i as
Yt � Yf

t,s + Yf
t,d + Yf

t,i and feed Yt into a fully connected (FC)
layer to predict ranking 􏽢yt+1:

􏽢yt+1 � FC Yt( 􏼁

� FC Yf
t,s + Yf

t,d + Yf
t,i􏽨 􏽩􏼐 􏼑.

(12)

A combination of pointwise regression loss and pairwise
rank-aware loss is used to optimize SD-RL:

L � 􏽢yt+1 − yt+1
����

����
2

+ β􏽘
N

i�0
􏽘

N

j�0
max 0, − 􏽢y

t+1
i − 􏽢y

t+1
j􏼐 􏼑 y

t+1
i − y

t+1
j􏼐 􏼑􏼐 􏼑,

(13)

where yt+1 is the true value and β is a hyperparameter to
balance the two loss terms. Te former of the loss function
minimizes the diference between the predicted ranking and
the true ranking.Te latter encourages the predicted ranking
of a stock pair to have the same relative order as the true
ranking.

4. Experiments

In this section, the details of the dataset, training settings,
and experimental evaluation metrics are provided. Sub-
sequently, a series of experiments are conducted and the
results verify the efectiveness of the proposed SD-RL
method.

4.1. Dataset and Training Settings

4.1.1. CSI 300 and CSI 100 [18]. Te CSI 300 consists of the
most representative 300 stocks in Shanghai and Shenzhen
A-shares. Te CSI 100 is made up of the 100 largest stocks
in the CSI 300 stock set. We utilized the most recent 60-
day raw data of these stocks, including opening prices,
highest prices, lowest prices, closing prices, trading vol-
umes, and volume-weighted average prices. Te stock data
from the CSI 300 and CSI 100 were collected from 01/01/
2007 to 12/31/2020. We then divided this dataset into
training, validation, and test sets in chronological order.
Our model was trained, and its parameters were fne-
tuned until it achieved the best performance on the
validation set. We conducted each experiment fve times
and computed the average model performance on the test
set to ensure robust results.

4.1.2. NASDAQ and NYSE [4]. Considering the inherent
volatility of fnancial markets, we conducted additional
experiments to assess the robustness of our model across
diferent market conditions. For this purpose, we utilized
two publicly available stock datasets created in [4], where the
authors compiled price records for 1026 NASDAQ and 1737
NYSE stocks spanning from 01/02/2013 to 12/08/2017. For
both datasets, only the information of stock industry-
belonging relationships is provided.
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4.1.3. Training Settings. For our proposed framework, we
employed the Adam optimizer to fne-tune parameters and
set the initial learning rate at 0.0002. Here are the specifc
parameter ranges used in our experiments: the hidden state
size of GRU within (32, 64, 128), the embedding size of the
static graph module within (32, 64, 128), the ranges of
saturation rate α from 0.5 to 3, the ranges of parameter λ
from 0 to 0.6, the ranges of parameter k in the k nearest
neighbor algorithm from 2 to 16, and the ranges of β from
0.1 to 2. Te models were implemented using the PyTorch
framework, and we conducted a grid search to determine the
optimal hyperparameters.

4.2. Evaluation. We assessed the efectiveness of our ap-
proach in terms of the ranking performance. Building upon
prior research [18], we evaluated the prediction results using
two commonly used metrics: Information Coefcient (IC)
and Rank IC, which are defned as follows:

IC yt, 􏽢yt􏼐 􏼑 � corr yt, 􏽢yt􏼐 􏼑,

RankIC yt, 􏽢yt􏼐 􏼑 � corr rankyt , rank􏽢y
t􏼒 􏼓,

(14)

where corr(·) is the Pearson correlation coefcient and
rankyt and rank􏽢y

t are the labels and predicted rankings from
high to low, respectively. In addition, we also use another
metric Precision@N to evaluate the accuracy of the top N
predictions of the model. Assuming N equals 10, 5 labels out
of the top 10 predictions are positive. Precision@10 equals
50%. In order to compare with existing research, we also set
N to 3, 5, 10, and 30 to evaluate the models.

4.3. Experimental Results and Analysis. To validate the su-
perior ranking performance of SD-RL, we conducted
a comparative analysis against several existing baseline
models. Tese baseline models include the following.
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Figure 3: Te illustration of hypergraph construction and hypergraph convolution. In the process of hypergraph construction, we follow the
following steps. Initially, each node search for its nearest neighbor, which is marked as a star node in the fgure. For the sake of clarity in our
illustration, we depict two-star nodes in the fgure, representing the closest points among the surrounding nodes. Tese star nodes are enclosed
within blue dotted lines, efectively forming hyperedges. Next, we treat the star node as the central node and create a hyperedge by applying the
k-nearest neighbor algorithm. Te connection is denoted by a red dotted line (in the fgure, it is indicated as 2-nn).

Input: Input embedding X; Nearest neighbor parameter k
Output: Hyperedge set E; Te set of vertices possessed by a hyperedge e pos(e)
Function: K-nearest neighborhood selection knn; Distance function dis; Smallest distance index selection topK

(1) for u in range (len (X)) do
(2) D� dis (X (u), X)
(3) D� sort (D)
(4) ind� topK (D, 2)-topK (D, 1)
(5) E. insert (ind)
(6) pos (ind). insert (u)
(7) end for
(8) for e in E do
(9) ve � knn (X[e], X, k)
(10) pos (e). insert (ve)
(11) end for

ALGORITHM 1: Dynamic hypergraph construction.
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4.3.1. SFM [15]. It is a variant of the LSTM network that
decomposes the hidden state of the LSTM storage unit into
multiple frequency components, efectively memorizing
time series information of diferent frequencies.

4.3.2. ALSTM [14]. It is a variant of the LSTM network with
better generalization ability, which uses increased adversa-
rial training to simulate the randomness in the model
training process.

4.3.3. ALSTM+TRA [16]. It is an extension of ALSTM that
leverages a temporal routing adapter (TRA) to learnmultiple
trading patterns in stock market data.

4.3.4. Transformer [3]. It is a stock trend prediction model
based on the transformer architecture, which integrates
a multiscale Gaussian prior with a self-attention mechanism
to model temporal context information.

4.3.5. GATs [8]. It is a variant of graph convol-
utional networks that aggregates time series feature
embeddings extracted by a GRU network using an at-
tention mechanism.

4.3.6. HIST [18]. It is a graph-based neural network that
extracts concept-oriented shared information to forecast
stock trends.

Table 1 presents a summary of the ranking perfor-
mance achieved by various methods across diferent
values of N. Notably, ALSTM+TRA outperforme other
models in terms of both IC and Rank IC metrics among
those models that do not integrate relational information.
Hence, when assessing these metrics with nonrelational
models, we solely compare our model’s results with the
ALSTM+TRA model. Furthermore, within the domain of
graph-based models, HIST showcases superior perfor-
mance compared to GATs and other baseline models that
do not integrate relational information. It is worth em-
phasizing that, while HIST relies on a predefned graph
structure, our approach SD-RL excells by profciently
capturing both static and dynamic relationships through
a data-driven methodology. Tis results in signifcantly
improved performance across multiple metrics. To be
more precise, on the CSI 100 datasets, SD-RL outperforms
the second-place model by an average margin of nearly
3.3% and 2.50% in terms of IC and Rank IC, respectively.

Furthermore, we continue our experiments on the
NASDAQ and NYSE stock datasets. Table 2 shows the
ranking performance of diferent methods. It is noteworthy
that the overall performance of all models in the A-share
market surpass that in the US stock market. Tis diference in
performance could be attributed to the relatively shorter data
period covered by the US stock dataset and the larger number
of stocks it comprised. Our model achieves promising pre-
diction results, consistently standing at the top two positions
in most evaluation metrics. It can be found that the

performance of graph-based models have signifcantly im-
proved by leveraging the relationship information. In addi-
tion, we also fnd that HIST achieves signifcantly better
results on the NYSE stock datasets than NASDAQ, which
could be attributed to the fact that HIST defnes the static
relationships at the beginning (leveraging the prior in-
formation of industry relationships). Industry relationships
refect more of long-term correlations between stocks, and
NASDAQ is more susceptible to short-term factors. However,
the variation of our model on these two datasets is relatively
small. It could be attributed to the fact that our model learns
the static-dynamic (long and short term) relationships be-
tween stocks over time in a data-driven manner.

4.4. Model Component Ablation Study. To investigate the
contributions of diferent components in SD-RL, three
variants of SD-RL were designed, namely, “GRU+Attn,”
“GRU+Attn + Sta,” and “GRU+Attn + Sta +Dy.”

(i) GRU+Attn: Only the temporal feature extraction
module in SD-RL is retained. It is used to verify the
impact of adding a temporal attention layer to the
GRU neural network.

(ii) GRU+Attn + Sta: Only the temporal feature ex-
traction module and static graph module in SD-RL
are retained. It is used to verify the impact of the
static graph module in improving performance.

(iii) GRU+Attn + Sta +Dy: Te temporal feature ex-
traction module, static graph module, and dynamic
hypergraph module in SD-RL are retained. It is used
to verify the impact of integrating the two in-
formation fows from the static graph and dynamic
hypergraph.

(iv) GRU+Attn + Sta +Dy + Ind: the complete model
(SD-RL) is used to verify the impact of combining
the three types of information fows from static
graph, dynamic hypergraph, and individual stock
time series information.

Table 3 compares the performance between SD-RL and
the variant methods. It is evident that SD-RL without any
relational information (GRU+Attn) yields the least favor-
able results, underscoring the value of considering in-
terrelations among stocks. Additionally, we observe that the
model which integrates both static and dynamic relationship
information (GRU+Attn + Sta +Dy) outperforms the one
that solely focuses on static relationships (GRU+Attn + Sta).
Tis afrms the signifcance of both static and dynamic
relationships, highlighting that neither of them should be
disregarded. Notably, SD-RL (GRU+Attn + Sta +Dy + Ind)
attains the most favorable outcomes, providing further
validation that amalgamating the output information from
distinct modules enhances the capacity of feature embedding
to capture trends.

4.5. Visualization of Embeddings. To further validate the
efcacy of our proposed model, we employt-distributed
stochastic neighborhood embedding (t-SNE) [31] to
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project two types of stock embeddings into a 2D space: one
originating from the GRU and the other from our method.
Figure 4 shows these two types of embeddings from 100
stocks in the CSI 100 dataset. Stocks belonging to the
banking and brewing industries are highlighted with bright
colors. Stock embeddings in the same industry should be as
similar as possible. To achieve this, we circle the labeled
stocks (depicted as dots) belonging to the same industry,
with the circle’s size serving as an indicator of the clustering
degree of the stock embeddings. Smaller circles indicate
a higher level of aggregation. Tis observation showes that
compared with GRU embeddings, the stock embeddings
within the same industry in SD-RL are signifcantly more

clustered (circles are smaller), and the embeddings of stocks
in diferent industries are more dispersed. Te above results
show that our method is more efective in capturing and
preserving the correlation among stocks in the same in-
dustry, and the learned stock embeddings are more dis-
criminative. In addition, we also notice that BYD (a new
energy vehicle company) is an isolated point in GRU em-
bedding, while there is a relatively close spatial projection
distance between the embedding of BYD stock and the
embedding of Huaneng Power (an energy company) stock in
SD-RL. Tis also confrmes the ability of our proposed
method to capture hidden relationships between diferent
companies.

Table 1: Ranking performance of diferent methods on the China’s A-share dataset when considering diferent numbers of N.

Model
CSI 100 CSI 300

IC (↑) Rank IC (↑)
Precision@N (↑)

IC (↑) Rank IC (↑)
Precision@N (↑)

Top3 Top5 Top10 Top30 Top3 Top5 Top10 Top30
MLP 0.071 0.067 56.53 56.17 55.49 53.55 0.082 0.079 57.21 57.10 56.75 55.56
SFM 0.081 0.074 57.79 56.96 55.92 53.88 0.102 0.096 59.84 58.28 57.89 56.82
GRU 0.103 0.097 59.97 58.99 58.37 55.09 0.113 0.108 59.95 59.28 58.59 57.43
LSTM 0.097 0.091 60.12 59.49 59.04 54.77 0.104 0.098 59.51 59.27 58.40 56.98
ALSTM 0.102 0.097 60.79 59.76 58.13 55.00 0.115 0.109 59.51 59.33 58.92 57.47
Transformer 0.089 0.090 59.62 59.20 57.94 54.80 0.106 0.104 60.76 60.06 59.48 57.71
ALSTM+TRA 0.107 0.102 60.27 59.09 57.66 55.16 0.119 0.112 60.45 59.52 59.16 58.24
GATs 0.096 0.090 59.17 58.71 57.48 54.59 0.111 0.105 60.49 59.96 59.02 57.41
HIST 0.120 0.115 61.87 60.82 59.38 56.04 0.131 0.12 61.60 61.08 60.51 58.79
SD-RL 0.124 0.118  2.8  2.07  0.05 5 .28 0.131 0.125  2.39  1.70  0.84 58.83
Te best result in terms of each metric is indicated in bold.

Table 2: Ranking performance of diferent methods on the NASDAQ and NYSE datasets when considering diferent numbers of N.

Model
NASDAQ NYSE

IC (↑) Rank IC (↑)
Precision@N (↑)

IC (↑) Rank IC (↑)
Precision@N (↑)

Top3 Top5 Top10 Top30 Top3 Top5 Top10 Top30
MLP 0.023 0.015 49.45 48.43 46.32 44.16 0.021 0.013 49.04 47.72 47.93 45.28
SFM 0.027 0.022 51.19 50.42 50.21 49.92 0.024 0.024 51.19 51.05 50.22 49.57
GRU 0.031 0.029 52.74 51.86 50.43 50.13 0.031 0.028 52.17 51.47 51.44 50.93
LSTM 0.030 0.027 51.65 51.22 50.73 50.18 0.030 0.027 51.75 51.52 50.89 50.48
ALSTM 0.036 0.034 53.79 52.03 51.98 51.39 0.036 0.035 53.03 52.33 50.71 50.30
Transformer 0.029 0.026 51.58 51.19 50.30 50.08 0.030 0.027 52.02 51.17 50.63 50.19
ALSTM+TRA 0.040 0.040 54.02 53.49 53.41 52.86 0.039 0.038 53.95 53.52 52.96 52.24
GATs 0.038 0.037 53.87 53.21 52.48 52.09 0.038 0.038 53.87 53.62 52.89 51.72
HIST 0.042 0.041 54.71 54.15 53.43 53.02 0.047 0.045 55.14 55.08 54.81 53.97
SD-RL 0.044 0.044 55.28 55.34 54.85 54.43 0.047 0.04 55. 8 55.41 54.84 53.83
Te best result in terms of each metric is indicated in bold.

Table 3: Te results of ablation study.

Model
CSI 100 CSI 300

IC (↑) Rank IC (↑)
Precision@N (↑)

IC (↑) Rank IC (↑)
Precision@N (↑)

Top3 Top5 Top10 Top30 Top3 Top5 Top10 Top30
GRU+Attn 0.106 0.100 60.02 59.31 58.36 55.25 0.114 0.108 60.51 59.72 58.67 57.52
GRU+Attn + Sta 0.115 0.108 60.46 60.30 58.75 55.49 0.116 0.111 60.88 59.79 58.90 57.62
GRU+Attn + Sta +Dy 0.120 0.113 60.82 60.99 59.01 55.78 0.122 0.117 61.67 60.89 60.16 58.13
SD-RL 0.124 0.118  2.8  2.07  0.05 5 .28 0.131 0.125  2.39  1.70  0.84 58.83
Te best result in terms of each metric is indicated in bold.
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4.6. Hyperparameter Analysis. To investigate the perfor-
mance of SD-RL with diferent hyperparameter values, we
maintain the default settings mentioned in Section 4.1 while
varying a single hyperparameter at a time. Figures 5(a) and
5(b) illustrate the impact of “k” (the knn algorithm in the
dynamic hypergraph construction module) on performance.
Te results reveal a pattern of improvement followed by
degradation. Te optimal results are achieved when “k” = 8.
If “k” is excessively large or small, it diminishes the capacity
to represent stock embedding trends, resulting in less dis-
criminative learned stock embeddings.

5. Conclusions

It is a challenging but highly valuable task to recommend
stocks by predicting the daily ranking of stock price
changes. In this paper, we propose a static-dynamic
hypergraph neural network framework based on re-
sidual learning to predict the ranking of stocks.Te SD-RL
framework ofers signifcant advantages in modeling high-
order data correlations and uncovering latent relationship
information. Te efectiveness of our proposed model is
validated on two real-world market datasets. First, we

compare the prediction performance of our model against
various baseline models to assess its feasibility. Second, we
construct and analyze three diferent variants of the
SD-RL model to understand the infuence of each com-
ponent. Tird, the feature embeddings of SD-RL and the
GRU network are visually represented in a two-
dimensional space. Additionally, we investigate the im-
pact of various hyperparameter values on model perfor-
mance. Experimental results indicate that our proposed
approach is more practical and well suited for the real-
world applications compared to the existing methods. It
equips investors with the crucial information to make
proftable investment decisions. Furthermore, our model
can extend its applicability in the analysis of other graph
data felds, such as trafc fow prediction.

In the future research, we plan to explore the integration
of multisource information, including online fnancial news
and social media data based on our model.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

(a) (b)

Figure 4: Comparison of GRU embeddings and SD-RL embeddings. (a) GRU embeddings. (b) SD-RL embeddings.
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