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A stochastic discrete fractional Cournot duopoly game model with a unique interior Nash equilibrium is developed in this study.
Some sufcient criteria of the Lyapunov stability in probability for the proposed model at the interior Nash equilibrium are
derived using the Lyapunov theory.Te proposed model’s fnite time stability in probability is then investigated using a nonlinear
feedback control approach at the interior Nash equilibrium. Te stochastic Bellman theory is also used to explore the locally
optimum control problem. Furthermore, bifurcation diagrams, time series, and the 0-1 test are used to investigate the chaotic
dynamics of this model. Finally, numerical examples are given to illustrate the obtained results.

1. Introduction

Diferential or diference equations are usually used as
a powerful analytical tool to study complex behavior in
economics [1–17]. However, this kind of model just con-
siders what occurs in the present state but ignores past
phases of the process, or what has occurred in earlier states
[18]. In reality, in economic processes, these variables are
afected not only by their current values but also by their
previous values. As a result, the efect of memory on history
needs to be considered when building models [19]. For
example, the dynamical behavior of the fractional difer-
entiated Cournot triopoly game was investigated by Al-
khedhairi [20]. In addition, Al-khedhairi [21] explored
the complex dynamics of the discrete version of the frac-
tional diferentiated duopoly game. Notwithstanding the
memory benefts of the continuous fractional Cournot tri-
opoly game, we are unable to directly employ its numerical
discretization strategy since it will rapidly amass numerical
mistakes [22, 23]. Te diference equation is more useful for
modeling on-discrete time scales. To capture the memory
efect, a fractional version of it is now introduced.

Recently, discrete fractional calculus [24–28] has
attracted more and more attention, which is particularly
suitable for building discrete models with memory efects.
Wu and Baleanu [29] proposed a discrete fractional lo-
gistic map and studied its chaos. Ten, Wu et al. [30]
studied discrete chaos in fractional sine and standard
maps. Later, the Lyapunov functions are used to study in
the context of nabla discrete fractional systems by Wei
et al. [31]. In [32], Du and Jia discussed the fnite-time
stability of a family of nonlinear fractional delay difer-
ence systems. Furthermore, Yang et al. [33] studied the
mean square asymptotic stability of discrete fractional
stochastic neural networks with multiple time-varying
delays. After that, some researchers proposed various
fractional models and investigated their dynamical be-
haviors [34–41].

As an application, Xin et al. [23] proposed a discrete
fractional Cournot duopoly game to overcome the error
caused by the discretization of the continuous fractional
models. Moreover, based on the above model, some discrete
fractional economic models had been proposed and studied
successively [18, 42–46].
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However, the current literature mainly focuses on de-
terministic Cournot oligopoly games and little focus on
stochastic settings. It is known that stochastic perturbation is
an important factor in the economy. For example, Xin and
Wang [47] proposed a stochastic Cournot duopoly game in
a block chain cloud services market driven by Brownian
motion. However, there is still a lack of research on frac-
tional Cournot oligopoly games with stochastic
perturbation.

In light of this, discrete fractional systems can better
characterize the dependence of discrete systems on past
information throughout their evolution. Te discrete frac-
tional operator provides us with a powerful tool to study the
evolution of games. In our model, we will use a truncated
version of the discrete Grünwald-Letnikov fractional dif-
ference operator that incorporates a short-term memory
process, which can be interpreted as a set of sliding delays or
short-term information included in the model. In the real
world, this may represent diferences in the time it takes to
decide between diferent players of the game or simply be
considered as the time it takes for a certain process to occur
in a complex gaming system, for example, it may represent
the time it takes for negotiation between the management of
a frm.

On the other hand, older historical information may not
accurately refect current market demand. Terefore, two
fnite rational frms try to ignore older historical information
and use only recent historical information when formulating
their strategies and playing the game, which implies that the
fnite rational frms will use the short-memory adjustment
mechanism against frms competing with them. Terefore,
the discrete Grünwald–Letnikov fractional diference op-
erator used in this paper is more fexible and universal
compared to the discrete Caputo fractional diference op-
erator with long memory.

In addition, because models in real-world environments
are inevitably disturbed by stochastic factors, we shall in-
troduce stochastic noise into the modeling to obtain a more
general game model that captures the infuence of stochastic
factors.

Terefore, this study aims to bring together three areas:
game theory, discrete fractional calculus, and stochastic
analysis to develop a more general game model and to
analyze some of the properties of that model. Te main
contributions of this paper are as follows:

(1) We develop a new class of discrete fractional models
with stochastic perturbations and apply them to the
modeling of a Cournot duopoly game, which serves
as a theoretical foundation for further research into
various economic models, fnance models, biological
evolution models, and so on.

(2) Te Lyapunov stability in probability and fnite time
stability in probability are proved using the Lya-
punov theory, which shows that the Lyapunov
function approach to study the stability of the sto-
chastic discrete fractional model is a powerful tool.

(3) Te locally optimal control conditions are obtained
via the stochastic Bellman theory and feedback
control principle.

Te rest of this article is structured as follows. Section 2
introduces the defnitions and theories of discrete fractional
calculus. In Section 3, a new stochastic discrete fractional
Cournot duopoly game model is constructed using the
discrete Grünwald–Letnikov fractional diference operator.
Te stability in probability and fnite time stability in
probability are demonstrated in Section 4. A feedback
controller is proposed to study the locally optimal control in
Section 5.Te stochastic discrete fractional Cournot duopoly
game model with 3-period is discussed in Section 6. Section
7 gives several examples to illustrate the validity of the
obtained results. Conclusions are given in Section 8.

2. Mathematical Preliminaries

Let N � 0, 1, 2, · · ·{ }, N � 0, 1, 2, · · ·{ }∪ +∞{ }, N+ � 1,{

2, · · ·}, and N0,h � − h, . . . , 0{ } for h ∈ N+. Let R, R+, and Rn

denote the set of real numbers, the set of positive real
numbers, and the set of n × 1 real column vectors, re-
spectively. Let ‖.‖ denote Euclidean norm. LetD be an open
set ofRn containing the origin, andBδ(x) is an open ball of
radius δ centered at x in Rn with its closed ball Bδ(x). Let
(Ω,F,P) be a complete probability space, in which for any
w ∈ Ω, w≜w(k)(k ∈ N) is a sequence of independent and
identically distributed Rd-valued random vectors (d ∈ N+),
and E[.] is the expectation operator. For each k ∈ N+, we let
Fk ⊆F denote the σ-algebra generated by the random
variables w(0), . . . , w(k − 1). Te resulting sequence
Fk􏼈 􏼉k∈N+ of σ-algebras is a fltration on the probability space

(Ω,F,P). Moreover, for every k ∈ N+, w(k) is independent
of the σ-algebra Fl for all 0≤ l≤ k [48].

We frst introduce the following α-order
Grünwald–Letnikov diference operator.

Defnition 1 (see [18, 49, 50]). For a discrete function x(k)

on N, the α-order Grünwald–Letnikov diference operator
∆α is defned as follows:

∆αx(k) �
1
h
α 􏽘

k

j�0
(− 1)

j
α

j

⎛⎝ ⎞⎠x(k − jh), (1)

where h(h ∈ R+) and α ∈ (0, 1) denote a sampling period
and the fractional order, respectively, and the binomial

coefcient α
j

􏼠 􏼡 can be computed by

α

j

⎛⎝ ⎞⎠ �

1 for j � 0,

α(α − 1) · · · (α − j + 1)

j!
for j> 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Now, we consider the following stochastic discrete dy-
namical system [51, 52].
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x(k + 1, w) � f(x(k, w)) + g(x(k, w))w(k)≜F(x(k, w), w(k)), (3)

where x: N ×Ω⟶ D is a stochastic process with initial
condition x(0, w) ≡ x0 ∈ D; f: D⟶ D and g: D⟶ Rd

are continuous functions satisfying f(0) � 0 and g(0) � 0,
respectively.

Similar to [51], we denote the measurable map s: N ×

D ×Ω⟶ D as the family of maps of the stochastic dy-
namical system (3) satisfying

(i) the co-cycle property s(k, s(l, x,ω),ω) � s(k + l,

x,ω) for all k, l ∈ N,
(ii) the identity (on D) property s(0, x,ω) � x for all

x ∈ D,ω ∈ Ω, and
(iii) the measurable map sk � s(k, ·,ω): D⟶ D is

continuous for all k ∈ N outside a P-nullset.

Clearly, if the sample path trajectory is denoted by sx �

s(·, x, ·): N ×Ω⟶ D for any x ∈ D, then there exists
a trajectory defned for all k ∈ N, and ω ∈ Ω satisfying the
dynamical process (3) with initial condition x(0) � x. And
the process x(k) � 0 a.s. satisfying the system (3) is called the
zero solution to the system (3). For convenience, we write
s(k, x) for s(k, x,ω) and sx(k) for sx(k,ω) in the following.

Now, several defnitions and theorems about stochastic
stability are introduced below.

Defnition 2 (see [51, 53])

(i) Te zero solution to the system (3) is Lyapunov
stable in probability if, for any ε> 0 and ρ ∈ (0, 1),
there exists a δ � δ(ε, ρ)> 0 such that for all
x0 ∈Bδ(0),

P supk∈N‖x(k)‖> ε( 􏼁< ρ. (4)

(ii) Te zero solution to the system (3) is asymptotically
stable in probability if it is Lyapunov stable in
probability and, for any ρ ∈ (0, 1), there exists
a δ � δ(ρ)> 0 such that for all x0 ∈Bδ(0),

P lim
k⟶∞

‖x(k)‖ � 0􏼒 􏼓≥ 1 − ρ. (5)

(iii) Te zero solution to the system (3) is globally as-
ymptotically stable in probability if it is Lyapunov
stable in probability and, for all x0 ∈ Rn,

P lim
k⟶∞

‖x(k)‖ � 0􏼒 􏼓 � 1. (6)

(iv) Te zero solution of the system (3) is called mean
square stable (resp. asymptotically mean square
stable) if for any ε> 0, there exists a δ > 0 such that
for all x0 ∈Bδ(0),

E x(k)
2

􏽨 􏽩< ε, (7)

for all k (resp. limk⟶∞E[x(k)2] � 0).

Defnition 3 (see [52]). Te zero solution to the system (1) is
fnite time stable if there exists a state indexed stochastic
process K: D ×Ω⟶ N, called a stochastic settling-time,
such that the following statements hold:

(i) Finiteness of the stochastic settling-time. For every
x ∈ D, the stochastic settling-time K(x, .) is fnite
almost surely.

(ii) Finite time convergence in probability. For every
x(0) � x0 ∈ D∖ 0{ }, sx0(k,ω) ∈ D∖ 0{ } for
k ∈ [0, K(x0,ω)) and ω ∈ Ω, and

P s
x0 K x0( 􏼁( 􏼁

����
���� � 0􏼐 􏼑 � 1. (8)

And if x(0) � x0 � 0, then K(0,ω)≜ 0,ω ∈ Ω.
(iii) Lyapunov stability in probability. For every ε> 0

and ρ ∈ (0, 1), there exists δ � δ(ε, ρ)> 0 such that,
for all x0 ∈Bδ(0),

P sup
k∈ 0,K x0( )[ ]

s
x0(k)

����
����> ε⎛⎝ ⎞⎠≤ ρ. (9)

Te zero solution to the system (3) is globally fnite time
stable in probability if it is fnite time stable in probability
with D � Rn.

Defnition 4 (see [51]). Consider the stochastic discrete
dynamical system (1) and let V: D⟶ R. Ten, the dif-
ference operator ∆ of x ∈ D is defned by

∆V(x) � E[V(F(x,ω))] − V(x). (10)

Ten, the diference operator ∆ of the state vector
x(k) ∈ D for k ∈ N can be written as follows:

∆V(x(k)) �E[V(F(x,ω))]|x�x(k) − V(x(k)), (11)

which is a random variable now.

Theorem 5 (see [51]). For the system (1), assume that there
exists a continuous function V: D⟶ R such that

V(0) � 0,

V(x)> 0,

∆V(x)≤ 0.

x ∈ D, x≠ 0, (12)

Ten, the zero solution to the system (3) is Lyapunov
stable in probability. If, in addition, for every ε> 0 and
Bε(0) ⊂ Dr ⊂ D, where Dr ⊂ D is a bounded neighbor-
hood of the origin, there exists c � c(ε)> 0 such that

∆V(x)≤ − c, x ∈ Dr∖Bε(0); (13)
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then, the zero solution to the system (3) is asymptotically
stable in probability. Moreover, if D � Rn, V(.) is radially
unbounded, then the zero solution to the system (3) is
globally asymptotically stable in probability.

Theorem 6 (see [52]). For the system (3), assume that there
exists a continuous and radially unbounded function V: D �

Rn⟶ R such that

V(0) � 0,

V(x)> 0, x ∈ D, x≠ 0,

E[V(F(x, w))]≤ϕ(V(x)), x ∈ Rn
\ 0{ },

(14)

where ϕ: R⟶ R denotes a nondecreasing function, then the
zero solution to the system (3) is globally fnite time stable in
probability. Moreover, there exists a stochastic settling-time
K(., .): D × Ω⟶ N such that E[K(x0, w)]≤C0 (C0 is
a fnite constant).

Theorem 7 (see [48]). Consider the following controlled
stochastic discrete dynamical system of the system (3) is given
by

x(k + 1) � f(x(k), u(k)) + g(x(k), u(k))w(k)≜F(x(k), u(k), w(k)), (15)

with initial condition x(0) � x0 ∈ D and u(k) ∈ U⊆Rm.
Taking the performance measure as

J x0, u(.)( 􏼁 � E 􏽘

∞

k�0
L(x(k), u(k))⎡⎣ ⎤⎦, (16)

assume that there exists a continuous radially unbounded
function V: Rn⟶ R and a control law ϕ: Rn⟶ U such
that

V(0) � 0,

ϕ(0) � 0,

V(x)> 0, x ∈ D, x≠ 0,

E[V(F(x, ϕ(x), w))]<V(x), x ∈ Rn
\ 0{ },

L(x, ϕ(x)) + E[V(F(x, ϕ(x), w))] − V(x) � 0,

L(x, u) + E[V(F(x, u, w))] − V(x)≥ 0.

(17)

Ten, zero solution to the system (15) is asymptotically
stable in probability, and the feedback control u(.) � ϕ(x)

minimizes the performance measure, that is,
J(x0, ϕ(x)) � V(x0) � minu(.)∈U J(x0, u(.)).

Remark 8. For further details on optimal control, including
the construction of the Hamiltonian function, see [48].

Theorem 9 (see [53]). Consider the following stochastic
discrete dynamical system is given by

x(i + 1) � F(i, x(− h), . . . , x(i)) + 􏽘
i

k�0
G(i, k, x(− h), . . . , x(k))w(k), i ∈ N, (18)

with the initial condition x(i) � φi, i ∈ N0,h. Here,
F, G: N × Rh+1⟶ R. If there exist a nonnegative func-
tional Vi � V(i, x(− h), . . . , x(i)) and two positive numbers
c1, c2 such that the following conditions hold, then the zero
solution to the system (18) is asymptotically mean square
stable.

E V 0,φ− h, . . . ,φ0( 􏼁􏼂 􏼃≤ c1 supi∈N0
E φi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩,

E ∆Vi􏼂 􏼃≤ − c2E|x(i)|
2
, i ∈ N,

(19)

where ∆Vi � V(i + 1, x(− h), . . . , x(i + 1)) − V(i, x(− h),

. . . , x(i)). In addition, if there exist a nonnegative functional
V1i � V(i, x(− h), . . . , x(i)) which satisfes condition (19) and
the conditions

E ∆V1i􏼂 􏼃≤ aE |x(i)|
2

􏽨 􏽩 + 􏽘

i

k�− h

AikE |x(k)|
2

􏽨 􏽩, i ∈ N, Aik ≥ 0,

a + b< 0, b � sup
i∈N

􏽘

∞

j�i

Aji,

(20)

hold, then the zero solution to the system (18) is asymptotically
mean square stable.

3. The Model

In this section, we will construct a stochastic discrete
fractional Cournot duopoly game model based on a discrete
Cournot duopoly game model in [23].
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In the market, there is a standard Cournot rivalry be-
tween frms 1 and 2, both of which provide homogenous
items that are perfect replacements.

(a) Assume that the market-clearing price is an inverse
demand function

p(k) � a − b qi(k) + qj(k)􏼐 􏼑, i, j � 1, 2, i≠ j, (21)

where qi(k) ∈ D denotes the quantity supplied by
frms i(i � 1, 2) in period k(k � 0, 1, 2, 3, · · ·), and
a> 0 and b> 0 are constants.

(b) Assume that the cost functions are twice diferen-
tiable functions given by

Ci(k) �
1
2
ciq

2
i (k), i � 1, 2, (22)

where ci > 0(i � 1, 2) are constants.

It follows from (21) and (22) that the profts of frms 1
and 2 can be calculated by

Π1 q1(k), q2(k)( 􏼁 � p(k)q1(k) − C1(k),

Π2 q1(k), q2(k)( 􏼁 � p(k)q2(k) − C2(k),
(23)

where Π1 and Π2 denote the profts of frms 1 and 2,
respectively.

Ten, the marginal profts of frms 1 and 2 can be ob-
tained by diferentiating with respect to q1(k) and q2(k),
respectively, that is,

Φ1(k) �
zΠ1 q1(k), q2(k)( 􏼁

zq1(k)
� a − c1 + 2b( 􏼁q1(k) − bq2(k),

Φ2(k) �
zΠ2 q2(k), q1(k)( 􏼁

zq2(k)
� a − c2 + 2b( 􏼁q2(k) − bq1(k).

(24)

Note that frms can consider a repeated adjustment game
mechanism based on the long-memory efect and the local
estimation of the marginal proft, which can be described by

∆αq1(k + 1) � α1q1(k)Φ1(k),

∆αq2(k + 1) � α2q2(k)Φ2(k),
􏼨 (25)

where αi > 0 for i � 1, 2, and ∆α denotes the fractional
Grünwald–Letnikov diference operator, instead of the
α-order left Caputo-like delta diference operator in [23].

However, older historical data may not accurately refect
the current market demand. As a result, the two bounded
rational frms attempt to disregard older historical data and
use only recent historical data while developing strategies
and playing the game, which means that boundedly rational
frms will use a short-memory adjustment mechanism to
update the amount produced in each period k. In reality,
given the markets quick renewal and unpredictability, frms
frequently use just short-term historical data for reference
while developing their plans. In this study, we explore the
truncated version of the fractional Grünwald–Letnikov
diference operator to characterize the short-memory efect.

Using the truncated form of the fractional
Grünwald–Letnikov diference operator [50], the adjust-
ment game mechanism (25) turns into the following game
with the memory length (M ∈ N+).

q1(k + 1) � α1q1(k)Φ1(k) + αq1(k) − 􏽘
M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q1(k − l),

q2(k + 1) � α2q2(k)Φ2(k) + αq2(k) − 􏽘
M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q2(k − l).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

Furthermore, it is inevitable to be disturbed by stochastic
factors in the real environment. Terefore, to capture the
efect of stochastic factors, we introduce stochastic noise into

the above game and study the new stochastic discrete
fractional Cournot duopoly game system in this paper as
shown below:
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q1(k + 1) � α1q1(k)Φ1(k) + αq1(k) − 􏽘
M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q1(k − l)

+D1 q1(k), q2(k)( 􏼁w(k),

q2(k + 1) � α2q2(k)Φ2(k) + αq2(k) − 􏽘
M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q2(k − l)

+D2 q1(k), q2(k)( 􏼁w(k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where Di(i � 1, 2): D⟶ R are continuous functions, and
all stochastic variables w(k) are independent and identically
distributed with E[w(k)] � 0 and E[w(k)2] � 1.

Now, the Nash equilibrium for the system (27) will be
explored. Assume that N∗ � (q∗1 , q∗2 ) is a Nash equilibrium
satisfying Di(q∗1 , q∗2 ) � 0 for i � 1, 2).

Proposition 10. Te system (9) has four Nash equilibria:

N1 � (0, 0),

N2 � p1, 0( 􏼁,

N3 � 0, p2( 􏼁,

N4 � (p, r),

(28)

where

p1 �
α1a + α + β − 1
α1 2b + c1( 􏼁

,

p �
α1α2a b + c2( 􏼁 + 2α2b + α2c2 − α1b( 􏼁(α + β − 1)

α1α2 3b
2

+ 2bc1 + 2bc2 + c1c2􏼐 􏼑
,

p2 �
α2a + α + β − 1
α2 2b + c2( 􏼁

,

r �
α1α2a b + c1( 􏼁 + 2α1b + α1c1 − α2b( 􏼁(α + β − 1)

α1α2 3b
2

+ 2bc1 + 2bc2 + c1c2􏼐 􏼑
,

(29)

and β � 􏽐
M
i�1βi, βi � − (− 1)i+1 α

i + 1􏼠 􏼡.

Proof. To study the equilibrium points of this system, we
frst introduce the idea of solving equilibrium point in the
following. Without loss of generality, consider a system has
the form

x(i + 1) � f(x(i), x(i − 1), . . . , x(i − j)). (30)

Te equilibrium point x∗ of system (30) satisfes the
following form.

x
∗

� f x
∗
, x
∗
, . . . , x

∗
( 􏼁. (31)

Substituting now, N∗ � (q∗1 , q∗2 ) into (27) yields

q
∗
1 � α1q

∗
1 a − c1 + 2b( 􏼁q

∗
1 − bq

∗
2( 􏼁 + αq

∗
1 − 􏽘

M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q

∗
1 ,

q
∗
2 � α2q

∗
2 a − c2 + 2b( 􏼁q

∗
2 − bq

∗
1( 􏼁 + αq

∗
2 − 􏽘

M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q

∗
2 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

by straightforward calculation; we can obtain the assertions
of Proposition 10 and the proof ends. □

Remark 11. Since a, b, αi(i � 1, 2), and ci(i � 1, 2) are
positive constants, then α2(c2 + 2b)≠ 0, α1(c1 + 2b)≠ 0 and
α2α1(3b2 + 2bc1 + c2c1 + 2c2b)≠ 0. As a result, the Nash
equilibrium points in Proposition 10 have practical value.

Furthermore, if the two frms adopt the same learning law
(that is α1 � α2), then we can obtain a positive Nash
equilibrium when the memory intensity and length satisfy
the condition α + β> 1.

Similar to [23], it follows that the equilibrium points N1,
N2, and N3 are boundary equilibria, and the equilibrium
point N4 is a unique interior Nash equilibrium point.
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Considering the meaning of the equilibrium point in real-
world problems, we exclusively investigate the stability of the
interior equilibrium point N4 � (p, r) in this study.

4. Stochastic Stability

4.1. Lyapunov Stable in Probability. We present sufcient
conditions on the Lyapunov stability in probability by
employing the Lyapunov theory for the system (27) in this
subsection.

According to the idea of [53], we will consider the as-
ymptotically mean square stability of the linearized system of
(27). Putting, frst, x(k) � q1(k) − p, y(k) � q2(k) − r, and
centering (27) via new variables x(k) and y(k), we have.

x(k + 1) � θ1x(k) + σx(k)w(k) + θ2y(k)

+ 􏽘
M

i�1
βix(k − i) + H1(x(k), y(k)),

y(k + 1) � φ1y(k) + σy(k)w(k) + φ2x(k)

+ 􏽘
M

i�1
βiy(k − i) + H2(x(k), y(k)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where

θ1 � − 2 α1c1p − 4 α1bp − α1br + α + α1a, θ2 � − α1pb,

φ1 � α2a − 2 α2c2r + α − 4 α2br − α2bp( 􏼁,φ2 � − α2rb,

H1(x(k), y(k)) � − α1c1 − 2 α1b( 􏼁(x(k))
2

− α1x(k)by(k) + αp

+ 􏽘
M

i�1
βip + α1pa − α1c1p

2
− 2 α1bp

2
− α1pbr − p,

H2(x(k), y(k)) � − α2c2 − 2 α2b( 􏼁(y(k))
2

− α2y(k)bx(k) + αr

+ 􏽘
M

i�1
βir + α2ra − α2c2r

2
− 2 α2br

2
− α2pbr − r.

(34)

Theorem 12. Let Ψ � max σ2 − 1 + (M + 2)θ1
2 + (M+􏽮

2)φ2
2, σ2 − 1 + (M + 2)θ2

2 + (M + 2)φ1
2}, D1 � σ(q1(k)

− p), and D2 � σ(q2(k) − r). Te system (27) is Lyapunov
stable in probability at N4 � (p, r) if

2θ21 + 2φ2
2 − 1< 0,2θ22 + 2φ2

1 − 1< 0, (35)

and

Ψ +(M + 2) β1
2

+ β2
2

+ β3
2

􏼐 􏼑< 0. (36)

Proof. Note that the linear part of (33) is as follows:

X(k + 1) � AX(k) + 􏽘
M

i�1
βiX(k − i) + σw(k)X(k), (37)

where A �
θ1 θ2
φ2 φ1

􏼠 􏼡, X(k) � (x(k), y(k))′, and (.)′ de-

notes the transpose operator. We now consider the auxiliary
system of (37).

􏽢X(k + 1) � A 􏽢X(k), (38)

where 􏽢X(k) � (x̂(k), ŷ(k))′.
Obviously, it follows from condition (35) and Young’s

inequality that
􏽢X(k + 1)

′ 􏽢X(k + 1) − 􏽢X(k)
′ 􏽢X(k)≤ 0. (39)

So, we can take the Lyapunov function of (38) as follows:

V( 􏽢X(k)) � 􏽢x(k)
2

+ 􏽢y(k)
2
. (40)
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Terefore, the Lyapunov function of (37) is constructed
as the form,

V1(X(k)) � X(k)
′
X(k) � x(k)

2
+ y(k)

2
. (41)

By (37) and Hölder’s inequality, we have

E ∆V1(X(k))􏼂 􏼃 � E x(k + 1)
2

+ y(k + 1)
2

− x(k)
2

− y(k)
2

􏽨 􏽩

� E θ1x(k) + σx(k)( w(k) + θ2y(k)􏼂

+ β1x(k − 1) + · · · + βMx(k − M)􏼁
2

+ φ1y(k) + σy(k)w(k) + φ2x(k)(

+ β1y(k − 1) + · · · + βMy(k − M)􏼁
2

− x(k)
2

− y(k)
2
􏽩

� E σ2x(k)
2

+ σ2y(k)
2

􏽨

+ θ1x(k) + θ2y(k) + β1x(k − 1) + · · · + βMx(k − M)( 􏼁
2

+ φ1y(k) + φ2x(k) + β1y(k − 1) + · · · + βMy(k − M)( 􏼁
2

− x(k)
2

− y(k)
2
􏽩

≤ σ2 − 1 +(M + 2)θ1
2

+(M + 2)φ2
2

􏼐 􏼑E x(k)
2

􏽨 􏽩

+ σ2 − 1 +(M + 2)θ2
2

+(M + 2)φ1
2

􏼐 􏼑E y(k)
2

􏽨 􏽩

+(M + 2)β21E x(k − 1)
2

􏽨 􏽩 + · · · +(M + 2)β2ME x(k − M)
2

􏽨 􏽩

+(M + 2)β21E y(k − 1)
2

􏽨 􏽩 + · · · +(M + 2)β2ME y(k − M)
2

􏽨 􏽩

≤ΨE X(k)
2

􏽨 􏽩 +(M + 2)β21E X(k − 1)
2

􏽨 􏽩 + · · ·

+(M + 2)β2ME X(k − M)
2

􏽨 􏽩.

(42)

Terefore, it follows from Teorem 9 that the zero so-
lution to the system (37) is asymptotically mean square
stable in probability, which implies that the system (27) is
Lyapunov stable in probability at N4 � (p, r). Te proof is
completed. □

4.2. Finite Time Stable in Probability. In this subsection, by
adopting the feedback control principle, we will study the
fnite time stability in probability for the system (27).

To address this problem, consider the following con-
trolled stochastic discrete fractional Cournot duopoly game
system:

q1(k + 1) � α1q1(k) a − c1 + 2b( 􏼁q1(k) − bq2(k)( 􏼁

+αq1(k) − 􏽘
M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q1(k − l)

+D1 q1(k), q2(k)( 􏼁w(k) + u1(k),

q2(k + 1) � α2q2(k) a − c2 + 2b( 􏼁q2(k) − bq1(k)( 􏼁

+αq2(k) − 􏽘
M

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q2(k − l)

+D2 q1(k), q2(k)( 􏼁w(k) + u2(k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)
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where ui(k)(i � 1, 2) are the feedback controllers that are
continuous functions with respect to q1(k) − p, q2(k) − r.

It follows from variable substitution x(k) � q1(k) − p

and y(k) � q2(k) − r that the system (43) can be reduced to

x(k + 1) � θ1x(k) + σx(k)w(k) + θ2y(k)

+ 􏽘
M

i�1
βix(k − i) + H1(x(k), y(k)) + u1(x(k), y(k)),

y(k + 1) � φ1y(k) + σy(k)w(k) + φ2x(k)

+ 􏽘
M

i�1
βiy(k − i) + H2(x(k), y(k)) + u2(x(k), y(k)).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Furthermore, if we take

u1(x(k), y(k)) � − θ2y(k) − H1(x(k), y(k)),

u2(x(k), y(k)) � − φ2x(k) − H2(x(k), y(k)),
(45)

then substituting the controls ui(.)(i � 1, 2) into (44) yields

x(k + 1) � θ1x(k) + σx(k)w(k) + 􏽘
M

i�1
βix(k − i),

y(k + 1) � φ1y(k) + σy(k)w(k) + 􏽘
M

i�1
βiy(k − i).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

We can observe that the variables x(k) and y(k) are
independent in the system (46). Terefore, we only need to
consider the fnite time stability in probability of the two
subsystems of (46), respectively.

Let (x(k), x(k − 1), . . . , x(k − M))′ � (z1,1(k), z1,2(k),

. . . , z1,M+1(k))′ ≜Z1(k). Ten, the frst subsystem of (46)
can be written as the following matrix form.

Z1(k + 1) � JZ1(k) + η(k), (47)

where J �

θ1 β1 · · · βM− 1 βM

1 0 · · · 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 · · · 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

η(k) � (σz1(k)w(k), 0, . . . , 0)′. Let (y(k), y(k − 1), . . . ,

y(k − M))′ � (z2,1(k), z2,2(k), . . . , z2,M+1(k))′ ≜Z2(k). Te
second subsystem of (46) can be discussed similarly.
Terefore, the following theorem follows from Teorem 6,
with its proof omitted.

Theorem 13. If there exists a continuous and radially un-
bounded function V: RM+1⟶ R such that

V(0) � 0,

V Zi(k)( 􏼁> 0, Zi(k) ∈ D, Zi(k)≠ 0,

E V Zi(k + 1)( 􏼁􏼂 􏼃≤ϕ V Zi(K)( 􏼁( 􏼁, Zi(k) ∈ RM+1
\ 0{ },

(48)

where ϕ: R⟶ R denotes a nondecreasing function and
i � 1, 2, then the system (27) is fnite time stable in probability
at N4 � (p, r) with the feedback controllers

u1(k) � − θ2 q2(k) − r( 􏼁 − H1 q1(k) − p, q2(k) − r( 􏼁,

u2(k) � − φ2 q1(k) − p( 􏼁 − H2 q1(k) − p, q2(k) − r( 􏼁.
(49)

From the study above, it shown that the memory length
and fractional order we take into consideration have a sig-
nifcant impact on the occurrence of a nonzero Nash
equilibrium point. By taking an acceptable fractional order
and memory step, a positive Nash equilibrium point can be
reached, indicating that these two frms continue to operate
side by side in the market. Tis helps to maintain the
market’s stability.

5. Optimal Control

In this section, with the help of the feedback control
principle, we will study stochastic locally optimal control for
a quadratic performance measure under a controlled version
of the system (33).

Denote the vector (x(k), x(k − 1), . . . ,

x(k − M), y(k), y(k − 1), . . . , y(k − M))′ as the vector
(T1(k), T2(k), . . . , T2M+2(k))′ ≜T(k), then the matrix form
of (33) is given by

T(k + 1) � RT(k) + H + WT(k)w(k), (50)

Complexity 9



where H � (H1(T1, TM+2), 0, . . . , 0, H2(T1, TM+2),

0, . . . , 0)′,

R �

θ1 β1 · · · βM θ2 0 · · · 0

1 0 · · · 0 0 0 · · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 · · · 0 0 0 · · · 0

φ2 0 · · · 0 φ1 β1 · · · βM

0 0 · · · 0 1 0 · · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 · · · 0 0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W �

σ 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 σ 0 · · · 0

0 0 · · · 0 0 0 · · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 · · · 0 0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(51)

To address the locally optimal control problem, we
consider a linear controlled version of the system (50).

T(k + 1) � RT(k) + WT(k)w(k) + u(k), (52)

with a performance measure

J(T(0), u(.)) � E 􏽘
∞

k�0
L(T(k), u(k))⎡⎣ ⎤⎦, (53)

where the initial value T(0) is in R2M+2 and the controller
u(.) is feasible and feedback with respect to the state T(k) in
(52) satisfying

E 􏽘

∞

k�0
|L(T(k), u(k))|⎡⎣ ⎤⎦<∞,

lim
k⟶∞

E[V(T(k))] � 0,

(54)

for some continuous radially unbounded function V, and
the cost function L(., .): R2M+2 × R2M+2⟶ R is a contin-
uous function [48].

In this paper, consider a quadratic performance mea-
sure, which is given by

J(T(0), u(.)) � E 􏽘
∞

k�0
T(k)
′
Y1T(k) + u(k)

′
Y2u(k)⎡⎣ ⎤⎦,

(55)

where Yi(i � 1, 2) is a positive defnite matrix.

Theorem 14. Te system (21) is locally asymptotically stable
in probability at zero; furthermore, the feedback controller
􏽢u(.) � (Y2 + I)− 1IRT(k) minimizes (22) such that

J(T(0), 􏽢u(.)) � T(0)
′IT(0), (56)

if the positive defnite matric I satisfes

I − Y1 � R
′
I
′

Y2 + I( 􏼁
− 1

􏽨 􏽩
′
Y2 Y2 + I( 􏼁

− 1IR

+ R
′IR + R

′
I Y2 + I( 􏼁

− 1IR + R
′
I
′

Y2 + I( 􏼁
− 1

􏽨 􏽩
′
IR

+ R
′
I
′

Y2 + I( 􏼁
− 1

􏽨 􏽩
′
I Y2 + I( 􏼁

− 1IR + W
′IW.

(57)

Proof. Taking V(T(k)) � T(k)′IT(k), the Hamiltonian
function has the following form:

H(T, u) � T(k)
′
Y1T(k) + u(k)

′
Y2u(k)

+ E (RT(k) + WT(k)w(k) + u(k))
′
I(RT(k) + WT(k)w(k)􏼔

+ u(k)] − T(k)
′
IT(k).

(58)

From (58), it follows that z2H/z2u � Y2 + I> 0; there-
fore, setting zH/zu � 0 gives the feedback control as follows:

􏽢u(.) � Y2 + I( 􏼁
− 1IRT(k). (59)

Further, it follows from (55) and (57) that

H(T, 􏽢u(.)) � 0, (60)

and ∆V(T(k)< 0, which means that the system (52) is lo-
cally asymptotically stable in probability at zero. Moreover,
the controller 􏽢u(.) � (Y2 + I)− 1IRT(k) minimizes (55), and
by Teorem 7,
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J(T(0), 􏽢u(.)) � V(T(0)) � T(0)
′IT(0). (61)

Te proof is completed. □

6. The Stochastic Discrete Fractional Cournot
Duopoly Game Model with M= 3

Specifcally, we present sufcient conditions on the Lya-
punov stability in probability and the fnite time stability in
probability for the system (27) with M � 3 at the interior
Nash equilibrium point.

Let M � 3, by (27), we have

q1(k + 1) � α1q1(k) a − c1 + 2b( 􏼁q1(k) − bq2(k)( 􏼁

+αq1(k) − 􏽘
3

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q1(k − l)

+D1 q1(k), q2(k)( 􏼁w(k),

q2(k + 1) � α2q2(k) a − c2 + 2b( 􏼁q2(k) − bq1(k)( 􏼁

+αq2(k) − 􏽘
3

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q2(k − l)

+D2 q1(k), q2(k)( 􏼁w(k).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Corollary 15. Te system (62) has a unique interior Nash
equilibrium point

N
∗

� N4 � (p, r), (63)

where

p �
A1α + A2α1 + A3α2

α2α1 3b
2

+ 2bc1 + c2c1 + 2c2b􏼐 􏼑
,

r �
B1α + B2α1 + B3α2

α2α1 3b
2

+ 2bc1 + c2c1 + 2c2b􏼐 􏼑
,

(64)

with parameters

A1 � α2c2 + 2 α2b − α1b,

A2 � α2ab + α2c2a − β2b + b − β1b − β3b,

A3 � − c2 + c2β1 + 2 β3b + c2β3 − 2 b + 2 β2b + c2β2 + 2 β1b,

B1 � α1c1 − α2b + 2 α1b,

B2 � α2ab + c1β2 + c1β1 + c1β3 − c1 + α2ac1 + 2 β2b − 2 b + 2 β1b + 2 β3b,

B3 � − β3b − β2b + b − β1b,

β1 � −
α

2
􏼠 􏼡,

β2 �
α

3
􏼠 􏼡,

β3 � −
α

4
􏼠 􏼡.

(65)
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Proof. Te result is a direct consequence of Proposition 10
with M � 3. □

Corollary 16. Let Ψ � max σ2 − 1 + 5θ1
2 + 5φ2

2, σ2 − 1􏽮

+ 5θ2
2 + 5φ1

2}, D1 � σ(q1(k) − p), and D2 � σ(q2(k) − r),
the system (62) is Lyapunov stable in probability at N4 �

(p, r) if

2θ21 + 2φ2
2 − 1< 0, 2θ22 + 2φ2

1 − 1< 0,

Ψ + 5 β1
2

+ β2
2

+ β3
2

􏼐 􏼑< 0.
(66)

Proof. It follows from variable substitution x(k) � q1(k) −

p and y(k) � q2(k) − r that the system (62) can be reduced
to

x(k + 1) � θ1x(k) + σx(k)w(k) + θ2y(k)

+ β1x(k − 1) + β2x(k − 2) + β3x(k − 3)

+H1(x(k), y(k)),

y(k + 1) � φ1y(k) + σy(k)w(k) + φ2x(k)

+ β1y(k − 1) + β2y(k − 2) + β3y(k − 3)

+H2(x(k), y(k)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

where

θ1 � α1a − 2 α1c1p + α − 4 α1bp − α1br( 􏼁, θ2 � − α1pb,

φ1 � α2a − 2 α2c2r + α − 4 α2br − α2bp( 􏼁,φ2 � − α2rb,

H1(x(k), y(k)) � − α1c1 − 2 α1b( 􏼁(x(k))
2

− α1x(k)by(k) + αp

+ β1p + β2p + β3p + α1pa − α1c1p
2

− 2 α1bp
2

− α1pbr − p,

H2(x(k), y(k)) � − α2c2 − 2 α2b( 􏼁(y(k))
2

− α2y(k)bx(k) + αr

+ β1r + β2r + β3r + α2ra − α2c2r
2

− 2 α2br
2

− α2pbr − r.

(68)

Considering the linearized system as above, the system
yields

x(k + 1) � θ1x(k) + σx(k)w(k) + θ2y(k)

+ β1x(k − 1) + β2x(k − 2) + β3x(k − 3),

y(k + 1) � φ1y(k) + σy(k)w(k) + φ2x(k)

+ β1y(k − 1) + β2y(k − 2) + β3y(k − 3).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(69)

Clearly, for the system (69), we can obtain the result of
Corollary 16 by using a proof similar to Teorem 12. Te
proof is completed. □

Remark 17. Here, we focus on the stability in probability of
the equilibrium point of the system (62). In Corollary 15, we
give sufcient conditions for the existence of the equilibrium
point. Te stability in probability of the equilibrium point of
the original system (62) is transferred to the stability in
probability of the zero equilibrium point of the new system
(67) using a translational transformation. Furthermore, we
can fnd that the zero solution of the linearized system (69)
of the system (67) exists.

To address the fnite time stability in probability for the
system (62), consider the controlled stochastic discrete
fractional Cournot duopoly game system below.

q1(k + 1) � α1q1(k) a − c1 + 2b( 􏼁q1(k) − bq2(k)( 􏼁

+αq1(k) − 􏽘
3

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q1(k − l)

+D1 q1(k), q2(k)( 􏼁w(k) + u1(k),

q2(k + 1) � α2q2(k) a − c2 + 2b( 􏼁q2(k) − bq1(k)( 􏼁

+αq2(k) − 􏽘
3

l�1
(− 1)

l+1 α

l + 1
􏼠 􏼡q2(k − l)

+D2 q1(k), q2(k)( 􏼁w(k) + u2(k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(70)
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where ui(k)(i � 1, 2) are the feedback controllers that are
continuous functions with respect to q1(k) − p, q2(k) − r.

Corollary 18. Let λ ∈ R+. If

0<Φ< 1, 0<Υ< 1, (71)

where Φ � max Φ1,Φ2,Φ3,Φ4􏼈 􏼉 and Υ � max Υ1,􏼈

Υ2,Υ3,Υ4} with parameters

Φ1 � λ θ1β2 + λ θ1β1 + θ1
2

+ 1 + λ θ1β3 + σ2,

Φ2 �
θ1β1
λ

+ β1
2

+ 1 + λ β1β2 + λ β1β3,

Φ3 � λ β2β3 + 1 +
θ1β2
λ

+
β1β2
λ

+ β2
2
,

Φ4 �
β1β3
λ

+
β2β3
λ

+
θ1β3
λ

+ β3
2
,

Υ1 � λ φ1β2 + λ φ1β1 + φ1
2

+ 1 + λ φ1β3 + σ2,

Υ2 �
φ1β1
λ

+ β1
2

+ 1 + λ β1β2 + λ β1β3,

Υ3 � λ β2β3 + 1 +
φ1β2
λ

+
β1β2
λ

+ β2
2
,

Υ4 �
β1β3
λ

+
β2β3
λ

+
φ1β3
λ

+ β3
2
.

(72)

Ten, the system (62) is fnite time stable in probability at the
N4 � (p, r) under the two controllers

u1(k) � − θ2 q2(k) − r( 􏼁 − H1 q1(k) − p, q2(k) − r( 􏼁,

u2(k) � − φ2 q1(k) − p( 􏼁 − H2 q1(k) − p, q2(k) − r( 􏼁.

(73)

Proof. It follows from variable substitution x(k) � q1(k) −

p and y(k) � q2(k) − r that

x(k + 1) � θ1x(k) + σx(k)w(k)

+ β1x(k − 1) + β2x(k − 2) + β3x(k − 3),

y(k + 1) � φ1y(k) + σy(k)w(k)

+ β1y(k − 1) + β2y(k − 2) + β3y(k − 3).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(74)

Note that the variables x(k) and y(k) are independent in
the system (74); therefore, we only need to consider the fnite
time stability of the subsystem of (74). Let (x(k), x(k − 1),

x(k − 2), x(k − 3))′ � (z1(k), z2(k), z3(k), z4(k))′ ≜Z(k),
so we can obtain the matrix form of frst subsystem of (74) as
follows:

Z(k + 1) � JZ(k) + η(k), (75)

where J �

θ1 β1 β2 β3
1 0 0 0
0 1 0 0
0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

η(k) � (σz1(k)w(k), 0, 0, 0)′.
Now, taking the Lyapunov function V(Z(k)) � Z

(k)′Z(k), it follows from (10) and Young’s inequality that

∆V(Z(k)) � E Z(k + 1)
′
Z(k + 1)􏼔 􏼕 − V(Z(k))

� E (JZ(k) + η(k))
′
(JZ(k) + η(k))􏼔 􏼕 − V(Z(k))

� E Z(k)
′
J
′JZ(k) + Z(k)

′
J
′η(k) + η(k)

′JZ(k) + η(k)
′η(k)􏼔 􏼕 − V(Z(k))

� E z1(k)( 􏼁
2θ1

2
+ z1(k)( 􏼁

2
+ 2 z1(k)z2(k)θ1β1 + 2 z1(k)z3(k)θ1β2􏽨

+ 2 z1(k)z4(k)θ1β3 + z2(k)( 􏼁
2β1

2
+ z2(k)( 􏼁

2
+ 2 z2(k)z3(k)β1β2

Complexity 13



+ 2 z2(k)z4(k)β1β3 + z3(k)( 􏼁
2β2

2

+ z3(k)( 􏼁
2

+ 2 z3(k)z4(k)β2β3 + z4(k)( 􏼁
2β3

2
+ σ2 z1(k)( 􏼁

2
􏽩 − V(Z(k))

≤ λ θ1β2 + λ θ1β1 + θ1
2

+ 1 + λ θ1β3 + σ2􏼐 􏼑 z1(k)( 􏼁
2

+
θ1β1
λ

+ β1
2

+ 1 + λ β1β2 + λ β1β3􏼠 􏼡 z2(k)( 􏼁
2

+ λ β2β3 + 1 +
θ1β2
λ

+
β1β2
λ

+ β2
2

􏼠 􏼡 z3(k)( 􏼁
2

+
β1β3
λ

+
β2β3
λ

+
θ1β3
λ

+ β3
2

􏼠 􏼡 z4(k)( 􏼁
2

− V(Z(k))

≤ΦV(Z(k)) − V(Z(k)).

(76)

It follows from (71) that ∆V(Z(k)) < 0, which means
that the system (75) is globally asymptotically stable in
probability. Note that (76) further implies the conditions of
Teorem 6, thus it follows from Teorem 6 that the zero
solution to the system (75) is fnite time stable in probability
with a stochastic settling-time K(., .): D ×Ω⟶ N satis-
fying E[K(Z(0), w)]≤C0 (C0 is a fnite constant).

Next, let (y(k), y(k − 1), y(k − 2), y(k − 3))′ �

(s1(k), s2(k), s3(k), s4(k))′ ≜ S(k), so we can obtain the
matrix form of second subsystem of (74) as follows:

S(k + 1) � QS(k) + ξ(k), (77)

where Q �

φ1 β1 β2 β3
1 0 0 0
0 1 0 0
0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and ξ(k) � (σs1

(k)w(k), 0, 0, 0)′.
Similar to the above proof steps, we can show that the

second subsystem is also fnite time stable in probability
under condition (71). Te proof is completed.

With the feedback control principle, next, we will study
the stochastic locally optimal control for the system (62). In
this case, the cost function is still (55).

First, putting (x(k), x(k − 1), x(k − 2), x(k − 3), y(k), y

(k − 1), y(k − 2), y(k − 3))′ � (T1(k), T2(k), T3(k), T4(k),

T5(k), T6(k), T7(k), T8(k))′ ≜T(k), we can obtain the
matrix form of (67), which is given by

T(k + 1) � RT(k) + H + WT(k)w(k), (78)

where H � (H1(T1, T5), 0, 0, 0,H2(T1, T5), 0, 0, 0)′,

R �

θ1 β1 β2 β3 θ2 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

φ2 0 0 0 φ1 β1 β2 β3
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W �

σ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 σ 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(79)

Ten, it follows from Teorem 14 that the following
Corollary 19 holds. □

Corollary 19. Te system (26) is locally asymptotically stable
in probability at the N4 � (p, r); furthermore, the feedback
controller 􏽢u(.) � (Y2 + I)− 1IRT(k) minimizes (22), that is,
J(T(0), 􏽢u(.)) � T(0)′IT(0), if the positive defnite matric I

satisfes

I − Y1 � R′I′ Y2 + I( 􏼁
− 1

􏽨 􏽩
′
Y2 Y2 + I( 􏼁

− 1IR

+ R′IR + R′I Y2 + I( 􏼁
− 1IR + R′I′ Y2 + I( 􏼁

− 1
􏽨 􏽩

′
IR

+ R′I′ Y2 + I( 􏼁
− 1

􏽨 􏽩
′
I Y2 + I( 􏼁

− 1IR + W′IW.

(80)
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Bifurcation diagram
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Figure 1: Bifurcation diagram of (62) with α ∈ (0, 0.6).

20 40 140100 1600 12060 180 20080
k

20 100 1600 120 14040 60 180 20080
k

0

0.2

0.4

0.6

q 1 (k
)

0

0.2

0.4

0.6

q 2 (k
)

Figure 2: Te chaotic solutions of (62) with α � 0.5.
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7. Numerical Examples

Tis section gives several examples to illustrate the validity of
the obtained results.

Example 1. Take a � 6, b � 4, α1 � 0.45, α2 � 0.12, c1 � 0.2,

c2 � 0.3, σ � 0.01. Te bifurcation diagram of (62) in the
path sense is shown in Figure 1. Figure 2 depicts the chaotic
solutions in the path sense as bifurcation parameter α � 0.5,
and the corresponding 0-1 test result is shown in Figure 3.

Example 2. Take a � 2, b � 4, α1 � 0.45, α2 � 0.5, c1 � 0.2, c2
� 0.3, α � 0.8. Ten, the interior Nash equilibrium point is
N4 � (88478/585675, 442756/2928375). Tus, it follows
from Corollary 16 that the system (62) is Lyapunov stable in
probability as 0< σ < 0.120165. When σ � 0.1, the numerical
results are shown in Figure 4.

Example 3. Take a � 4, b � 2, α1 � 0.4, α2 � 0.4, c1 � 1.2,

c2 � 0.5, α � 0.4, σ � 0.1. Ten, the interior Nash equilib-
rium point is N4 � (970/383, 6128/12125). Te numerical
results are shown in Figure 5.

8. Conclusion and Discussion

Te main contributions of this paper are as follows:

(a) Tis study proposes a class of stochastic discrete
fractional models and develops the Lyapunov
function stability theory for such models. Also, the
method developed in this paper can be extended to
study other stochastic discrete fractional models.Te
results obtained further enrich the theory of discrete
fractional calculus, while also laying the foundations
for the application of stochastic discrete fractional
calculus to fnancial models.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x 
(k

)\
y 

(k
)

155 200 10
k

Figure 4: System response of (69) with diferent initial conditions. Te red color indicates x(k) and green color indicates y(k).
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Figure 5: System response of (74) with diferent initial conditions.
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(b) We proposed a new stochastic discrete fractional
Cournot duopoly game model based on the trun-
cated form of a fractional Grünwald–Letnikov dif-
ference operator. Tis modeling approach
introduces a new modeling tool for modeling and
analysis in fnance. Compared with [23], we con-
sidered the efects of stochastic perturbations and
sliding memory, and the proposed model is more
fexible and general.

(c) By using the Lyapunov theory, we obtained sufcient
conditions on the stability in probability and fnite
time stability in probability for the proposed model
at the interior Nash equilibrium point. Furthermore,
the locally optimal control conditions are obtained
via the stochastic Bellman theory and feedback
control principle.

(d) Te analysis conducted shows that the new model has
a unique interior positive Nash equilibrium point that
remains stable under certain conditions by considering
appropriate fractional order value and memory step,
indicating that these two frms persist and coexist in the
market. Both frms can play the game by selecting the
memory step and memory strength to achieve a win-
win outcome. From the point of view of the evaluation
of market stability, these results show that the fractional
version has better application prospects.

(e) In addition, the results also show that the memory
efect can transform simple games into complex
ones. When changing the memory strength, we
found that the new short-memory game model has
chaotic phenomena through numerical simulations,
indicating that the behavior of the game model
becomes unpredictable. As a result, the short-
memory efect cannot be overlooked as an impor-
tant driver in economic dynamics. Te fndings of
this study are useful in the development of many
dynamical models in economics and fnance, bi-
ological evolution, and other felds.

It is worth noting that some coupling terms are separated
using Young’s inequality, which is conservative. Besides,
only the stability in probability of the model is investigated,
while stronger stability in probability, such as the mean
square stability of nonlinear stochastic discrete fractional
models, is not addressed in this paper.

Te following are future research programs:

(a) Develop new stability conditions based on the Ja-
cobian matrix method.

(b) Tis paper considers that two bounded rational frms
have the same memory length, but the memory
length is diferent due to the diference in individual
managers. Terefore, it would be interesting to
consider the setting that two bounded rational frms
have diferent memory lengths in future research.

(c) Also, as Xin et al. indicated in [23], there may be
a combination of short and long memory, which
would be fascinating to investigate.

(d) Because the fractional model is extremely dependent
on the fractional order α and the memory step M, it
is an open question of how to determine the ap-
propriate step size and fractional order in a real
setting.

(e) Combine with real-world fnancial data to further
develop the application of the model.
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