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Te heat kernel associated with a discrete graph Laplacian is the basic solution to the heat difusion equation of a strict graph or
network. In addition, this kernel represents the heat transfer that occurs over time across the network edges. Its computation
involves exponentiating the Laplacian eigensystemwith respect to time. In this paper, we expand upon this concept by considering
a novel network-theoretic approach developed in recent years, which involves defning the k-path Laplacian operator for
networks. Prior studies have adopted the notion of integrating long-range interactions (LRI) in the transmission of “information”
across the nodes and edges of the network. Various methods have been employed to consider long-range interactions. We explore
here the incorporation of long-range interactions in network analysis through the use of Mellin and Laplace transforms applied to
the k-path Laplacian matrix. Te contribution of this paper is the computation of the heat kernel associated with the k-path
Laplacian, called the generalized heat kernel (GHK), and its employment as the basis for extracting stable and useful novel versions
of invariants for graph characterization. Te results presented in this paper demonstrate that the use of LRI improves the results
obtained with classical difusion methods for networks characterization.

1. Introduction

A complex network can be conceptualized as a graph fea-
turing a nontrivial topology comprising entities or com-
ponents that serve as fundamental units within the system.
Tis structure is complemented by a set of links or con-
nections, delineating the relationships between these com-
ponents. Networks are ubiquitous, spanning social,
technological, ecological, and biological domains [1–3]. Te
importance of networks lies in their ability to represent
complex systems, as these systems are commonly charac-
terized by intricate interconnections [1, 4]. Graph objects
can be seen as a radical reduction of complex systems.
However, it has been shown that complex networks are very
important tools for explaining many real complex systems in
nature. To broaden the graph representation of complex
systems, several researchers have introduced concepts be-
yond simple graphs. Tese include the use of hypergraphs

[5], multiplexes [6], and multilayer networks [6, 7]. In ad-
dition, there are temporal networks [8], and more recently,
k-complexes and simplicial complexes [9–11]. However,
these new representations do not generally consider the
interactions/infuences of nodes in the networks that are not
directly connected such that the interaction decreases as the
separation between nonconnected nodes increases. Dy-
namics on networks such as difusion, consensus, and
synchronization have recently attracted the attention of
researchers. Tis is because of their applicability in various
areas such as modeling of epidemic spread and difusion of
information in social networks, among others [12, 13]. It has
been observed that in modeling of dynamic processes on
networks that the substance in consideration, say in-
formation, heat, disease, rumor, and many more can
propagate not only along direct edges of the network but also
through indirect interactions. Tis approach has been
successfully applied in [14, 15], and the authors explored
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ways of accounting for these long-range interactions (LRI)
using the social distance analogy which was associated with
constraints in selection of the conductance parameter x.
Recently, elegant approaches were put forward by Estrada
[9, 16] that utilizes the Mellin and Laplace transforms of the
graph Laplacian. Difusion is, among others, the movement
of substance such as heat or gas from a region of high
concentration to a region of low concentration [4]. Te
modeling of difusion processes on networks is a widely-
used method to create simple models capturing the spread of
phenomena like infections in a population, the dissemina-
tion of information in social networks (e.g., social network
marketing), and the propagation of heat in conductors,
among other applications [17]. Various difusion-based
models have been developed and discussed in the litera-
ture [13, 14, 18].

Te heat difusion process over an undirected graph/
network having n nodes is given by

du
dt

� −Lu; u(0) � u0, (1)

where L � D − A is the Laplacian matrix of the network with
D andA, respectively, the degree and the adjacency matrices
of the network. Let denote by L � D− 1/2LD− 1/2 the nor-
malized Laplacian matrix. Te solution of equation (1) is
given by

u(t) � u0 exp(−tL). (2)

In a state of equilibrium, the value of u(t) converges
uniformly across all nodes in the network. Tis converged
value represents the average of the initial values assigned to
all nodes and is given by

α � lim
t⟶+∞

u(t) �
1
n



n

i�1
ui(0). (3)

Tis happens as neighboring nodes in the network ex-
change heat until it is uniformly distributed across all
interconnected nodes.

Te heat kernel of equation (1) and given by

H(t) � exp(−tL). (4)

Expression (4) has been used as a means of network
characterization and for graph clustering and amongst other
applications [19]. Traditionally, the heat kernel, employed in
these contexts, focuses on difusion along the edges of the
network, depicting the heat fow exclusively along these
connections. In this work, however, we explore the heat
kernel for which difusion occurs at both short-range, that is,
over the edges, and long-range, through nonadjacent nodes.
Various models capturing these interactions have been
proposed in the literature, including Random Walks with
Levy Flights (RWLF) [20], the Fractional Difusion Equation
(FDE), andmore recently, the k-path Laplacian-basedmodel
[9], among others. Over recent years, the heat kernel has
found applications in diverse felds [21–25]. We embrace the
model based on k-path Laplacian matrices as introduced by
Estrada et al. [15]. Te principal objective of this paper is to

formulate the heat kernel while considering long-range
interactions. Tis involves extending the heat kernel (4)
to accommodate long-range interactions when utilizing
k-path Laplacian matrices in the exponentiation. Te novel
invariant derived from this extension is then applied for
graph characterization. We conduct numerical experiments
on both simple and random graphs to evaluate the impact of
long-range interactions on the generalized heat kernel.
Furthermore, we develop invariants associated with the
generalized heat kernel and apply them for graph charac-
terization. We explore two approaches for addressing long-
range interactions: the Laplace transform and Mellin
transform-based approaches presented in [15].

Te structure of the paper is as follows: Section 2 pro-
vides an in-depth review of the k-path Laplacian concept. In
Section 3, we introduce the generalized heat kernel (GHK).
Section 4 follows the approach outlined in [19] to extract key
invariants from the generalized heat kernel for graph
characterization. Tese invariants include the trace, the zeta
function, and the derivative at the origin of the generalized
heat kernel. Section 5 delves into the generalized heat
content, while Section 6 addresses the computational
challenges associated with calculating the generalized heat
kernel for large networks. Te paper concludes with a dis-
cussion of fndings and potential avenues for future research
in the fnal section.

2. k-Path Laplacian Matrices, Lk

Let us consider an undirected graph G � (V, E) with fnite or
infnite vertices V and edges E. We assume that G is con-
nected and locally fnite. Let d represent the distance metric
on G, where d(i, j) denotes the length of the shortest path
from node i to node j. In addition, let δk(i) be the k-path
degree of node i, indicating the number of nodes at a dis-
tance of k from i.

δk(i) � # j ∈ V | d(i, j) � k . (5)

Te defnition of the k-path Laplacian matrix can be
stated without loss of generality, as given in [9].

Lk(i, j) �

δk(i), if   i � j,

−1, if  d(i, j) � k,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(6)

δk(i) can also be seen as the number of irreducible shortest-
paths of length k having node i as end point [9]. Te k-path
Laplacian matrices naturally extend the combinatorial
Laplacian of a graph. When k � 1, the path Laplacian matrix
defned by (6) is simply the traditional Laplacian matrix.Te
notion of the k-path Laplacian has been broadened to in-
clude connected and locally fnite graphs [15]. Te k-path
Laplacian matrices naturally extends the concept of graph
connectivity to k-connectivity. It determines whether every
node in the graph can be reached by a particle undergoing
k-hopping from one node to another. As demonstrated in
[15], the path Laplacian matrix Lk can be viewed as an
operator on the set of square-summable functions l2(V). In
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addition, it is established as a self-adjoint and non-negative
operator.

Defnition 1 (k-hopping walk). A k-hopping walk of length l

is defned as any sequence of nodes v1, v2, . . . , vl, vl+1 where
di,i+1 � k for each i � 1, 2, . . . , l. In simpler terms, this walk
is referred to as a k-hopping walk from v1 to vl+1 [9].

In the case of the simple graph depicted in Figure 1 with
a diameter equal to 2, the k-degree (k≤ 2) for each vertex is
presented in Table 1. For illustration purpose, let’s calculate
the k-path Laplacian matrices for the simple of Figure 1. It is
noteworthy that, given that the maximum distance dmax in
the graph is 2, we can only consider k � 1 and k � 2.
Terefore, the resulting k-path Laplacian matrices are given
by:

L1(G) �

2 −1 0 −1

−1 3 −1 −1

0 −1 2 −1

−1 −1 −1 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,L2(G) �

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, L3(G) �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

As shown in [9], it has been demonstrated that the
k-path Laplacian matrices are positive semi-defnite and
satisfy the following condition:

yTLky ≥ 0, ∀y ∈ Rn
\ 0{ }. (8)

Te equality holds true for any vector y in the eigenspace
Lk corresponding to the eigenvalue λ1(Lk) � 0.

Defnition 2 (k-hopping connected component). A k-hop-
ping connected component of a graph G � (V, E) refers to
a subgraph G′ � (V′, E′), where V′ ⊂ V and E′ ⊂ E, and it is
characterized by the presence of at least one k-hopping walk
that traverses every node vi ∈ V′.

Example 1. Consider the graph G shown in Figure 1. Given
that dmax � 2, we proceed to calculate the 1-hopping and 2-
hopping connected components of G.

From Table 2, it is evident that when examining hops of
length k � 1, there exists a single connected component,
corresponding to the multiplicity of 0 as an eigenvalue in the
spectrum denoted as 0, 2, 4, and 4. Conversely, when
considering hops of length 2 (k � 2), three components
emerge, mirroring the multiplicity of 0 as an eigenvalue in
the associated spectrum 0, 0, 0, and 2. Further insights into
k-path Laplacian matrices can be found in [9].

3. Generalized Heat Kernel

Let us now consider the heat difusion process on the graph
G of the form

du
dt

� −LGu;u(0) � u0, (9)

where the operator LG also called here the generalized
Laplacian is given by the series

LG � 
∞

k�1
ckLk, (10)

with ck ∈ C. Estrada et al. [15] show that if the operators Lk

are bounded and



∞

k�1
ck


 Lk

����
����<∞, (11)

then, the series (10) converges to a bounded operator in
l2(V). When the graph is fnite we simply write

LG � 

dmax

k�1

ckLk, (12)

where dmax represents the diameter of the graph G. Te
coefcients ck hold a pivotal signifcance in extending the
difusion process on networks, making it essential to as-
certain their values.Te expected behavior of the coefcients
ck is to assign greater weight to shorter paths compared to
longer-range interactions. Determining the appropriate
values of ck is therefore a crucial task in optimizing the
generalization of the difusion process.

In this context, when considering difusion equation (9)
the heat kernel on a fnite graph/network is given by

H(t) � exp −tLG(  � exp −t 

dmax

k�1
ckLk

⎛⎝ ⎞⎠. (13)

Te kernel (13) extends kernel (4) which is discussed at
length in [19].Te expression (13) is called k-path Laplacian-
based heat kernel or the generalized heat kernel with long-
range interactions (LRI). It describes the fow of heat/in-
formation not only along the edges (or between adjacent
nodes) but also allows heat transfer by long-range jumps
(long-range interactions) between nodes that are not adja-
cent. When ck � 1 and ck>�2 � 0 we recover (4) based on the
Laplacian matrix L which describes the fow of heat only via
adjacent nodes. Before this paper, the heat kernel (13) was
not studied in the literature.Tis new kernel based on k-path
Laplacian matrices is the main focus of this paper.
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Te coefcient ck must be chosen such that the interactions
between nodes at a large distance are penalized than nodes at
a shorter distance. Tese considerations are taken into ac-
count by applying Laplace and Mellin transforms, as
explained in [9]. An analogous approach was employed in
[14] to devise a methodology for addressing long-range
interactions (LRI) between a designated pair of nodes
separated by a distance k. Tis method involves assigning
weights that consider the principle that as the separation
distance increases, the infuence of LRI weakens. In the
Laplace transform, the rate at which LRI weakens with an
increase in distance d follows an exponential decay. Con-
sequently, using the Laplace transform of the k-path Lap-
lacian matrices yields:

LG � L + 
∞

k�2
e

− λkLk, (14)

where the coefcients in (12) are c1 � 1 and ck≥2 � e− λk with
λ> 0. In the case of the Mellin transform, the decay behavior
follows a power law, characterized by k− s where s> 0. We
can then write

LG � 
∞

k�1
k

− sLk, (15)

where are ck � k− s. Normal difusion takes place exclusively
when s> 3, whereas superdifusion occurs within the range
1< s< 3 [15]. With the specifed coefcients ck, the gener-
alized heat kernel (13) for a fnite graph/network, in-
corporating both direct interactions and long-range
interactions (LRI) modeled through Laplace or Mellin
transforms, can be expressed as follows:

H(t) �

exp −t L + 
Δ

k�2
e

−λkLk
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, Laplace λ> 0,

exp −t 

Δ

k�1
k

−sLk
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, Mellin  s> 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

where λ and s stand for positive constant parameters as-
sociated with the Laplace and Mellin transforms, re-
spectively, while 1≤Δ≤dmax. We will use (16) for graph
characterization using various values of λ for the Laplace and
s Mellin transform. In addition, we will explore the impact of
the network structure on this quantity and its invariants.Te
heat kernel (16), involving k-path Laplacian matrices, can be
visualized as a matrix of size |V| × |V|. For nodes p and q in
the graph G, the corresponding element is

Ht(p, q) � 

|V|

i�1
exp −λit( vi(p)vi(q), (17)

where λi is the generalized eigenvalue associated with
generalized eigenvector vi of the matrix LG either for the
Laplace or Mellin transform.

Figure 2 gives a simple diagrammatic illustration of the
direct difusion model (left) and the long-range interaction
model (right). Our generalized heart kernel (16) captures the
confguration in (b) where difusion is allowed to hop for
example between node 3 and node 1 at distance 2 and
between node 4 and node 1 at distance 3 in the network. Te
traditional Laplacian L captures situation (a) in which dif-
fusion is only allowed between adjacent nodes. It is clear that
the hear kernel (16) naturally generalize the heat kernel (4).
Unless otherwise specifed we will be interested in the
normalized version of the operator LG, which is

LG � D−1/2
G DG − AG( D−1/2

G � I − D−1/2
G AGD

−1/2
G , (18)

where DG is the generalized degree matrix (i.e. a matrix
whose diagonal has the generalized degrees of nodes) andAG

the generalized adjacency matrix. For example for theMellin
transform these matrices are given by

AG � 

dmax

k�1
k

− sPk,

DG � 

dmax

k�1
k

− sΔk,

(19)

where the k-path (adjacency) matrix Pk and the k-path
degree matrix Δk are given as in [9]:

Table 2: Computation of k-hopping connected components of the
graph depicted in Figure 1.

No. of components Components

λi(L1)

0
2 1 a-b-c-d
4
4

λi(L2)

0
0 3 a–c
0 b
2 d

Te number of zero(s) (in bold) as eigenvalue corresponds to the number of
k-hopping connected components in the graph/network.

a c d

b

Figure 1: A simple graph.

Table 1: k-path degree for vertices of graph in Figure 1.

Vertex δ1 δ2
a 2 1
b 3 0
c 3 0
d 2 1

4 Complexity



Pk �
1, if  d(i, j) � k,

0, otherwise,


Δk � diag 1TPk ,

(20)

where 1 denotes an all-ones column vector. For illustration,
the generalized adjacency AG and degree matrices DG ob-
tained using the Mellin transform of the k-path Laplacian
matrix of the graph in Figure 2(a) are, respectively, given by

AG �

0 1
1
2s

1
3s

1
2s

1 0 1
1
2s 1

1
2s 1 0 1

1
2s

1
3s

1
2s 1 0 1

1
2s 1

1
2s 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,DG �

1
3s + 21−s

+ 1 0 0 0 0

0
1
2s + 3 0 0 0

0 0 21−s
+ 2 0 0

0 0 0
1
3s +

1
2s + 2 0

0 0 0 0 21−s
+ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

and the generalized Laplacian matrix (not normalized) when
using the Mellin transform is

3 2 1

4 5

(a)

3 2 1

4 5

(b)

Figure 2: A simple graph indicating the direct interactions which characterized the normal difusion model (a). A simple graph indicating
both direct interactions (black solid lines) and LRI at hops of length 2 (red broken lines) and length 3 (green-broken lines) that depict the
generalized difusion model (b).
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LMellin �

1
3s + 21− s

+ 1 −1 −
1
2s −

1
3s −

1
2s

−1
1
2s + 3 −1 −

1
2s −1

−
1
2s −1 21− s

+ 2 −1 −
1
2s

−
1
3s −

1
2s −1

1
3s +

1
2s + 2 −1

−
1
2s −1 −

1
2s −1 21− s

+ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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,

(22)

and the normalized version can be computed using the
formula (18). We observe that limAG � A, limDG � D, and
lim LMellin � L when s⟶∞, i.e., when there is no long-
range interactions. With this matrix, the generalized heart
kernel derived from the Mellin transforms of k-path Lap-
lacian can be written down using equation (16). We can also
observe that lim LLaplace � L when λ⟶∞. Te following
lemma is self-evident.

Lemma 3. Te generalized Laplacian matrix LG given in
(12) is symmetric and positive semidefnite and hence its
generalized eigenvalues are all non-negative; furthermore LG

has zero as an eigenvalue with 1 as the corresponding
eigenvector.

Tis results from the fact that the generalized Laplacian
matrix LG is a linear combination of k-path Laplacian ma-
trices each of which is symmetric, positive semidefnite, and
has 1 as eigenvector with zero as eigenvalue [9]. Te results of
Lemma 3 also hold for the generalized normalized Laplacian
matrix LG whose spectral decomposition is given by
LG � VΛVT, where Λ � diag(λ1, λ2, . . . , λ|V|) is the matrix
with the ordered eigenvalues (λ1 ≤ λ2 ≤ . . . ≤ λ|V|) as ele-
ments andV � (v1|v2| . . . |v|V|) is the matrix with the ordered
eigenvectors as columns. A notable distinction between the
spectra of LG and LG lies in the fact that the eigenvalues of the
former can be essentially as large as desired, particularly
ranging from 0 to twice the maximum degree. In contrast, the
latter has eigenvalues always confned to the range between
0 and 2, inclusive, as demonstrated in [26]. Tis presents an
advantage, as the normalized version LG of LG facilitates easier
comparison of eigenvalue distributions across diferent
graphs, especially when there is a substantial diference in
graph sizes. Te normalized Laplacian is linked to numerous
interesting graph properties [27].

Lemma 4. Let G � (V, E) be a graph/network and LG and LG
′

be, respectively, its generalized Laplacian matrices with
Laplace and Mellin transforms of its k-path Laplacian ma-
trices as defned in equations (14) and (15) and let λi and λi

′ be
the corresponding eigenvalues, then we have LG ≤LG

′ for λ �

s> 0 and λi ≤ λi
′, i � 1, . . . , n and k � 1, . . . , dmax as illustrated

in Figure 3.

Proof. First of all, it is easy to see that e− λk ≤ k− s for λ � s> 0,
with equality when λ, s⟶∞.Tis implies that LG ≤ LG

′ . On
the other hand, using the Rayleigh quotients RLG

and RLG
′ of

matrices LG and LG
′ , we have the following for any vector

x ≠ 0:

LG ≤LG
′ ,

xTLGx ≤ x
TLG
′ x,

RLG
(x) �

xTLGx
xTx
≤RLG
′x �

xTLG
′ x

xTx
,

λ1 � min
x≠0

RLG
(x)≤ λ1′ � min

x≠0
RLG
′(x),

λn � max
x≠0

RLG
(x)≤ λn
′ � max

x≠0
RLG
′(x).

(23)

By using the max-min theorem we have for any other
eigenvalues:

λk � min
U

max
x

RLG
(x) ∣ x ∈ U  and x≠ 0  ∣ dim(U) � k 

≤ λk
′ � min

U
max

x
RLG
′ (x) ∣ x ∈ U  and x≠ 0  ∣ dim(U) � k .

(24)
□

4. Generalized Heat Kernel Invariants

In this section, we will extract meaningful invariants from
the generalized heat kernel and leverage them for graph
characterization.
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Figure 3: Illustration of the result of Lemma 4. We consider
a Gilbert model G(n, p) for random graphs with n � 100 nodes and
connection probability p � 0.07 (connected regime) generated
using NetworkX [28] in Python. We then plot the generalized
eigenvalues of the corresponding generalized Laplacian matrices
(14) and (15) for λ � s � 0.5. We observe that the eigenvalues of the
generalized Laplacian matrix with the Mellin transform are greater
(apart from λ1 � 0, where they equal) compared to the corre-
sponding eigenvalues of the generalized Laplacian matrix with
Laplace transform.
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4.1. Trace of the Generalized Heat Kernel. Te trace of the
generalized heat kernel at time t, denoted as Tr(Ht), is the
sum of the entries at the main diagonal of the matrix Ht, In
other words, it is given by

Z(t) � Tr Ht(  � Tr V exp(−tΛ)VT
  � 

|V|

i

exp −λit( .

(25)

It remains invariant under node label permutations and
is a function whose parameters include the eigenvalues of the
generalized Laplacian matrix LG, with time as its argument.
For a connected graph, the expression is given by

Z(t) � 1 + e
− λ2t

+ e
− λ3t

+ · · · + e
− λ|V|t. (26)

Equation (26) generalizes an equation from [19] by
including the efect of long-range interaction. We can also
write

Tr Ht(  � C + 

|V|

λi≠0
e

− λit, (27)

where C is the number of connected components of the
network which is also the multiplicity of zero as eigenvalue
of LG.

Lemma  . Let G � (V, E) be a graph/network and let Z(t)

and Z′(t) be, respectively, the trace of the generalized heat
kernel of G for the Laplace and Mellin transform-based cases
for λ � s.Ten, we have Z(t)≥Z′(t) with equality when t � 0
and t⟶ +∞.

Lemma 5 follows immediately from Lemma 4. In other
words, Lemma 5 states that the stronger the long-range
interactions, the weaker the contribution of the corre-
sponding trace of the generalized heat kernel.

In spectral geometry, various invariants of the Rie-
mannian manifold can be extracted by estimating the heat
kernel [26]. In the majority of literature, the focus is often on
the trace of the heat kernel rather than the heat kernel itself.
Tis preference arises from the fact that the trace, as shown
in (25), captures the essential aspects of the heat kernel and
can be computed in polynomial time. In essence, using the
trace helps simplify the computation of the heat kernel,
making it an efcient tool for capturing graph properties and
key invariants. For instance, in a complete graph such as K4,
the entry Ht(p, p) is the same for all vertices p, facilitating
the computation of the trace.

4.1.1. Graph Characterization Using the Heat Kernel Trace.
Te heat kernel trace serves as a valuable tool for dis-
tinguishing graphs with diferent typologies, relying on the
characteristic shapes of the heat kernel trace curves over
time, as discussed in [19]. To illustrate this concept, we
examine three simple graphs: a star, a path, and a 2-regular
graph, each with a size of 10. Figure 4 depicts plots of the
heat kernel trace (without considering LRI) against time for
these three graphs.

From the observations in Figure 4, it is apparent that the
three graphs with diferent topologies exhibit distinct and
varied shapes in their corresponding heat kernel trace
curves. Notably, the curves for the path graph and the 2-
regular graph (ring) are relatively close to each other due to
their similar topology. In contrast, the curve corresponding
to the star graph is notably distinct, characterized by a dif-
ferent shape with a deeper trough.

4.1.2. Trace of the Generalized Heat Kernel Experiment.
We are now interested in determining whether the trace of
the generalized heat kernel can serve as a tool for graph
characterization, similar to the trace of the standard heat
kernel discussed earlier. Let’s consider the graphs shown in
Figure 4(b), and in Figure 5, we plot the trace functions at
each time step t for the generalized Laplacian matrix based
on both the Mellin and Laplace transforms of the k-path
Laplacian matrices.

From the observations in Figure 5, we notice distinct
curves with diferent shapes for the trace of the heat
kernel, both for the standard and generalized Laplacian
matrices, across the three graphs. In the case of the Mellin
transform-based generalized trace function (middle row),
when s � 2 (Figure 5(b)), the curves become closer to each
other. However, their distinctiveness is still evident, al-
though their slopes difer slightly. For s � 3 (Figure 5(c)),
the curves corresponding to the three graphs are much
more distinct, and their shape tends to resemble the trace
plot of the standard Laplacian matrix (see Figure 5(a)).
Tis phenomenon can be attributed to a decrease in the
strength of long-range interactions (LRI) as s increases. In
the Laplace transform-based cases (bottom row) (see
Figures 5(d) and 5(e)), we observe similar behavior to the
Mellin transform-based case, with the curves becoming
more distinct as the values of λ increase. Te observed
diference in behavior, where the trace plots in the Laplace
transform-based case tend to converge more rapidly to the
trace plots of the standard Laplacian matrix as s and λ
increase, can be attributed to the stronger long-range
infuence in the Mellin transform-based case compared
to the Laplace transform-based case for the same values of
the respective exponents (Lemma 5). Tus, as the values of
the exponents increase, there is a decrease in long-range
infuence with the rate of decrease much faster in the
Laplace than the Mellin-based case. Hence, with an in-
crease in the values of the exponents, there is a reduction
in long-range infuence, and this reduction occurs at
a faster rate in the Laplace transform-based case compared
to the Mellin transform-based case which explains the fast
tendency of the corresponding trace function to the trace
function of the standard difusion model in the former
than in the latter case. Te plots clearly demonstrate that
the trace function of the generalized heat kernel is
a valuable tool for analyzing graphs with diferent to-
pologies. Now, let’s delve into a simple toy example to
illustrate how the trace of the generalized heat kernel
varies with time for diferent values of the Mellin expo-
nent s and Laplace exponent λ.
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Figure 5: Continued.
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Figure 4: Heat kernel trace curves when there is no LRI (a) for three diferent graphs: star (blue), path (orange), and regular (green) graphs
having 10 nodes (b).
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In Figure 6, it is noticeable that the trace function curve
against time for difusion along edges (referred to as direct
interactions) of the graph (depicted in blue) is positioned at
the uppermost level and gradually decreases over time.
When considering long-range infuence, it becomes evident
that as the parameters λ and s for the Laplace and Mellin
transforms increase, the respective curves tend to converge
towards the one representing standard difusion (in blue).

However, the convergence to the standard curve occurs
more rapidly in the Laplace transform-based case than in the
Mellin transform-based case. Tis discrepancy is explained
by the stronger long-range infuence in the Mellin case
compared to the Laplace case for the same values of power
exponents. Specifcally, for λ � s � 3.0 (depicted in brown),
it can be observed from Figure 6 that the curve corre-
sponding to the Laplace transform-based case coincides with
that of the normal Laplacian, while in the Mellin case, the
curve is more distant from the curve of the standard
Laplacian.

We conclude this section by delving into the case of co-
spectral graphs, where the trace of the heat kernel may
exhibit certain limitations. Co-spectral graphs, despite not
being necessarily isomorphic, share the same multiset of
eigenvalues as the corresponding Laplacian matrices. It can
be difcult to characterize co-spectral graphs with respect to
some matrices. Tey show similar behavior of the trace
function of the heat kernel due to the similarity of eigen-
values. An example of co-spectral graphs for the Laplacian
matrix is shown in Figure 8. In Figure 9, we plot the trace of
the heat kernel (4) based on the traditional Laplacian L, the
trace of the heat kernel (4) based on the normalized tra-
ditional Laplacian L, and the trace of the generalized heat
kernel (16) based on the normalized form of the Laplace

transform (14) and Mellin transform (15) of the k-path
Laplacian (6) for λ � 1 and s � 2.3.

Te graphs in Figure 8 are co-spectral with respect to the
traditional Laplacian and also to the Laplace (14) and Mellin
transform (15) of the k-path Laplacian. In this case, as can be
seen from Figures 9(a) and 9(b), the trace functions of the
kernels (4) and (16) will show the same curve (see the black
curve for the kernel (4)) making it difcult to distinguish the
2 graphs. On the other hand, the 2 graphs are not co-spectral
with respect to the normalized Laplacian L and to the
normalized Laplacian of the Laplace and Mellin transforms
(14) and (15) of the k-path Laplacian for λ � 1 and s � 2.3.
Tis time the trace functions of the kernel (4) based on the
normalized Laplacian matricesL (green and yellow curves)
can characterize/distinguish the 2 graphs as one can see from
Figures 9(a) and 9(b). Tis is also true for the trace functions
(red and blue curves) of the generalized heat kernel (16)
based on the normalized form of the Laplace and Mellin
transforms (14) and (15) of the k-path Laplacian for λ � 1
and s � 2.3.

Considering the general framework of the generalized
heat kernel (16), we are able to characterize co-spectral
graphs G1 and G2 using the trace functions of the gener-
alized heat kernel (16) (based on the normalized version of
(14) and (15)) for small value of λ and s, while we need a very
large value(s) of these parameters (when λ, s⟶∞) re-
ducing to the trace of the kernel (4) to be able to characterize
co-spectral graphs G1 and G2.

We can fnd non-isomorphic graphs which are co-
spectral with respect to the Laplacian matrix and the nor-
malized Laplacianmatrix and in this case, the trace functions
based on those matrices will not be able to distinguish those
graphs. As demonstrated in [27], for sufciently large n,
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Figure 5: Plots of the trace of the generalized heat kernel against time for the star (blue curve), ring (green curve), and path (orange curve)
graphs of Figure 4(b). For comparison purposes, subfgure (a) shows the plot of the trace of the standard heat kernel. Subfgures (b) and
(c) correspond to plots of the trace function for the generalized heat kernel based on the Mellin transform with s � 2 and s � 3, respectively.
Subfgures (d) and (e) are plots of trace function of the generalized heat kernel based on Laplace transform for λ � 2 and λ � 3, respectively.
As can be seen, for the same values of λ and s, the trace function based on the Mellin transform decreases faster than that for the Laplace
transform-based function. Tis fact is justifed by the claim of Lemma 5.
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Figure 6: Trace of the generalized heat kernel against time for the simple graph in Figure 7. LRI are accounted for by the Laplace (a) and
Mellin (b) transforms of the k-path Laplacian matrix of the graph for diferent values of λ and s. By increasing λ and s, we can see that the
traces tend to the trace of the standard Laplacian without no LRI. Tis is happening much faster when the Laplace transform is used (a)
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Figure 8: Te graphs G1 and G2 are co-spectral with respect to the traditional Laplacian L but not co-spectral when considering the
normalized LaplacianL. Furthermore, they do not exhibit co-spectrality in relation to the normalized forms of (14) and (15), representing
the Laplace and Mellin transforms of the k-path Laplacian.
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there exists a family of 2⌊n/7⌋ graphs on n vertices that are
nonisomorphic and mutually co-spectral concerning the
normalized Laplacian.

Te graphs in Figure 10 are co-spectral with respect to
the Laplacian matrix L and to the normalized Laplacian
matrix L, but they are not co-spectral with respect to the
Laplace and Mellin transforms of the k-path Laplacian (14)
and (15). In Figure 11, we plot the trace functions of the
kernel (4) based on the Laplacian matrix L and on the
normalized Laplacian matrix L. We also plot the trace
functions of the generalized heat kernel (16) based on the
Laplace and Mellin transforms for λ � 1.3 and s � 2.3. As
we can see from Figure 11, the corresponding trace
functions (blue and red curves) of the generalized
heat kernel (16), based on the Laplace and Mellin trans-
forms, can characterize/distinguish the 2 co-spectral
graphs G1 and G2 of Figure 10 while the trace func-
tions of the kernel (4) show only one curve for the 2 graphs
when using L (black curve) orL (green curve). Tis result
is important in the context of the generalized heat kernel
(16) based on the Laplace and Mellin transform of the
k-path Laplacian.

4.2. Te Zeta Function. Several defnitions of the zeta
function for fnite simple graphs exist [29, 30]. In this
context, we specifcally consider the zeta function associated
with the eigenvalues of the generalized Laplacian matrix,
which is obtained by exponentiating and summing the re-
ciprocals of the nonzero eigenvalues [30].

ζ(p) � 
λi≠0

λ−p
i ,

(28)

where λi represents the i-th eigenvalue of the generalized
Laplacian matrix. In the upcoming plot, we examine the
behavior of the zeta function against p for various values of

the Mellin transform exponent s and Laplace transform
exponent λ, considering the graph illustrated in Figure 7.

Examining Figure 12, it is evident that the zeta function
exhibits an increasing trend with the exponent p. For various
values of λ, Figure 12(a) illustrates that the zeta function’s
variation with p aligns with a pattern similar to that of the
standard Laplacian curve (depicted in blue). Tis similarity
arises from a relatively less pronounced long-range infu-
ence, which diminishes as the value of λ increases. In
contrast, when considering changes in the Mellin exponent
s, noticeable alterations can be observed in the corre-
sponding curves of the zeta function against p (see
Figure 12(b)).

Te observed diferences in the zeta function curves
against p between the Mellin transform-based and Laplace
transform-based cases can be attributed to the more pro-
nounced long-range infuence (LRI) in the Mellin
transform-based scenario. In the Mellin case, the strength of
the long-range infuence diminishes as the exponent s in-
creases. Tis dynamic explains why the curve corresponding
to s � 4 (depicted in purple) tends to align with the shape of
the standard zeta function plot (in blue).

4.3. Te Zeta Function and Generalized Heat Kernel Trace
Moments. We investigate the relationship between the
generalized heat kernel and the zeta function associated with
the eigenvalues of the generalized Laplacian matrix,
extending the fndings in [19]. To establish this connection,
we examine the function f(t) � e− λit. Te Mellin trans-
formation of f(t) is expressed as follows:

F(p) � 
∞

0
t
p− 1

f(t)dt. (29)

From the Mellin transform of f(t) and after little al-
gebraic transformation, we have
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Figure 9: Trace functions of the heat kernel (4) based on the normalized LaplacianL and the trace functions of the generalized heat kernel
(16) based on the normalized form of the Laplace transform (14) and Mellin transform (15) of the k-path Laplacian for λ � 1 and s � 2.3.
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λ−p
i �

1
Γ(p)


∞

0
t
p− 1

e
− λitdt, (30)

where λi is the i-th eigenvalue of the generalized Laplacian
matrix LG, and Γ(p) represents the gamma function defned
as follows:

Γ(p) � 
∞

0
t
p− 1

e
− tdt. (31)

Upon summing for all nonzero eigenvalues of the
Laplacian, equation (30) transforms into

ζ(p) � 
λi≠0

λ−p

i �
1
Γ(p)


∞

0
t
p− 1


λi≠0

e
− λitdt. (32)

Using the connected component based formula for the
trace of the heat kernel, equation (32) becomes

ζ(p) �
1
Γ(p)


∞

0
t
p− 1 Tr Ht(  − CG dt, (33)

where CG represents the number of connected components
in the graph. Consequently, the zeta function is intricately
linked to the moments of the generalized heat kernel trace.
Tis reveals a profound connection between the zeta
function and the moments of the generalized heat kernel
trace, ofering a comprehensive perspective on the spectral
properties of the graph through the lens of both the Laplace
and Mellin transforms of the k-path Laplacian matrices.

4.4. Derivative of the Zeta Function at the Origin. Te de-
rivative of the zeta function associated with the generalized
Laplacian matrix is given by
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Figure 10: Co-spectral graphs G1 and G2 with respect to the Laplacian matrix L and to the normalized LaplacianmatrixL.Tey are not co-
spectral with respect to the Laplace and Mellin transforms of the k-path Laplacian (14) and (15).
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Figure 11: Trace functions of the heat kernel (4) based on the matrices L andL and the trace functions of the generalized heat kernel (16)
based on the normalized form of the Laplace transform (14) and Mellin transform (15) of the k-path Laplacian for λ � 1.3 and s � 2.3.
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ζ ′(p) � 
λi≠0

− ln λi e
− p ln λi . (34)

At the origin, i.e., p � 0, we have

ζ ′(0) � − 
λi≠0

ln λi. (35)

Tederivative or slope of the zeta function at the origin is
another invariant of the heat kernel that can be used for
graph characterization [19]. It is simpler than the zeta
function because it is parameter independent.

To begin, we analyze the graph depicted in Figure 7 and
calculate the derivatives of the zeta function at the origin.
Te computed values are 1.5686 and −3.4012 for the nor-
malized and unnormalized Laplacian matrices, respectively.
Subsequently, we extend our investigation to the generalized
versions of both the normalized and unnormalized Lap-
lacian. As illustrated in Figure 13, we observe that in both
cases, the values of ζ ′(0) increase rapidly as the Mellin (or
Laplace) exponents, s (or λ), increase until constant values of
ζ ′(0) are attained at s (or λ) ≈ 9. Tis pattern is a conse-
quence of the diminishing strength of long-range in-
teractions (LRI) as the values of s (or λ) increase. Beyond
a certain threshold, additional increments in the exponent
values result in minimal changes to the LRI, leading to only
negligible alterations in the spectrum of the corresponding
generalized Laplacian matrix. However, we observe that in
the Laplace transform-based case, the value of the derivative
of the zeta function at the origin approaches that of standard
difusion more rapidly (see Figures 13(a) and 13(b)) com-
pared to the Mellin transform-based case.

5. The Generalized Heat Content

Te heat content of a graph represents the total amount of
heat retained within the graph over time, with the graph’s
structure infuencing this preservation. Te generalized
heat content is calculated as the sum of entries in the
generalized heat kernel matrix of a graph. For a graph
G � (V, E), the generalized heat content, denoted by Qt, at
time, t is given by

Q(t) � 
p∈V


q∈V

Ht(p, q). (36)

In particular for hops of length 1(k � 1), equation (36)
reduces to the heat content based on the standard Laplacian
matrix introduced in [19].

Te heat content can be expressed as follows:

Q(t) � 
p∈V


q∈V



|V|

i�1
e

−λitvi(p)vi(q), (37)

where λi represents the i-th eigenvalue of Ht and vi the
corresponding eigenvectors. Equation (37) captures the total
amount of heat in the graph/network at time t. Te heat
content Q(t) can be expanded into a polynomial in time of
the form:

Q(t) � 
∞

m�0
qmt

m
, (38)

where qm is given by
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Figure 12: Zeta function plotted against the exponent p for the graph in Figure 7. Subfgure (a) displays the zeta function for the Laplace
transform of the graph Laplacian with diferent values of λ (2, 2.5, 3, and 4). Subfgure (b) illustrates the zeta function for the Mellin
transform of the graph Laplacian with various values of s (2, 2.5, 3, and 4). By increasing λ and s, we can see that the zeta functions tend to the
zeta function of the standard Laplacian (blue curve).Tis occurs much faster when the Laplace transform is used (a) compared to the Mellin
transform (b).
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qm � 

|V|

i�1

p∈V

vi(p)⎛⎝ ⎞⎠

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

−λi( 
m

m!
. (39)

Te coefcients qm are uniquely determined by the
entries of eigenvectors and eigenvalues, providing a dis-
tinctive set of polynomial coefcients for each graph. Tis
uniqueness can serve as a foundation for graph character-
ization. In the context of graph clustering, feature vectors
can be constructed using the k-leading coefcients, denoted
as Bk � (q1, q2, . . . , qk)T. Tis concept will be further ex-
plored in subsequent publications.

5.1. Generalized Heat Content Simulations. As mentioned
earlier, the normalized Laplacian matrix demonstrates su-
perior performance compared to the standard Laplacian in
specifc scenarios. When it comes to calculating the heat
content, we use the normalize Laplacian. Tis choice is
driven by the observation that, in the case of the unnor-
malized Laplacian, the heat content remains constant
over time.

Te initial value of the heat content for a given graph at
t � 0 is equal to the trace of the identity matrix I which is
equivalent to the number of vertices, |V|, in the graph. For
the graph illustrated in Figure 7, we have Q(0) � 10. From
Figure 14, it is evident that in the absence of long-range
infuence (LRI), the heat content decreases rapidly over time
(blue dotted curve). Nevertheless, when considering the
generalized difusion based on the Laplacian and Mellin
transform, it is apparent that as the values of λ and s increase,
there is a faster drop in the heat content, and the corre-
sponding curves tends to resemble those of the standard
difusion process.Te faster decline in heat content observed
in the Laplace transform-based case, compared to the Mellin
transform-based case, is a result of the stronger infuence of
long-range interactions (LRI) in the former. Importantly, for

very large graphs, computational complexities associated
with heat content calculations can be considerable. To
mitigate this challenge, heat content estimation methods
leveraging matrix multiplication and random walks can be
employed.

5.2.Heat Content as aMeans of Structural Characterization of
Graphs with Long-Range Interactions. We are interested in
comparing graphs with scale-free degree distributions to
random graphs and fnding similarities of the graphs gen-
erated by one growing model with diferent parameters. We
will then assess the impact of LRI by using the generalized
heat content. With a little algebraic manipulation, the heat
content can be written as follows:

Q(t) � 

|V|

i�1
αie

− λit, (40)

where αi � p∈Vq∈Vvi(p)vi(q). Tis representation views
the heat content as a sum of exponential functions with
distinct decay rates determined by Laplacian eigenvalues and
varying weights (αi) determined by the Laplacian eigen-
vectors. Te asymptotic behavior near zero of the heat
content can be described as follows:

Q(t)|t⟶0+ � 
i

αi � |V|. (41)

For a given initial distribution of heat on a graph, the
heat content describes the difusion of heat with time on the
graph. Te asymptotic behavior of the heat content has been
used in studying the structure of graphs and manifolds
[31, 32]. Te heat content characterizes the difusion of heat
over time on a graph, starting from a given initial distri-
bution. Researchers have leveraged the asymptotic behavior
of the heat content for studying the structural properties of

–14

–12

–10

–8

–6

–4
ζ΄
 (0

)

122 104 1486
λ or s

Laplace
Mellin

(a)

122 104 1486
λ or s

–0.5

0.0

0.5

1.0

1.5

ζ΄
 (0

)

Laplace
Mellin

(b)

Figure 13: Plots illustrating the derivative of the zeta function at the origin for the graph in Figure 7. Panel (a) is for the generalized
Laplacian matrix, LG. In comparison, the plot in Panel (b) corresponds to the generalized normalized Laplacian (18). Notably, for small
values of λ and s, the Laplace-based case consistently yields higher values than theMellin-based case. However, as λ, s⟶∞, the derivatives
of the zeta function at the origin converge.
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graphs and manifolds [31, 32]. Te eigenvalues of the
normalized Laplacian for a connected undirected graph fall
within the range of 0 to 2. Examining equation (40), we
observe that the trivial eigenvalue possesses a large corre-
sponding weight, α, and an exponential decay component
that decreases relatively slowly, thereby dominating the heat
content curve. To mitigate the dominance of the trivial ei-
genvalue and to better understand the infuence of large
eigenvalues, Kang [31] proposed examining the frst and
second time derivatives of the heat content, given by the
following equations:

zQ

zt
� − 

|V|

i�1
αiλie

− λit,

z
2
Q

zt
2 � 

|V|

i�1
αiλ

2
i e

− λit.

(42)

Smaller eigenvalues are associated with smaller weights,
while larger eigenvalues have larger weights. Furthermore,
the asymptotic behavior of the frst and second derivatives of
the heat content can be expressed as follows:

zQ

zt

t⟶0+

� − 
i

αiλi,

z2Q

zt2

t⟶0+

� 
i

αiλ
2
i .

(43)

Hence, the asymptotic behavior allows for the difer-
entiation of graphs with distinct structures using the initial
time derivatives of the heat content. Exploiting this insight,

Kang [31] developed a fast and robust algorithm based on
the standard Laplacian to diferentiate graphs. He applied
this algorithm to compare random graphs generated by the
Erdös–Rényi (ER) and the Barabási–Albert (BA) models [1].
In Figure 15, it is evident that the heat content curves for the
Barabási–Albert (BA) graphs drop much faster than those of
the Erdös–Rényi (ER) graphs. Tis behavior is attributed to
the distinct α values associated with the Laplacian eigen-
values, excluding the smallest eigenvalue. Intriguingly, in
graphs with heavy-tail degree distributions, the asymptotic
behavior of the heat content can discern graphs with varying
average degrees. Tis is illustrated in Figure 15(b), where the
curves with deep blue colors correspond to graphs with
lower average degrees, while the lighter ones correspond to
graphs with higher average degrees. In the following para-
graph, we will evaluate the infuence of long-range in-
teraction (LRI) on the heat content and the derivative of the
heat content at the origin in equation (43) when utilizing the
generalized Laplacian matrix through the Mellin and Lap-
lace transforms.

We conclude this section by evaluating the impact of
long-range infuence (LRI) on the heat content (40) and the
derivative of the heat content at zero (43) when diferen-
tiating random graphs. Figures 16 and 17 depict graphs with
nearly identical structures.

Figure 18 illustrates the Laplace-transform-based gen-
eralized heat content for various values of λ applied to
Barabási–Albert (BA) and Erdös–Rényi (ER) random
graphs. As can be seen the long-range interaction has
stronger efect in diferentiating complex networks having
similar structure compared to the case when there is no LRI,
and this can be seen a generalization of the results in [31].
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Figure 14: Results of simulations for the generalized heat content over time for the graph in Figure 7. Panel (a) depicts the results for various
values of the parameter s in theMellin transform-based generalized normalized Laplacianmatrix, while Panel (b) corresponds to the Laplace
transform-based generalized normalized Laplacian for diferent values of λ. As λ and s increase, we observe that the heat contents in both
panels tend to approach the heat content of the standard Laplacian (depicted by the blue dotted curve) without LRI. Notably, this
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Figure 16: Degree distributions of some realizations of ER random graphs having 1000 nodes each with diferent average degree and whose
structure looks very similar. We will show that the derivative of the generalized heat content at the origin is able to distinguish these graphs.
(a) 〈k〉 � 5. (b) 〈k〉 � 10. (c) 〈k〉 � 15. (d) 〈k〉 � 20.
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Figure 15: Plots of the heat content (using the Laplacianmatrix L) over time for 5 Barabási–Albert (blue lines) (a) and 5 Erdös–Rényi graphs
(green lines), each comprising 1000 nodes with an average degree ranging from 5 to 20.Te plot of the frst derivative at the origin of the heat
content with time is shown in (b).Te curves for the frst derivative at zero are already distinct compared to the curves of the heat content at
the origin, indicating that the frst derivative at zero can be useful for characterizing random graphs.
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Figure 17: Degree distributions of some realizations of Barabási–Albert graphs whose having 1000 nodes with diferent average degree and
whose structure looks very similar. We will show that the derivative of the generalized heat content at the origin is able to distinguish those
graphs. (a) 〈k〉 � 5. (b) 〈k〉 � 10. (c) 〈k〉 � 15. (d) 〈k〉 � 20.
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Figure 18: Continued.
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Figure 18: Te plots in Figure 18 illustrate the behavior of the generalized heat content using the Laplace transform against time for 5
Barabási–Albert (BA) graphs (depicted by blue lines) and 5 Erdös–Rényi (ER) graphs (depicted by green lines).Tese graphs are constructed
with 1000 nodes each, and their average degree falls within the range of 5 to 20. (a) λ� 1.5. (b) λ� 2. (c) λ� 3. (d) λ� 4.

1 432 50
Time (t)

–40

–30

–20

–10

0

D
er

iv
at

iv
e o

f t
he

 h
ea

t c
on

te
nt

(a)

1 432 50
Time (t)

–80

–60

–40

–20

0
D

er
iv

at
iv

e o
f t

he
 h

ea
t c

on
te

nt

(b)

1 432 50
Time (t)

–120

–100

–80

–60

–40

–20

0

D
er

iv
at

iv
e o

f t
he

 h
ea

t c
on

te
nt

(c)

1 432 50
Time (t)

–120

–100

–80

–60

–40

–20

0

D
er

iv
at

iv
e o

f t
he

 h
ea

t c
on

te
nt

(d)

Figure 19: Derivative of the generalized heat content at the origin using the Laplace transform against time for 5 Barabási–Albert (BA)
graphs (represented by blue lines) and 5 Erdös–Rényi (ER) graphs (depicted by green lines). Tese graphs consist of 1000 nodes each, with
an average degree ranging between 5 and 20. At t � 0, the curves are distinctly separated, especially for small values of the Laplace exponent
(λ). Te introduction of long-range interactions (LRI) further enhances the separation of the curves and contributes to the efective
characterization of complex random graphs at t � 0. (a) λ� 1.5. (b) λ� 2. (c) λ� 3. (d) λ� 4.
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For small values of λ and for increasing t we obtain better
curves which are well separated compared to curves in
Figure 15(a) when no LRI are considered. On the other hand,
as can be seen in Figure 19 the derivative of the heat content
at the origin with LRI has the same efect in separating curves
at earlier stage (t � 0) and the discriminating power is much
greater for small values of λ. Similar results are obtained
when using the Mellin transform as shown in Figures 20
and 21.

6. On Computation of the Generalized Heat
Kernel and Limitations

Te results obtained in this paper demonstrate that the
generalized heat kernel can obtain better graph character-
ization compared to the standard heat kernel (without long-
range interactions). However, computing all the k-path
Laplacian matrices Lk(1≤ k≤dmax) can be costly for large
networks. To generate the distance matrix, it is necessary to
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Figure 20: Time evolution of the heat content based on the generalized Laplacian matrix using the Mellin transform for 5 Barabási–Albert
(BA) graphs (depicted by blue lines) and 5 Erdös–Rényi (ER) graphs (represented by green lines). Tese graphs consist of 1000 nodes each,
with an average degree varying between 5 and 20. As can be seen, the generalized heat content is able to distinguish random graphs having
similar structure.Te discriminating power increases with value of s for both BA and ER graphs. (a) s � 1.5. (b) s � 2. (c) s � 3. (d) s � 4. (e) s � 5.
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identify all pairs of nodes at distance k and solve the all-pairs
shortest-paths problem (APSP). Te shortest path problem
is encountered in various facets of complex network analysis,
including the investigation of distance-based centrality
measures, average path length, and the small-world phe-
nomenon, among other applications. All these approaches,
including those involving path Laplacian that contribute to
the development of the generalized heat kernel, will beneft
from the ongoing development of new methods for solving
the All-Pairs Shortest Paths (APSP) problem [33]. For the
same considerations discussed in [9], we avoid computing all
k-path Laplacian. If, for instance, there is indication that
a particular signal does not extend beyond the second
nearest neighbors, it sufces to compute L1 and L2, leading
to a reduction in computation cost.

7. Conclusions and Future Outlook

We introduced the concept of the generalized heat kernel for
graphs and networks, representing a natural extension of the
standard heat kernel. Tis kernel serves as the fundamental
solution to the generalized difusion equation, capturing the
fow process where substances or information propagate not
only through direct interactions but also via long-range

interactions (LRI). Te incorporation of LRI is achieved
through the Mellin and Laplace transforms applied to the
k-path Laplacian matrices, as proposed by Estrada [9].
Expanding upon the work in [19], we investigated the ap-
plicability of generalized heat kernel invariants for graph
characterization.Tese invariants encompass the heat kernel
trace, zeta function, derivative of the zeta function at the
origin, and heat content. Our results indicate that these
invariants exhibit superior performance in distinguishing
graphs compared to standard heat kernel methods. Future
extensions of this work include practical applications,
particularly in object clustering using graphs derived from
objects. In addition, exploring the geometry of graphs re-
siding on manifolds is a promising avenue. Tis involves
embedding graph nodes into points in a vector space on
a manifold [34], enabling the extension of generalized heat
kernel invariants to features with direct geometric in-
terpretations, such as Euler characteristic, torsion of the
mean, and Gaussian curvature. Another direction for future
exploration is the development of faster computational
methods for the generalized heat kernel, drawing inspiration
from ideas proposed in [35]. In closing, we anticipate that
the generalized heat kernel will become a valuable addition
to the extensive array of graph-theoretic and algebraic tools
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Figure 21: Time-dependent behavior of the derivative of the heat content at t � 0 for Barabási–Albert (BA) graphs (represented by blue
lines) and 5 Erdös–Rényi (ER) graphs (depicted by green lines). Each graph consists of 1000 nodes with an average degree ranging from 5 to
20. Te derivative is computed based on the generalized Laplacian matrix using the Mellin transform. (a) s � 1. (b) s � 2. (c) s � 3. (d) s � 4.
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employed across various scientifc disciplines. Te study of
the mathematical properties of the generalized heat kernel
opens up a novel path in the feld of algebraic graph theory.
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