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One of the main concepts in group technology (GT) is the cellular manufacturing system (CMS) with three main problems of cell
formation (CF), cell layout (CL), and cell scheduling (CS). Tis paper studies the cell layout problem (CLP), aiming to fnd the
optimal layout of machines within each cell (intracellular layout) and the optimal layout of cells in each workshop (intercellular
layout). To adapt to reality, the dimensions of the cells and machines (inside each cell) were considered unequal, and also the cells
and machines could rotate. We believe that a cellular layout that assumes unequal dimensions of the cells and machines can be
used for batch production. Tis kind of production has a wide variety of low to medium demand. Furthermore, a cellular layout
can be applied in CMSs and also in noncontinuous industries that have a job shop layout. Our main contribution is considering
the possibility of rotating the cells and machines inside the cells. For this purpose, a mixed nonlinear programming model was
developed to solve the CLP with the minimum cost of intracellular and intercellular material fows.Te proposed nonlinear model
was frst converted into a linear model, and then a problemwas generated and solved with GAMS software to validate the resulting
linear model. Tis model fnds the best layout of cells within the workshop and the best layout of machines inside each cell. Ten,
because of the NP-hardness of the CLP and the fact that even exact methods cannot solve large-scale examples in an acceptable
computational time, an imperialist competitive algorithm (ICA) was designed and used to solve the problem. To evaluate the
efciency of the proposed algorithm, its numerical results in small dimensions were compared with the results of GAMS software.
In large dimensions, 30 random problems were created, and the results of ICA were compared with the results of the particle
swarm optimization (PSO) algorithm and genetic algorithm (GA). Finally, the parameters of the three meta-heuristic algorithms
were set by the Taguchi method. Numerical results indicated that ICA was superior to both the PSO algorithm and GA. It could
also achieve efcient solutions in a shorter computational time.

1. Introduction

One of the main purposes of manufacturing systems is to
convert raw materials, capital, information, labor, and other
resources into more value-added goods or services.
Manufacturing systems consist of several specifcally orga-
nized machines to construct diferent kinds of products.
Tey have diferent types based on facility layout, fow shop
system, job shop system, fxed position layout, and cellular
manufacturing system (CMS). In a fow shop system, pro-
duction facilities are set sequentially. Examples of this fow
are metal production industries, refneries, and

petrochemical industries. In a job shop production system,
similar machines are located next to each other as in au-
tomotive and home appliance industries. In fxed position
layout, the product is fxed, and each department performs
the essential processes. Examples of such systems are air-
craft, ship building, and construction industries. Te last
type of production system, i.e., CMS, is an application of
group technology (GT) and comparing to other types of
manufacturing systems like the fow shop system, has higher
fexibility in the production of diferent types of products.
Also comparing to job shop production system, which is
used only for low production volume with high production
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and storage cost, CMS enjoys good efciency with a higher
production rate [1].

A cell may contain a group of similar machines in
which the components must have the maximum move-
ment within each cell and the minimum movement re-
lating to other cells. Tis advantage causes in the
reduction of material handling costs, process and setup
times, and inventory, which ultimately leads to better
quality, customer satisfaction, and on-time delivery of the
product. For the efective implementation of CMS, there
are three important tasks:

(1) Grouping of parts with similar design features or
processes in the family of parts, and grouping of
machines into machine cells, which is called cell
formation (CF).

(2) Finding the optimal layout of machines within each
cell (intracellular layout) and the optimal layout of
cells in the workshop (intercellular layout), which is
collectively called cell layout problem (CLP).

(3) Determining the order of part families in each cell
and the order of tasks in each part family, which is
called cell scheduling (CS) [2].

Te main objective of this paper is to develop a new
mixed nonlinear mathematical model for CLP while the cells
and machines have unequal dimensions and can rotate. Te
main questions of the paper are: “How to extend a new
mixed nonlinear mathematical model for CLP?” and “How
to solve it due to the Np-hardness of the model?” Ac-
cordingly, the main contributions of this research can be
outlined as follows:

(i) Unlike previous research fndings implying that do
not rotate, using the model developed in this re-
search, cells and machines can rotate in diferent
directions.

(ii) In order to conform to the reality, unequal di-
mensions for cells and machines have been con-
sidered in this study.

(iii) Te main application of cellular layout is in the
automotive industries like the Toyota manufactur-
ing industry.

(iv) In the present study, a new mixed nonlinear
mathematical model has been proposed for CLP.

Te following phases have been done in the present
study. Te related literature is reviewed in Section 2.
Problem statement is explained in Section 3. A mathe-
matical model of the problem is presented in Section 4 to
minimize the intercellular and intracellular material fow.
Since CLP is very complex and its computational time
increases extremely as the size of the problem increases,
exact algorithms for solving large-size problems lose their
efciencies; therefore, Section 5 compares the results of
ICA with those of (PSO) and (GA). Finally, conclusions,
study limitations, and future works presented in
Section 6.

 . Literature Review Related to CLPs

CLPs are generally divided into three types: intercellular
layout, intracellular layout, and intra- and inter-cellular
layout. In the frst case, only the layout of cells in the
workshop or intercellular layout is considered. Te objective
function, in this case, is to minimize the cost of material fow
between the cells in the workshop. In the second case, the
cells’ location is already known, and only the layout of
machines within each cell or intracellular layout is con-
sidered. Te objective function of this type of problem is to
minimize the cost of material fow between the machines
inside the cells. In the third case, the layout of cells in the
workshop and the layout of machines inside the cells are
considered, which is called intra- and inter-cellular layout.
Te objective function, in this case, is to minimize the cost of
material fow between the cells and the cost of material fow
between the machines within each cell. In the following,
almost all the work done in the feld of CLPs are reviewed.
Some studies considered intra- and inter-cellular layout
problems under dynamic situations and assumed equal
dimensions for cells and machines. Others considered in-
tracellular layout problems. Te third group of studies
mentioned intercellular layout problems with similar di-
mensions for cells and machines. Ten a mathematical
model and a solution method are proposed for the men-
tioned problems, and numerical results are presented.

Rosenblatt [3] studied factory layout problems under
dynamic conditions and equal dimensions for machines.
Vakharia and Wemmerlov [4] considered the problem of
intracellular layout with equal dimensions and used a co-
efcient to assess the similarity of parts and the formation of
a family of parts and cells. Two years later, Venugopal and
Narendran [5] proposed the problem of cell formation (CF)
to minimize the intercellular movements of parts, balance
the capacity of cells, and solve the problem using GA.
Meanwhile, Jajodia et al. [6] developed a new method for
intracellular and intercellular layout problems with the equal
dimensions for cells and machines. Arvindh and Irani [7]
proposed the idea of designing a CMS in intracellular and
intercellular layout with equal dimensions for cells and
machines and used the production fow technique as a so-
lution. Kim and Kim [8] assumed a model in which the
shape of the machine was regular or irregular, its dimensions
were fxed, the material handling system was based on an
open feld, and the objective function had a single criterion.

Vakharia and Cheng [9] developed the CF problem in an
intercellular layout. Te solution method was based on
simulated annealing (SA) and tabu search (TS) algorithms.
Consequently, Liang and Zolfaghari [10] proposed a problem
for grouping machines with equal dimensions under un-
certain and static conditions. Wang et al. [11] proposed
a model for solving equipment layout problems in CMSs in
which the demand rates changed over the product’s life cycle.
Lozano et al. [12] developed machine grouping and in-
tercellular layout problems and considered a mathematical
programming model to minimize the cost of intercellular

2 Complexity



translocation. Solimanpur et al. [13] developed intercellular
layout problems as a quadratic assignment. Anders and
Lozano [14] proposed CF and intercellular layout problems by
assuming a criterion for grouping machines in cells and used
PSO algorithm to solve them. Tavakkoli-Moghaddam et al.
[15] addressed intracellular and intercellular layout problems
by assuming the possible demands and considered the fuzzy
linear integer programming model. Hu et al. [16] inspected
the intercellular layout problem and developed a model to
minimize the cost of intercellular material fow. Chan et al.
[17] proposed intercellular and intracellular layout problems
by assigning machines within cells and considering equal
dimensions for cells and machines. Tavakkoli-Moghaddam
et al. [18] considered the problem of dynamic CF and in-
tercellular layout under dynamic conditions. Mahdavi et al.
[19] concentrated on the problem of intercellular and in-
tracellular movements and CF in CMS. Te following year,
Rafee et al. [20] proposed a CMS considering intracellular
and intercellular layout problems in dynamic conditions.
Ariafar et al. [21] applied intracellular and intercellular layout
problems to CMS. Mahdavi et al. [22] developed a mathe-
matical model for the simultaneous combination of CF and
intracellular and intercellular layout. Shiyas and Pillai [1]
considered the problem of intercellular layout and used
a mathematical model to design manufacturing cells. Asl and
Wang [23] developed an intracellular layout problem under
uncertain and probabilistic conditions to minimize material
fow costs. Mehdizadeh and Rahimi [24] proposed an in-
tegrated mathematical model for solving the dynamic CF
problem, considering operator allocation and intracellular
and intercellular layout problems. Ghosh et al. [25] consid-
ered the problem of intercellular layout and proposed
a quadratic assignment planning model for such problems.
Derakhshan Asl and Wang [26] developed the problem of
intracellular layout in static and dynamic conditions, sup-
posing unequal machine dimensions and the possibility of
machine rotation. Rabbani et al. [27] hypothesized the
problems of CF and intracellular and intercellular layout
simultaneously in dynamic conditions and grouping of
machines and parts. Feng et al. [28] investigated the CL and
CF problems simultaneously and used GA and SA to solve
them. Golmohammadi et al. [29] developed intracellular and
intercellular layout problems and assumed machines, cells,
parts, and batch sizes for transporting parts.

Mahmoodian et al. [30] developed a “smart” PSO al-
gorithm for CLPs. Danilovic and Illic [31] worked on
a hybrid algorithm to solve CLPs. Paramasamy et al. [32]
developed a GA to form families of machine parts and cells
and solved CLPs.

Rahimi et al. [33] considered CF, intercellular layout, and
cell scheduling problems for CMSs. Zhao et al. [34] proposed
a new layout methodology for the multifoor linear cellular
manufacturing layout and amathematical model. Neufeld et al.
[35] pointed out several characteristics that specify the dis-
tinctiveness of cell scheduling. Golmohammadi et al. [36]
developed a biobjective optimizationmodel to integrate CF and
intercellular or intracellular layouts. Rostami et al. [37] pre-
sented a multiobjective mathematical model for the simulta-
neous integration of virtual cellular manufacturing with the

supply chain and new product development. Ayough et al. [38]
integrated job assignment and job rotation scheduling prob-
lems and presented a novel multiperiod nonlinear mixed
integer model.

Goli et al. [39] designed a fuzzy mixed-integer linear
programming model for CF problems in CMS. Salimpour
et al. [40] developed CF, intracellular and intercellular layout
problems, and machines of unequal dimensions. Golmo-
hammadi et al. [41] considered the problem of facility layout
by integrating CF in continuous space and intercellular and
intracellular layouts. Mondal et al. [42] hypothesized the
problems of intercellular layout and CF in CMS and ofered
a model for minimizing cell load variation and reducing
intercellular movements. Razmjoei et al. [43] hypothesized
an intercellular layout in CMS. Hazarika [44] proposed an
intercellular layout in CMS and surveyed the problem of
machine CF. Mansour et al. [45] studied cellular
manufacturing and intracellular and intercellular layout
problems at the same time. Fakhrzad et al. [46] simulta-
neously addressed CF and intercellular layout problems in
terms of scheduling, labor assignment, and limited fnancial
resources. Finally, Forghani and Fatemi Ghomi [47]
addressed CF and group layout problems and proposed
a mixed integer programming model. A summary of the
results of the above works are presented in Table 1.

As shown in Table 1, the current research was conducted
on CLPs, including intracellular and intercellular layouts
where the dimensions of cells and machines are considered
unequal and rotation of cells and machines are allowed.
However, in the previous research studies, these six factors
were not considered simultaneously.

2.1. Research Gap. As explained above, a comprehensive
review of the literature within the last three decades clarifes
that no research has examined CLPs under unequal di-
mensions of cells and machines within each cell and the
possibility of rotation of cells and machines. Hence, this
study was designed to examine these types of problems.

3. Problem Statement

In CLP problem, to fnd the layout of cells in the workshop
and that of machines within each cell, frst the number of
cells and machines and then the dimensions of the work-
shop, cells, and machines are determined. Next, the number
of machines inside each cell is specifed. Lastly, the material
fow between the cells and between the machines is de-
termined. For example, assume we have three cells and ten
machines. Te cells are positioned in a workshop (1.5m in
length and 1.5m in width). Te length of the frst cell is
50 cm and its width is 45 cm, and the length of the second cell
is 45 cm and its width is 40 cm. Te length and width of the
third cell are both 40 cm, and the dimensions of the ma-
chines are also known. Te frst, second, third, and fourth
machines are inside the frst cell, the ffth, sixth, and seventh
machines are inside the second cell, and the eighth, ninth,
and tenth machines are inside the third cell. Tere is
a material fow between the frst, second, and third cells
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called intercellular material fow.Tere is also a material fow
between the machines inside each cell, called intracellular
material fow. Te layout of the frst, second, and third cells
in the workshop area is called intercellular layout, and the
machine’s layout inside each cell is called intracellular
layout. It is also possible to rotate all machines and cells.
Figure 1 schematically displays an integrated intercellular
and intracellular layout.

Tis study examines CLPs when the cells are located in
the workshop and do not go beyond the workshop area, and
the machines are located inside the cells and do not go
outside. In addition, the cells and machines should not
overlap. As you know, in the real world, cells and machines
have unequal dimensions; so, in this study, in order to get
closer to reality, the dimensions of cells and machines inside
each cell have been considered to be unequal. Another
considered aspect in this research is that, unlike previous
studies where cells and machines did not rotate, here, they
can rotate in diferent directions. Te present study suggests
a new mixed nonlinear mathematical model for CLPs. Be-
cause the proposed model is nonlinear, to solve small CLPs
using GAMS software, the model was linearized, and the
results were compared with the ICA results.

Since CLPs are NP-hard, we used ICA and other meta-
heuristic algorithms like PSO and GA to solve large-scale
problems. Finally, the results of ICAwere compared with the
results of the two other algorithms (PSO and GA).

3.1. Assumptions. In this research, a new mixed nonlinear
mathematical programming model is proposed to solve
intracellular and intercellular layout problems with unequal
dimensions for cells and machines. Te assumptions of the
proposed mathematical model are as follows:

(1) Manufacturing cells should be enclosed inside the
workshop with exact dimensions.

(2) Location of the cells inside the workshop is not
predetermined.

(3) Dimensions of the cells andmachines are known and
not equal (i.e., it is not an assignment problem).

(4) Te cells are not located over each other and do not
overlap.

(5) Te machines used to produce various parts are
enclosed inside the cells.

(6) Te machines are not located over each other and do
not overlap.

(7) Structural cells can rotate.
(8) Machines can also rotate.
(9) Material entry and exit points are always in the

center of the cells and machines.

3.2. Notations

3.2.1. Indices

i, k: Cell index
j, p: Machine index

3.2.2. Parameters

W: Length of the workshop
H: Width of the workshop
N: Number of cells
wi: Length of the ith cell i � 1, . . . , N{ }

hi: Width of the ith cell i � 1, . . . , N{ }

wij′ : Length of the jth machine in the ith cell
i � 1, .., N{ }, j � 1, . . . , M{ }

hij′ : Width of the jth machine in the ith cell
i � 1, .., N{ }, j � 1, . . . , M{ }

Mi: Number of the machines in the ith cell i � 1, .., N{ }

fik: Material fow between the ith and kth cells
i � 1, .., N{ }, k � 1, . . . , N{ }, i≠ k

fijp: Material fow between the jth and pth machines in
cell i i � 1, .., N{ }, j � 1, . . . , M{ }, p � 1, . . . , M{ }, j≠p

3.2.3. Decision Variables

xi: Center coordinates of the ith cell along the x-axis
i � 1, . . . , N{ }

yi: Center coordinates of the ith cell along the y-axis
i � 1, . . . , N{ }

xij′ : Center coordinates of the jth machine in the ith cell
along the x-axis i � 1, .., N{ }, j � 1, . . . , M{ }

yij′ : Center coordinates of the jth machine in the ith cell
along the y-axis i � 1, .., N{ }, j � 1, . . . , M{ }

dik: Rectilinear distance between i and k cells, a func-
tion of xi and yi i � 1, .., N{ }, k � 1, . . . , N{ }, i≠ k

dijp: Rectilinear distance between j andpmachines, a
function of xij′ and yij′ i � 1, .., N{ }, j � 1, . . . , M{ }, p �

1, . . . , M{ }, j≠p

ri �
1, if cell i direction changes compared to its original direction
0, otherwise􏼚

i � 1, . . . , N{ }

rij′ � 1, if machine j direction in cell i changes compared to its original direction
0, otherwise􏼚

i � 1, .., N{ }, j � 1, . . . , M{ }
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Figure 1: Integrated inter-cellular and intracellular layout for three
cells and ten machines.
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3.3. Preliminaries. Tis model aims to fnd the best layout of
cells in the workshop and the best layout of machines inside
each cell.

3.4. Mixed Nonlinear Programming Model. Based on the
above information, the mixed nonlinear programming
model for intracellular and intercellular layout problems is
as follows:

f1 � Min 􏽘
N

i�1
􏽘

N

k�1
fik dik

⎛⎝ ⎞⎠

� Min 􏽘
N

i�1
􏽘

N

k�1
fik xi − xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi − yk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠,

(1)

f2 � Min 􏽘
N

i�1
􏽘

Mi

j�1
􏽘

Mi

p�1
fijp xij′ − xip′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yij′ − yip′
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (2)

minZ � f1 + f2

� Min 􏽘
N

i�1
􏽘

N

k�1
fik xi − xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi − yk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽘

N

i�1
􏽘

Mi

j�1
􏽘

Mi

p�1
fijp xij′ − xip′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yij′ − yip′
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠⎛⎝ ⎞⎠,
(3)

wi

2
1 − ri( 􏼁 +

hi

2
ri ≤ xi≤W −

wi

2
1 − ri( 􏼁 +

hi

2
ri􏼠 􏼡 i � 1, 2, . . . , N, (4)

hi

2
1 − ri( 􏼁 +

wi

2
ri ≤yi≤H −

hi

2
1 − ri( 􏼁 +

wi

2
ri􏼠 􏼡 i � 1, 2, . . . , N, (5)

wij′

2
1 − rij′􏼐 􏼑 +

hij′

2
rij′ ≤x

ij
′ ≤wi −

wij′

2
1 − rij′􏼐 􏼑 +

hij′

2
rij′􏼠 􏼡 i � 1, 2, . . . , N, j � 1, 2, . . . , Mi, (6)

hij′

2
1 − rij′􏼐 􏼑 +

wij′

2
rij′ ≤y

ij
′ ≤ hi −

hij′

2
1 − rij′􏼐 􏼑 +

wij′

2
rij′􏼠 􏼡 i � 1, 2, . . . , N, j � 1, 2, . . . , Mi, (7)

xi − xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi − yk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

wi

2
1 − ri( 􏼁 +

hi

2
ri +

wk

2
1 − rk( 􏼁 +

hk

2
rk􏼠 􏼡

+
hi

2
1 − ri( 􏼁 +

wi

2
ri +

hk

2
1 − rk( 􏼁 +

wk

2
rk􏼠 􏼡i, k � 1, 2, . . . , N, i≠ k,

(8)

xij′ − xip′
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yij′ − yip′
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥
wij′

2
1 − rij′􏼐 􏼑 +

hij′

2
rij
′ +

wip′

2
1 − rip′􏼐 􏼑 +

hip′

2
rip′􏼠 􏼡

+
hij′

2
1 − rij′􏼐 􏼑 +

wij′

2
rij′ +

hip′

2
1 − rip′􏼐 􏼑 +

wip′

2
rip′􏼠 􏼡i � 1, 2, . . . , N, j, p � 1, 2, . . . , Mi, j≠p,

(9)

xi ≥ 0 i � 1, 2, . . . ., N, (10)

yi ≥ 0 i � 1, 2, . . . , N, (11)

xij′ ≥ 0 i � 1, 2, . . . , N, j � 1, 2, . . . , M, (12)

yij′ ≥ 0 i � 1, 2, . . . , N, j � 1, 2, . . . , M, (13)

ri ∈ 0, 1{ } i � 1, 2, . . . , N, (14)
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rij′ ∈ 0, 1{ } i � 1, 2, . . . , N, j � 1, 2, . . . , M. (15)

In the proposed model, the objective function consists of
two parts. Te frst part shows minimizing the cost of
material fow between cells, and the second part states
minimizing the cost of material fow between machines
located inside the cell. Equation (1) indicates minimizing the
sum of material fow costs between cells, and equation (2)
represents minimizing the sum of material fow costs be-
tween machines. In equations (1) and (2), the cost is con-
sidered one per unit distance. Equation (3) indicates
intracellular and inter-cellular cost minimization. In-
equalities (4) and (5) show that each cell is enclosed inside
the workshop along the x- and y-axes. Inequalities (6) and
(7) express that the machines of each cell are enclosed in the
corresponding cell along the x- and y-axes. Inequality (8)
indicates the nonoverlap of cells, while Inequality (9) ex-
presses the nonoverlap of machines inside the cells. In-
equalities (10) and (11) express that the center coordinates of

the ith cell along the x- and y-axes are equal to or greater than
0. Inequalities (12) and (13) indicate that the center co-
ordinates of the jth machine located in the ith cell, along the
x- and y-axes, are equal to or greater than 0. Constraints (14)
and (15) ensure that the decision variables, ri and rij′ are
binary variables.

3.5. Linearization of the Mixed Nonlinear Programming
Model. Since the proposed model is nonlinear, we should
linearize the model. For this purpose, the following variables
were changed in the objective function and constraints as
shown in Table 2.

After applying the changes in the above variables, the
objective function and model constraints were transformed
into equations (16)–(21):

f1 � 􏽘
N

i�1
􏽐
N

k�1
fik dik � 􏽘

N

i�1
􏽘

N

k�1
fik Z1ik + Z2ik + Z3ik + Z4ik( 􏼁, (16)

f2 � 􏽘
N

i�1
􏽘

Mi

j�1
􏽘

Mi

p�1
fijp Z5ijp + Z6ijp + Z7ijp + Z8ijp􏼐 􏼑⎛⎝ ⎞⎠, (17)

minZ � f1 + f2, (18)

Z1ik − Z2ik + Z3ik − Z4ik ≥
wi

2
1 − ri( 􏼁 +

hi

2
ri +

wk

2
1 − rk( 􏼁 +

hk

2
rk􏼠 􏼡

+
hi

2
1 − ri( 􏼁 +

wi

2
ri +

hk

2
1 − rk( 􏼁 +

wk

2
rk􏼠 􏼡i, k � 1, 2, . . . , N, i≠ k,

(19)

Z5ijp − Z6ijp + Z7ijp − Z8ijp ≥
wij′

2
1 − rij′􏼐 􏼑 +

hij′

2
rij′ +

wip′

2
1 − rip′􏼐 􏼑 +

hip′

2
rip′􏼠 􏼡 i � 1, 2, . . . , N j, p � 1, 2, . . . , Mi, j≠p, (20)

Z1ik, Z2ik, Z3ik, Z4ik, Z5ijp, Z6ijp, Z7ijp, Z8ijp ≥ 0. (21)

3.6. Solution Method. Ballakur and Steudel [50] described
that CLPs are complex and increase in complexity when the
cells and machines are unequally sized. For this reason, exact
methods cannot solve the problems explained above during
an acceptable computational time. Terefore, to test our
proposed model, meta-heuristic algorithms should be used.
To our knowledge, ICA has not been used until now in CLPs.
Hence, this algorithm was implemented on CLPs, and its
numerical results were compared with the numerical results
of PSO and GA.

ICA creates an initial set of random solutions, known as
chromosomes in GA, as particles in PSO, and as countries in
ICA. Convergence rates and achieving near-optimal solu-
tions are other advantages of ICA [51, 52].

3.6.1. Implementation of ICA to Solve the Problem. ICA was
frst introduced by Atashpaz-Gargari and Lucas in 2007 [51].
It is designed based on population. Te original population
is generated randomly, each member of which is known as
a country. It steadily improves the initial answers (coun-
tries), and fnally, creates the suitable answer to the opti-
mization problem (optimal country). In the concept of
optimization, some of the best members of the population
that have the lowest cost are selected as imperialist countries,
and the rest of the population is allocated as a colony to the
imperialist country. Colonies in the original population are
divided between the imperialist countries based on their
power. Te power of any imperialist is inversely related to
the ftness (cost) of that country. Colonies and imperialist
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countries form empires [53, 54]. Te steps to imple-
mentation of ICA are as follows.

(1) Creating Initial Solutions and Forming Empires. ICA is
implemented in four phases, and each phase is executed to
the maximum number of repetitions. In each iteration, the
amount of material fow cost is calculated for all population
members and selected as the number of empires from the
countries with the lowest material fow cost, as imperialist
countries. Te selection of the best countries in our case was
made using Roulette’s wheel method [55]. Te remaining
countries were then assigned as colonies to the imperialist
country, and primary empires were created.

(2) Solution Representation. Previous studies have shown
that displaying solutions as continuous is efcient and
provides better solutions in terms of facility layout [23].
Terefore, in the present study, solutions were displayed in
a continuous and linear manner. To implement the algo-
rithm, in displaying shadow solutions for each decision
variable, a number between 0 and 1 was mentioned. Four
parts were used to represent the solution. Te frst part
consists of 9 numbers; the frst three of which are the shadow
of the center coordinates of the cells along the x-axis

(􏽢xi, i � 1, . . . , N), the second three are the shadow of the
center coordinates of the cells along the y-axis
(􏽢yi, i � 1, . . . , N), and the last three numbers show the
shadow of rotation or nonrotation of the cells in relation to
their original direction (􏽢ri, i � 1, . . . , N). Te second part
contains the next 15 numbers; the frst fve numbers in this
section are the shadow of the center coordinates of the
machines in the frst cell along the x-axis (􏽢xj, j � 1, . . . , M),
the second fve numbers are the shadow of the center co-
ordinates of the machines in the frst cell along the y-axis
(􏽢yj , j � 1, . . . , M), and the last fve numbers are the shadow
of rotation or nonrotation of the machines in the frst cell
(􏽢rj, j � 1, . . . , M). Te third part includes the next 12
numbers; the frst four numbers in this section are the
shadow of the center coordinates of the machines in the
second cell along the x-axis (􏽢xj, j � 1, . . . , M), the second
four numbers are the shadow of the center coordinates of the
machines in the second cell along the y-axis
(􏽢yj , j � 1, . . . , M), and the last four numbers are the
shadow of the orientation of the machines in the second cell
(􏽢rj, j � 1, . . . , M).Te fourth part comprises the numbers 36
to 45; the frst three numbers in this section are the shadow
of the center coordinates of the machines in the third cell
along the x-axis (􏽢xj, j � 1, . . . , M), the second three num-
bers are the shadow of the center coordinates of the ma-
chines in the third cell along the y-axis (􏽢yj , j � 1, . . . , M),
and the last three numbers are the shadow of the orientation
of the machines in the third cell (􏽢rj, j � 1, . . . , M). Ten, by
inserting the obtained shadow coordinates in equations
(22)–(24), we can determine the center coordinates of the
machines along the x-axis (􏽢xj), the center coordinates of the
machines along the y-axis (􏽢yj ) in the corresponding cell, and
their orientation relative to their original direction (􏽢rj):

xj � xminj + xmaxj − xminj􏼐 􏼑􏽢xj⟶

xminj �
wj

2
1 − rj􏼐 􏼑 +

hj

2
rj,

xmaxj � W −
wj

2
1 − rj􏼐 􏼑 +

hj

2
rj􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j � 1, . . . , M, (22)

yj � yminj + ymaxj − yminj􏼐 􏼑􏽢yj⟶
yminj �

hj

2
1 − rj􏼐 􏼑 +

wj

2
rj,

ymaxj � H −
hj

2
1 − rj􏼐 􏼑 +

wj

2
rj􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

j � 1, . . . , M, (23)

rj �
0, 0≤ 􏽢rj ≤ ,اگر 0.5
1, 0.5≤ 􏽢rj ≤ ,اگر 1

⎧⎨

⎩ j � 1, . . . , M. (24)

In this type of solution representation, a matrix with 1
row and 3×M columns is applied. Te above process is also
used to display the solution for the cells. For example, in
displaying the solution for three cells and 12 machines,

a matrix with one row and 45 columns is utilized. Figure 2
displays the shadow of the center coordinates of machines
and cells, while Figure 3 displays their actual center
coordinates.

Table 2: Changes of variables for linearization.

Changing the variables
applied to the
constraints

Changing the variables
applied to the

objective function
xi − xk � Z1ik − Z2ik xi − xk � Z1ik + Z2ik
yi − yk � Z3ik − Z4ik yi − yk � Z3ik + Z4ik
xij′ − xip′ � Z5ijp − Z6ijp xij′ − xip′ � Z5ijp + Z6ijp
yij′ − yip′ � Z7ijp − Z8ijp yij′ − yip′ � Z7ijp + Z8ijp
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(3) Improving the Solution Space. At this phase, the position
of the imperialist countries is changed using the absorption
operator. By using the revolution operator, random changes
are made in the material fow cost of the imperialist and
colony countries to attain better and more diverse solutions.
Te movement of the colonies towards the imperialist
country (following a policy of absorption) is done using the
following equation:

x
′

� x + β(t − x), (25)

where x′ is the secondary position of the colony, x is the
primary position of the colony, β is the simulation co-
efcient, t is the value of the imperialist or the objective
value, and 0≤ β≤ 2. Te absorption policy about colonies is
shown in Figure 4.

(4) Replacement of the Colony and the Imperialist with Each
Other in case of Meeting Relevant Conditions. Next, the
material fow cost of the colonies is compared with the
relevant imperialist country, and if the material fow cost of
the colony is better than the material fow cost of the im-
perialist, the position of the colony and the imperialist
country will be changed (the intragroup competition).

(5) Transfer of Colonies and Imperialists to Another Empire in
case of Meeting Relevant Conditions. At this step, empires are
frst evaluated using equation (26) in order to obtain the
index for each empire:

f(Empires) � f(imperialist) + ξMean(f(colonies)), (26)

where f(imperialist) refers to the value of the imperialist
objective function, Mean(f(colonies)) denotes the average
value of the objective function for the colonies, and ξ is the
zeta coefcient, the value of which is set by parameter
setting.

Te weakest colony is removed from the weakest empire,
and accidently, moved to a more powerful empire (in-
tergroup or inter-empire competition). If the weakest em-
pire has no colony, the imperialist, as a colony, is transferred
to another empire. Ten the value of the objective function
of the empires is updated, and the same process is repeated.

(6) Reporting the Best Solution Found. In this section, the best
solution found in the output of MATLAB software is shown.

(7) Checking the Stop Condition. Although there are several
conditions for stopping the algorithm, in this paper,
reaching a certain number of iterations or reaching the
maximum iteration (MaxIt) in implementing the ICA is
considered a stop condition. Te pseudocode of the pro-
posed ICA is presented in Figure 5.

4. Results

4.1. Computational Results. Here, numerical examples as
well as the results of running them with GAMS (win32
24.1.3) and MATLAB R2015 are presented.

4.1.1. Solving a Small-Scale Problem to Assess the Proposed
Model’s Validity. To evaluate the model’s validity, a small-
scale problem was solved with GAMS software. Te data of
this example were taken from the Asl and Wong article [23].

0.3488 0.3596 0.3689 0.1260 0.9741 0.5759 0.1419 0.2785 0.6787 0.8430 0.8430 0.6483 0.6483 0.4816 ..

0.9616 0.7878 0.7878 0.9616 0.7693 0.1712 0.0971 0.7431 0.7952 0.2238 0.9741 0.9194 0.6502 0.6953 ..

0.7753 0.5472 0.7753 0.5384 0.4218 0.1270 0.9649 0.0357 0.8905 0.4853 0.7003 0.2904 0.2671 0.2794 0.9572 ..

0.6324 0.8491

Figure 2: Displaying the shadow of the center coordinates of cells, machines, and their orientations.

27.449 21.949 21.949 16.949 31.349 25.849 25.849 31.349 25.849 0 40.174 40.174 40.174 25.693 ..

83.193 55.693 0 0 1 27.449 0 1 1 0 25.906 25.906 18.906 18.906 ..

21.884 16.228 21.884 15.884 0 0 1 0 20.707 12.207 16.707 8.308 8.308 8.308 ..

1 1 1

Figure 3: Displaying the actual center coordinates of cells, machines, and their orientations.

x

x′

t

Figure 4: Application of absorption policy in the case of colonies.
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Tis example comprised three cells and 12 machines. Te
cells were set in a 100 cm wide × 100 cm long workshop.
Other parameters of the problem are presented in
Tables 3–9.

Te small-scale problem was solved by the above model
in GAMS software. Since CLPs are very complex and exact
solution methods cannot solve them in a reasonable com-
putational time, we solved them using ICA, and the results
were compared with those of GAMS software as shown in
Table 10. Te layout of cells in the workshop and the layout
of machines inside each cell are shown in Figure 6.

4.2. Parameter Setting for Meta-Heuristic Algorithms Using
the Taguchi Method. In meta-heuristic algorithms, several
parameters must be set. Parameter setting is important be-
cause better solutions can be created using the right parameter
setting. In this paper, parameter setting for ICA, PSO, and GA
was performed using the Taguchi method [56]. In the Taguchi
method, the factors and parameters of each algorithm are
categorized into two groups of controllable and un-
controllable, and the efect of uncontrollable factors is min-
imized. Ten, the parameters of the assumed algorithms are
adjusted by considering the output of the Taguchi method,
which is the main efects plot for the signal-to-noise ratios.

4.2.1. Parameter Setting for the ICA. ICA has two operators
and eight parameters.Te following symbols are used to set the
parameters of this algorithm: MaxIt, npop, nEmp, alpha, beta,
PRevolution,mu, and zeta, whereMaxIt is the highest number
of iterations, npop is the population size, nEmp is the number of
empires, alpha is selection pressure, beta is similarity co-
efcient, PRevolution is the probability of revolution operator,
mu is the revolution operator rate, and zeta is the average cost
factor of colonies. Te parameters of ICA are set according to
Figures 7 and 8, and the results are presented in Table 11.

4.2.2. Parameter Setting for PSO. Tere are fve parameters
for PSO, andMaxIt, nPop, C1, C2, andW symbols are applied
to regulate its parameters: MaxIt is the highest number of
iterations, nPop is the number of particles, C1 is the

acceleration coefcient of the best personal answer, C2 is the
acceleration coefcient of the best overall answer, andW is the
inertia weight coefcient. Te results are presented in Table 12.

Table 3: Length and width of machines.

Machines 1 2 3 4 5 6 7 8 9 10 11 12
Length of machine (wj

′) 5 7 6 4 6 5 10 7 6 5 5 6
Width of machine (hj

′) 4 5 5 4 6 4 7 5 5 5 5 4

Table 4: Length and width of manufacturing cell.

Cells Cell 1 Cell 2 Cell 3
Length of cell (wi) 35 30 25
Width of cell (hi) 35 30 25

Table 5: Number of machines inside each cell.

Cell number Machine number
1 3-5-9-10-11
2 2-4-6-7
3 1-8-12

Table 6: Material fow between cells.

Intercellular material fow 1 2 3
1 0 5 7
2 0 0 0
3 0 9 0

Step 1: generating the primary countries and calculating the material fow cost of the countries.
Step 2: Selecting the countries with the lowest cost as imperialists and assigning other countries to them (creation
of primary empires).
Step 3: Movement of the colonies to the imperialist country using the absorption or simulation operator follows:
x′ = x + β (t – x)
Step 4: Applying random changes to the material fow costs of countries using the revolution operator.
Step 5: Comparing the cost of the colony countries with the cost of the respective imperialist country and
changing the status of the colony country with the imperialist country if the material fow cost of the colony
country is better than that of the imperialist country.
Step 6: Evaluating the empires using the following equation:
f (empires) = f (imperialist) + ξ Mean (f (colonies))
Step 7: Removing the weakest colony from the weakest empire and transferring it to the strongest empire.
Step 8: Eliminating the powerless empires.
Step 9: If there is just one empire, go to Step 10; otherwise, go to Step 3.
Step 10: Reporting the best solution found.
Step 11: Checking the stop condition.

Figure 5: Pseudocode of the imperialist competitive algorithm.

Table 7: Material fow between machines in the frst cell.

Machines 3 5 9 10 11
3 0 0 10 20 0
5 20 0 0 10 0
9 0 10 0 0 20
10 20 0 20 0 0
11 0 0 0 10 0
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4.2.3. Parameter Setting for GA. GA has fve parameters, and
MaxIt, nPop, Pc, Pm, and Mu symbols are used to adjust
these parameters: MaxIt is the highest number of iterations,
nPop is the population size, Pc is the percentage of in-
tersection operator for population, Pm is the percentage of
mutation operator for population, and Mu is the percentage
of mutation rate for selected chromosomes. Te results are
presented in Table 13.

4.3. Generating Random Problems. To evaluate the mixed
nonlinear programming model and meta-heuristic algo-
rithms, 30 random problems were designed in MATLAB

R2015 software and solved by (ICA), (PSO), and (GA).Ten,
the results were statistically analyzed using analysis of
variances. Te mean values of the objective function related
to three meta-heuristic algorithms are shown in Figure 9 and
Table 14.

4.3.1. Results of Running Random Problems. After designing
the random problems, we executed them and the center
coordinates of cells in the workshop and the center co-
ordinates of machines inside each cell for the 30th random
problem after implementation of ICA, PSO, and GA were
determined, and the results are shown in Tables 15–17,
respectively. Also, the layout of cells in the workshop and the
layout of machines inside each cell for the three meta-
heuristic algorithms are shown in Figures 10–12, re-
spectively. It is worth noting that the dimensions of prob-
lems 26 to 30 are presented in Tables 18 and 19.

To demonstrate a more accurate estimate of the criteria
for meta-heuristic algorithms, the mean relative percentage
diference (RPD) of layout cost and computational time for
the 30 random problems created in Section 4.3 are shown in
Table 20. Because each random problem was accomplished
5 times using meta-heuristic algorithms, the relative per-
centage diference (RPD) is calculated for the cost and
computational time criteria. Ten, the average values or
(RPD) of the performances were computed and applied for
comparison among the three proposed algorithms. Te
results are presented in Table 20. Te RPD index was ac-
quired using the following equation:

RPDij �
Bestij − minj Bestij

minj Bestij
× 100, (27)

where i is the random problem number, and j represents the
algorithm used (j� 1 is ICA, j� 2 is PSO, and j� 3 is GA).
Besides, Bestij is the best value achieved from the imple-
mentation of algorithm number j for random problem i, and
minj Bestij is the best result obtained from implementing the
algorithms on random problem i.

Figures 13 and 14 show the (RPD) of implementation of
three meta-heuristic algorithms in terms of layout cost and
computational time criteria, respectively. Figure 13 shows
the relative diference of the layout cost of ICA, PSO, and GA
with the symbols COICA, COPSO, and COGA, respectively.
Figure 14 denotes the RPD values of ICA, PSO, and GA with
the symbols TOICA, TOPSO, and TOGA, respectively. Te
mean symbol represents the RPD of the layout cost, and NP
symbol represents the number of random problems in
Figures 13 and 14.

4.3.2. Normality Test of Tree Meta-Heuristic Algorithms.
Te results of performing the normality test for the three
proposed algorithms are displayed in Table 21. Te results
related to the signifcant value show that the layout cost of
PSO and the computational time of PSO and GA are normal.
Regarding the central limit theorem, since the number of
samples is 30, the setup cost of ICA and GA and the
computational time of ICA are also normal.

Table 8: Material fow between machines in the second cell.

Machines 2 4 6 7
2 0 15 25 0
4 40 0 0 15
6 0 0 0 40
7 10 40 15 0

Table 9: Material fow between machines in the third cell.

Machines 1 8 12
1 0 0 80
8 35 0 0
12 0 55 0

Table 10: Results of solving the mathematical model with GAMS
and the ICA.

Objective
function of
ICA

Computational
time of ICA

Objective
function of
GAMS

Computational
time of GAMS

3880.0012 79.601018 3880.0012 3101.61
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Figure 6: Layout of cells in the workshop and layout of machines
inside each cell.
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4.4. Analysis of Variance Test for Assuming Equality of Means
of Layout Cost and Computational Time of Tree Meta-
Heuristic Algorithms (ICA, PSO, and GA). To compare the
mean layout costs of three proposed meta-heuristic

algorithms using the analysis of variance (ANOVA) test,
four conditions must be met: samples from each group or
community should have a normal distribution, samples
from each group or community should be random, the three
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Figure 7: Diagram of the main efects plot for signal-to-noise ratios for ICA.
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communities should be independent of each other, and the
variances of the three communities should be homogeneous.
Since the frst three conditions were met, we used Levene’s
statistic to test the fourth condition, and its results are shown
in Table 22. Because of the high performance of 95% con-
fdence level, the tests were performed at this
confdence level.

According to Table 22, because the signifcance level is
greater than 0.05, there is no signifcant diference between
the variances of the three communities; in other words, the
variances of these communities are homogeneous. Tere-
fore, to test the equality of the means of the three com-
munities in terms of layout cost, the ANOVA test can be
used at a 95% confdence level. Te analysis of variance
compares the mean of multiple populations. Te null hy-
pothesis in the analysis of variance states that RPD values of
the three algorithms are equal according to the layout cost
criterion, and there is no signifcant diference between the
mean layout costs of the three algorithms. Hypothesis one
states that the mean RPD value of the three algorithms
difers in terms of the layout cost criterion.

ANOVA results for assuming equality of the mean
layout cost of three meta-heuristic algorithms are provided
in Table 23. As shown, because the value of the signifcance
level is greater than 0.05, there is no signifcant diference
between the mean layout cost of the three communities, and
the assumption of equality of means at 95% confdence level
is accepted.

To suppose the equality of the mean computational time
of the three communities, the above three conditions are
met; to test the fourth condition, we used Levene’s statistic
(Table 24).

Because the signifcance level is less than 0.05, the null
hypothesis is rejected; so, the variances of three communities
or three meta-heuristic algorithms are not equal. Te results
of the corresponding ANOVA are given in Table 25. As
shown, since the signifcance level is less than 0.05, the null
hypothesis is rejected (i.e., a signifcant diference exists

between the mean computational times of the three com-
munities). Terefore, the Tukey test should be executed to
check the possible inter-group diferences. Te results of the
Tukey test in Table 26 confrm that the mean computational
time of all the three communities is diferent.

Since the variances are not homogeneous, the validity of
the ANOVA test may be questioned. Terefore, Tamhane’s
T2 test was used and the results are displayed in Table 27.
Fortunately, Tamhane’s T2 test results manifested the pre-
vious results; i.e. the mean computational time of the three
meta-heuristic algorithms is diferent signifcantly.

A comparison of the mean computational time of the
three proposed meta-heuristic algorithms is shown in Fig-
ure 15. Numbers 1, 2, and 3 on the x-axis represent ICA,
PSO, and GA, respectively. Te mean computational time of
ICA is much less than that of the other two algorithms.
Terefore, based on the numerical results achieved from the
ANOVA, it is obvious that ICA has much better results in
terms of computational time comparing to the other two
algorithms.

4.5. Discussion. In this paper, we frst solved a small-scale
problem with GAMS software to evaluate the model val-
idity. Ten, we compared the results of GAMS software
with the results acquired from ICA. Numerical results
presented the validity of the model as well as the efciency
of the proposed algorithm. Next, parameter settings for
meta-heuristic algorithms were executed using the Taguchi
method. In the next step, 30 random problems were created
using MATLAB R2015 and performed by three meta-
heuristic algorithms. After designing and implementing
random problems with ICA, PSO, and GA, the center
coordinates of the cells and machines were determined. To
demonstrate a more accurate approximation of the crite-
rion for meta-heuristic algorithms, we determined the
(RPD) values of layout cost and computational time. Also,
the (RPD) results of the three meta-heuristic algorithms in
terms of layout cost and computational time criterion were
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Figure 9: Mean values of the objective function of meta-heuristic algorithms according to sample size.
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Table 15: Center coordinates of cells in the workshop and center coordinates of machines inside each cell for the 30th random problem using
ICA.

Workshop Cells 1 2 3 4 5
Center coordinates of cells along the x-axis 79.30 114.30 114.32 146.80 84.32
Center coordinates of cells along the y-axis 132.60 132.60 100.10 132.60 102.60

Orientation of cells comparing to the main direction 0 1 0 0 0
Cell Machines 1 2 3 4 5

1
Center coordinates of machines along the x-axis 20.45 11.45 16.45 8.95 14.45
Center coordinates of machines along the y-axis 8.79 8.79 8.79 8.79 8.79

Orientation of machines comparing to the main direction 0 1 0 1 0
Cell Machines 6 7 8 9 10 11

2
Center coordinates of machines along the x-axis 10.55 7.49 3.55 4.49 6.05 7.55
Center coordinates of machines along the y-axis 21.95 28.95 21.95 29.45 21.95 21.95

Orientation of machines comparing to the main direction 0 1 0 0 1 0
Cell Machines 12 13 14 15

3
Center coordinates of machines along the x-axis 10.68 10.68 6.18 5.18
Center coordinates of machines along the y-axis 23.33 17.83 18.33 23.33

Orientation of machines comparing to the main direction 0 0 0 1
Cell Machines 16 17 18 19 20

4
Center coordinates of machines along the x-axis 11.48 11.48 10.48 14.98 6.48
Center coordinates of machines along the y-axis 11.15 9.65 11.15 11.15 11.15

Orientation of machines comparing to the main direction 0 1 1 0 0
Cell Machines 21 22 23 24 25

5
Center coordinates of machines along the x-axis 21.19 21.19 21.19 26.19 21.19
Center coordinates of machines along the y-axis 18.51 23.01 21.51 18.51 14.51

Orientation of machines comparing to the main direction 1 0 0 1 0

Table 16: Center coordinates of cells in the workshop and center coordinates of machines inside each cell for the 30th random problem using
PSO.

Workshop Cells 1 2 3 4 5
Center coordinates of cells along the x-axis 108.24 110.33 140.33 80.33 140.74
Center coordinates of cells along the y-axis 117.56 82.56 82.56 82.56 115.06

Orientation of cells comparing to the main direction 0 0 0 0 0
Cell Machines 1 2 3 4 5

1
Center coordinates of machines along the x-axis 11.08 17.08 15.08 15.08 20.08
Center coordinates of machines along the y-axis 12.76 12.76 12.76 11.26 12.76

Orientation of machines comparing to the main direction 0 1 0 0 0
Cell Machines 6 7 8 9 10 11

2
Center coordinates of machines along the x-axis 18.49 19.04 18.49 18.49 13.98 18.49
Center coordinates of machines along the y-axis 22.46 18.34 15.32 9.32 15.32 12.32

Orientation of machines comparing to the main direction 0 0 1 1 1 1
Cell Machines 12 13 14 15

3
Center coordinates of machines along the x-axis 10.57 14.07 15.07 10.07
Center coordinates of machines along the y-axis 9.24 9.24 13.74 16.74

Orientation of machines comparing to the main direction 0 1 0 0
Cell Machines 16 17 18 19 20

4
Center coordinates of machines along the x-axis 8.94 7.94 9.94 13.44 8.94
Center coordinates of machines along the y-axis 12.21 12.21 13.01 13.01 7.01

Orientation of machines comparing to the main direction 0 0 1 0 0
Cell Machines 21 22 23 24 25

5
Center coordinates of machines along the x-axis 18.84 15.34 13.84 22.84 17.81
Center coordinates of machines along the y-axis 10.63 11.19 11.19 11.19 15.63

Orientation of machines comparing to the main direction 0 1 1 1 0
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obtained. Ten the ANOVA was executed for assuming the
equality of means of layout cost and computational time of
three meta-heuristic algorithms aiming to compare their
mean layout costs. Te results denoted the equality of
means of layout cost of the three proposed meta-heuristic
algorithms. However, the computational time results
showed the inequality of the means of computational time
of all the three meta-heuristic algorithms. Terefore, the

Tukey test was used to investigate the possible inter-group
diferences. According to the results, the mean computa-
tional time of all algorithms was diferent. Finally, the
comparison of the mean computational time of the
mentioned algorithms indicated that the mean computa-
tional time of ICA was much less than the other two al-
gorithms; in other words, it demonstrated much better
results in terms of computational time.

Table 17: Center coordinates of cells in the workshop and center coordinates of machines inside each cell for the 30th random problem using
GA.

Workshop Cells 1 2 3 4 5
Center coordinates of cells along the x-axis 153.50 118.50 118.50 86 118.50
Center coordinates of cells along the y-axis 141.41 141.41 111.41 141.41 171.41

Orientation of cells comparing to the main direction 0 1 1 0 0
Cell Machines 1 2 3 4 5

1
Center coordinates of machines along the x-axis 24.81 19.81 14.81 28.81 16.81
Center coordinates of machines along the y-axis 18.85 18.85 18.85 18.85 18.85

Orientation of machines comparing to the main direction 0 1 0 0 0
Cell Machines 6 7 8 9 10 11

2
Center coordinates of machines along the x-axis 24.43 24.43 24.43 18.33 24.33 24.33
Center coordinates of machines along the y-axis 9.37 13.37 17.38 17.37 14.87 20.38

Orientation of machines comparing to the main direction 0 0 1 0 0 1
Cell Machines 12 13 14 15

3
Center coordinates of machines along the x-axis 9.48 9.48 9.48 15.48
Center coordinates of machines along the y-axis 22.78 26.28 18.28 18.28

Orientation of machines comparing to the main direction 1 0 0 1
Cell Machines 16 17 18 19 20

4
Center coordinates of machines along the x-axis 10.86 10.86 9.86 6.36 14.86
Center coordinates of machines along the y-axis 16.20 17.70 16.20 16.20 16.20

Orientation of machines comparing to the main direction 0 0 1 0 0
Cell Machines 21 22 23 24 25

5
Center coordinates of machines along the x-axis 17.31 17.31 15.81 22.81 19.81
Center coordinates of machines along the y-axis 15.94 10.44 10.44 10.44 10.44

Orientation of machines comparing to the main direction 1 1 1 1 1
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Figure 10: Layout of cells in the workshop and layout of machines
inside each cell using ICA.
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Figure 11: Layout of cells in the workshop and layout of machines
inside each cell using PSO.
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5. Managerial Insights and
Practical Implications

Based on the research fndings, a cellular layout that assumes
unequal dimensions of cells and machines can be used for
batch production of products. Such products have a wide
variety and low to medium demand. In addition, cell layout
can be used in CMSs for moving from traditional job shop
layout to cellular layout. Likewise, cellular layout is used in

noncontinuous industries that have a job shop layout. In
continuous layout, for example, one may consider a factory
that produces four parts by machines 1, 2, 3, and 4 using the
same fxed procedure. In job shop layout, there is no need for
the production procedure of all parts to be the same.

Other managerial insights are presented as follows:

(i) Te fow of materials as an infuencing factor in the
links between machines in diferent cells must be
determined suitably because the incorrect input of
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Figure 12: Layout of cells in the workshop and layout of machines inside each cell using GA.

Table 18: Length and width of cells and number of machines inside cells for problems 26 to 30.

Cells Length of cell Width of cell Machines
inside each cell

P26-cell1 30 20 {1, 2, 3, 4, 5}
P26-cell2 25 30 {6, 7, 8, 9}
P26-cell3 25 30 {10, 11, 12}
P26-cell4 30 40 {13, 14, 15, 16}
P26-cell5 40 45 {17, 18, 19, 20}
P27-cell1 40 35 {1, 2, 3, 4, 5}
P27-cell2 35 35 {6, 7, 8, 9, 10}
P27-cell3 25 30 {11, 12, 13, 14}
P27-cell4 35 45 {15, 16, 17, 18}
P27-cell5 40 30 {19, 20, 21, 22}
P28-cell1 30 25 {1, 2, 3, 4}
P28-cell2 35 40 {5, 6, 7, 8}
P28-cell3 35 30 {9, 10, 11, 12, 13}
P28-cell4 20 30 {14, 15, 16, 17, 18}
P28-cell5 25 35 {19, 20, 21, 22}
P29-cell1 35 40 {1, 2, 3, 4, 5}
P29-cell2 45 40 {6, 7, 8, 9, 10}
P29-cell3 30 35 {11, 12, 13, 14, 15}
P29-cell4 45 40 {16, 17, 18, 19, 20}
P29-cell5 45 50 {21, 22, 23, 24, 25}
P30-cell1 30 30 {1, 2, 3, 4, 5}
P30-cell2 35 40 {6, 7, 8, 9, 10, 11}
P30-cell3 25 30 {12, 13, 14, 15}
P30-cell4 25 25 {16, 17, 18, 19, 20}
P30-cell5 35 25 {21, 22, 23, 24, 25}
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this parameter has a tremendous negative efect on
the formation of cells and increases the layout cost.

(ii) Te use of a meta-heuristic algorithm compared to
exact solution methods is much better in terms of the
speed of determining the layout, and managers are
suggested tomeasure the efciency of these algorithms
in high-risk layouts while using multiple algorithms.

(iii) Cell layout technology can reduce the layout cost for
many production units with continuous material
fow and increase the speed of material fow.

(iv) Because CLPs that assume unequal dimensions for
cells and machines are very difcult, entry and exit
points of cells should be in their center to solve such
problems.

Table 19: Length and width of machines inside cells for problems 26 to 30.

Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
P26-length 9 1 8 1 3 9 3 3 1 7 1 6 4 3 9 3 8 3 4 3
P26-width 3 1 1 4 2 8 4 2 8 3 7 7 2 8 8 7 1 4 9 9
P27-length 8 8 6 8 3 4 2 2 8 2 5 2 4 4 9 6 7 1 1 6 5 7
P27-width 6 2 2 7 8 5 7 3 9 5 4 3 5 1 5 6 4 6 4 1 4 2
P28-length 5 3 8 4 6 9 7 3 8 5 3 1 8 4 1 1 2 4 2 4 6 1
P28-width 1 8 1 3 9 7 9 8 5 1 3 7 8 2 4 6 8 3 8 9 8 1
P29-length 2 1 6 7 9 3 7 6 5 7 7 2 2 4 9 5 3 5 5 5 1 6 3 7 6
P29-width 3 5 1 6 8 9 2 6 8 5 2 1 8 8 4 1 6 7 2 4 7 4 8 8 9
P30-length 7 7 1 1 3 4 6 4 4 6 2 4 4 5 5 1 1 6 6 7 5 5 6 9 6
P30-width 9 3 1 2 8 6 2 8 7 1 8 8 3 5 7 2 1 1 6 6 7 2 1 3 3

Table 20: Mean values (RPD) of the criteria obtained from implementation of three meta-heuristic algorithms on 30 random problems.

Problem number Problem size
ICA PSO GA

Cost Time Cost Time Cost Time
1 3×12 7.29 1.38 4.24 194.08 3.55 76.07
2 3×12 4.13 0.90 4.94 192.01 3.08 75.12
3 3×10 3.75 0.57 1.66 184.11 5.52 71.52
4 3×10 1.38 0.44 1.72 180.97 2.27 69.89
5 3×15 4.83 0.06 5.88 208.53 9.05 89.79
6 3×15 21.05 1.24 7.69 203.54 7.09 86.52
7 3×16 8.23 2.74 7.02 223.17 8.98 91.76
8 3×16 8.77 1.27 8.46 212.03 3.94 94.29
9 3×13 4.17 3.07 4.99 199.66 7.32 78.15
10 3×13 8.20 1.36 4.19 194.64 6.81 77.83
11 4×12 4.04 0.75 4.58 179.69 9.47 67.78
12 4×12 3.09 0.57 10.92 185.76 12.16 67.91
13 4×14 4.78 2.006 5.47 196.62 25.66 76.60
14 4×14 3.16 1.43 4.52 195.50 5.59 71.87
15 4×16 4.70 1.35 6.39 196.31 6.15 80.02
16 4×16 3.96 0.90 5.34 194.05 4.47 78.06
17 4×18 4.61 4.89 5.63 198.68 3.55 83.71
18 4×18 5.18 5.24 4.48 201.41 5.15 81.31
19 4× 20 2.64 1.73 5.69 207.26 5.13 90.95
20 4× 20 3.42 1.23 3.83 210.43 1.59 91.29
21 5×15 5.80 2.74 4.99 179.57 5.01 69.93
22 5×16 5.25 1.25 4.003 182.81 3.93 70.83
23 5×18 3.40 0.35 8.57 189.39 2.65 73.11
24 5×18 7.07 0.70 8.80 192.81 3.72 72.37
25 5× 20 5.97 1.76 4.09 197.05 4.55 74.69
26 5× 20 9.32 10.60 5.30 195.59 4.42 76.34
27 5× 22 3.24 0.68 1.75 203.29 11.36 103.01
28 5× 22 3.45 0.58 5.16 204.43 4.22 79.71
29 5× 25 3.72 1.94 5.38 216.79 2.76 88.68
30 5× 25 4.23 1.44 5.32 152.66 4.56 86.64

Average 5.42 1.84 5.37 195.76 6.12 79.85
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Figure 13: RPD values of the layout cost of meta-heuristic algorithms for stochastic problems.
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Figure 14: RPD values of the computational time of meta-heuristic algorithms for stochastic problems.
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(v) Consequently and in order to solve CLPs, entry and
exit points of machines should be considered in
their center.

(vi) Te fow of materials between cells and machines
can be nondeterministic; in other words, it can be
probabilistic and dynamic.

Table 21: Normality results of data related to the three proposed algorithms.

Criterion type
Kolmogorov–Smirnov’s testa Shapiro–Wilk’s test

Statistic Df Sig Statistic Df Sig
COICA 0.220 30 0.001 0.679 30 0.000
COPSO 0.171 30 0.025 0.932 30 0.055
COGA 0.214 30 0.001 0.697 30 0.000
TOICA 0.267 30 0.000 0.649 30 0.000
TOPSO 0.124 30 0.200∗ 0.947 30 0.144
TOGA 0.142 30 0.124 0.937 30 0.076
∗Lower limit signifcance value. aLilifores signifcance correction.

Table 22: Homogeneity results of variances of three independent communities in terms of layout cost.

Leven statistic Intercellular degree of
freedom (Df1)

Intracellular degree of
freedom (Df2)

signifcant level (sig.)

2.111 2 87 0.127

Table 23: ANOVA results related to the equality of means of the three communities in terms of layout cost.

Source of
changes Sum of squares Degree of

freedom
Mean of
squares Statistic F Signifcant level

(sig.)
Intercells 10.610 2 5.305

0.429 0.652Intracells 1074.984 87 12.356
Total 1085.594 89

Table 24: Homogeneity results of variances of three independent communities in terms of computational time.

Leven statistic Intercellular degree of
freedom (Df1)

Intracellular degree of
freedom (Df2) Signifcant level (sig.)

14.267 2 87 0.000

Table 25: Results of ANOVA related to the equality of means of the three communities in terms of computational time.

Source of
changes Sum of squares Degree of

freedom
Mean of
squares Statistic F Signifcant (sig.)

Intercells 571265.895 2 285632.985 3212.937 0.000
Intracells 7734.377 87 88.901
Total 579000.273 89

Table 26: Tukey test results related to pairwise comparisons of computational time of three meta-heuristic algorithms.

F (I) F (J) Mean diference
(I-J) Standard deviation Signifcant level

95% confdence level
Low level High level

1 2 −193.92267 2.43449 0.000 −199.7277 −188.1177
3 −78.01947 2.43449 0.000 −83.8245 −72.2145

2 1 193.92267 2.43449 0.000 188.1177 199.7277
3 115.90320 2.43449 0.000 110.0982 121.7082

3 1 78.01947 2.43449 0.000 72.2145 83.8245
2 −115.90320 2.43449 0.000 −121.7082 −110.0982
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Tese points can be determined in future works.

6. Conclusions

In this paper, a new mixed nonlinear programming model
was presented for CLPs under the condition of unequal
dimensions of cells and machines. Furthermore, it was as-
sumed the cells’ location in the workshop and the machines’
location inside the cells are not predetermined, and the cells
and machines can rotate. Based on the research fndings,
a cellular layout that assumes unequal dimensions of cells
and machines can be used for products with batch pro-
duction, and cell layout can be applied to CMSs aiming to
move from traditional job shop layout to cellular layout. In
the same way, cellular layout can be used in noncontinuous
industries that have a job shop layout.

In brief, the following conclusions were made.
Due to nonlinearity of the developed model and failure

to reach an optimal solution, the model was linearized. Ten
in order to assess its validity, a small-scale problem was
solved by GAMS software and the results approved the
model’s validity.

(i) Since the problems considered in this research
were continuous, (ICA), an efcient and contin-
uous algorithm, was used to solve the small-scale
problem. Comparison of the ICA and GAMS

software showed that the presented model
was valid.

(ii) To evaluate the mixed nonlinear programming
model and meta-heuristic algorithms, 30 random
problems were designed and solved by three al-
gorithms (ICA, PSO, and GA). Ten statistical
analysis was done on the results.

(iii) Similarly, the mean values of the objective function
related to three meta-heuristic algorithms were
determined.

(iv) Te results related to the center coordinates of the
cells in the workshop and the center coordinates of
the machines within each cell were presented in
Tables and Figures after implementation of ICA,
PSO, and GA for the 30th random problem.

(v) Te (RPD) values of the layout cost and compu-
tational time for all the three mentioned algo-
rithms were determined.

(vi) Normality and variance homogeneity tests were
performed before doing the ANOVA test on the
results obtained from the three meta-heuristic
algorithms.

(vii) Ten ANOVA test results indicated no signifcant
diference between the mean costs of the three
meta-heuristic algorithms; however, there was
a signifcant diference between the mean com-
putational times among the three algorithms.
Terefore, the Tukey test was used to test which
two groups difered in terms of computational
time. Te Tukey test results also revealed that the
mean computational times of all the three algo-
rithms were diferent.

(viii) Finally, it was found that ICA had reached the
optimal solution in a very short computational
time compared to the other two meta-heuristic
algorithms. Tus, the superiority of ICA over PSO
and GA is evident.

6.1. Study Limitations. Tere are always limitations in any
research, and the current study is no exception. Te limi-
tations of the current research are as follows:

(1) Considering rectangular shapes for the machines to
solve cell layout problems.

Table 27: Tamhane’s T2 test results related to pairwise comparisons of computational time of three meta-heuristic algorithms.

F (I) 95% confdence
level

Mean diference∗
(I-J) Standard deviation Signifcant level

95% confdence level
Low level High level

1 2 −193.92267 2.43449 0.000 −200.2245 −187.6208
3 −78.01947 1.67615 0.000 −82.2420 −73.7969

2 1 193.92267 2.49392 0.000 187.6208 200.2245
3 115.90320 2.95822 0.000 108.5971 123.2093

3 1 78.01947 1.67615 0.000 73.7969 82.2420
2 −115.90320 2.95822 0.000 −123.2093 −108.5971

∗Te values related to the mean diference are signifcant at 0.05.
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Figure 15: Mean computational time of three meta-heuristic
algorithms.
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(2) Considering the entry and exit points of machines in
their center.

(3) Considering the entry and exit points of cells in their
center.

(4) Not considering stochastic condition for cells and
machines.

6.2. Future Works. For future investigations, other re-
searchers can further develop this research in the following
directions:

(1) Te problems of cellular layout can be investigated in
dynamic and probabilistic modes.

(2) ICA provides encouraging results for CLPs when the
material fow is considered at the center of the cells
and machines. In the future, ICA can be applied for
CLPs while considering entry and exit points for cells
and machines.

(3) ICA is an optimization method that can reach
a globally optimal solution in less computational
time. Some parts of this algorithm can be modifed to
reduce the total cost value.

(4) ICA can cope with diferent types of optimization
problems. In the future, new constraints and mul-
tiobjective cases can be considered.

(5) Te cells and machines in this research had a rect-
angular shape. In the future, irregular shapes can be
considered for them.

Data Availability

Te data used to support the fndings of this study are
available in the article.
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