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3Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Sfax 1171, Tunisia

Correspondence should be addressed to Abdellatif Ben Makhlouf; benmakhloufabdellatif@gmail.com

Received 7 September 2023; Revised 14 March 2024; Accepted 19 March 2024; Published 23 April 2024

Academic Editor: Daniel Maria Busiello

Copyright © 2024 Omar Kahouli et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the Hyers–Ulam stability of Hadamard fractional Itô–Doob stochastic integral equations by using the
Banach fxed point method and somemathematical inequalities. Finally, we exhibit three theoretical examples to apply our theory.

1. Introduction

Te concept of fractional derivative frst appeared in a cor-
respondence between L’Hôpital and Leibnitz in 1695. Many
scientists have explored this idea. To illustrate this notion, we
will give an overview overall history of work in this area. We
can cite the study of Euler in 1730. Also, one should not
overlook the applications of J. L. Lagrange in 1772, nor forget
the proposed notion of fractal derivative by Laplace in 1812.
Additionally, the work of Abel in the feld of fractional
calculus signifcantly contributes to this area. For more
details about the extension of fractional calculus, one can
refer to the works of Atangana, Baleanu, and other scientists
(see [1–9]).

Over the last decades, fractional calculus had played an
interesting role. Its importance appears in various areas
such as chemistry, physics, economics, biology, and other
felds. Over the past decade, fractional calculus has been
applied for describing long-memory processes. Many
classical techniques are difcult to apply directly to frac-
tional diferential equations. It is, therefore, necessary to
develop especially new theories and methods whose
analysis becomes more difcult. Compared with the clas-
sical properties of diferential equations, research on the
concept of fractional diferential equations is still in its
initial stage of development.

In stability concept, the Ulam stability was frst in-
troduced by Ulam (see [10]) and then was generalized by
Hyers and Rassias (see [11, 12]). Many scientists generalized
the Ulam–Hyers–Rassias results in various systems; for
Hadamard fractional Itô–Doob stochastic integral equations
and Caputo-derivative, we can refer to [13–16], and for
fractional stochastic diferential equation with fractional
Brownian motion and pantograph diferential equations, see
[17–21].

One of the most important classes of fractional difer-
ential equations are the fractional Itô–Doob stochastic
diferential equations which had many applications in de-
scribing many phenomena of real life, and the nonlocal
conditions describe numerous problems in physics (see
[13, 22, 23]), fnance (see [24, 25]), and mechanical problem
(see [26, 27]). To the best of our knowledge, there is no
existing work on the Hyers–Ulam stability of fractional
Itô–Doob stochastic integral equations. Motivated by the
previous works, in this paper, we will cover this gap. Te
main contributions of the paper are as follows:

(i) Study the existence and uniqueness of the solution
of Hadamard fractional Itô–Doob stochastic in-
tegral equations.

(ii) Investigate the Hyers–Ulam stability of Hadamard
fractional Itô–Doob stochastic integral equations.
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(iii) Extend the work on [13] to summed Hadamard
fractional Itô–Doob stochastic integral equations.

Te organization of the paper is as follows. We exhibit
some preliminaries and basic notions in Section 2. Section 3
is devoted to the fundamental results. In Section 4, we
present three examples to show the efectiveness of our
results.

2. Basic Notions

SetΘ> 1 andS � Y , M, M � (Mω)1≤ω≤Θ,
P  as a complete

probability space andW(ω) as a standard Brownian motion.
For q≥ 2, set Y q

ω � Lq(Y ,Mω, P) space of all
Mω-measurable and q-th integrable functions ϕ �

(ϕ1, . . . , ϕn)T : Y⟶ R with

ϕ
����

����q
� E |ϕ|

q
( ( 

1/q
. (1)

Defnition 1 (see [1]). Set β ∈ (0, 1) and f(ω) as a contin-
uous function and thus the fractional Hadamard integral of
f(ω) takes the form

I
β
g(ω) �

1
Γ(β)


ω

1
log

ω
s

 
β− 1f(s)

s
ds. (2)

Consider the Hadamard fractional Itô–Doob stochastic
integral equation

ξ(ω) � ψ + 
ω

1
υ1(s, ξ(s))ds + 

n

i�2
βi 

ω

1
ln

ω
s

  
βi− 1υi(s, ξ(s))

s
ds + 

ω

1
g(s, ξ(s))dW(s), (3)

where ψ ∈ R, 0< βi < 1 for i ∈ 2, 3, . . . , n{ }, ω ∈ [1,Θ], and
υi, g : [1,Θ] × R⟶ R, i ∈ 2, 3, . . . , n{ } are measurable
functions.

As we proceed, we take into account q> max1≤i≤n 1/βi .

Now, we consider the following assumptions which are
important criteria to prove the main results of the next
sections:

H1: there exist �D> 0 such that

g ω, c1(  − g ω, c2( 


∨ υ1 ω, c1(  − υ1 ω, c2( 


∨ , . . . , ∨ υn ω, c1(  − υn ω, c2( 


≤ �D c1 − c2


, (4)

for all (ω, c1, c2) ∈ [1,Θ] × R × R.
H2: there exist d> 0 such that
ess supω∈[1,Θ]|g(ω, 0)|≤d, ess supω∈[1,Θ]|υi(ω, 0)|≤ d

for i ∈ 1, 2, . . . , n{ }.

3. Main Results

Let Sq([1,Θ]) be the family of all processes ξ which are
measurable and M adapted satisfying supω∈[1,Θ] ξ(ω)‖ ‖q <∞.
Let ·‖‖Sq be the norm on Sq([1,Θ]) given by

ξ‖ ‖S
q

� sup
ω∈[1,Θ]

ξ(ω)‖ ‖q. (5)

We have, (Sq([1,Θ]), ·‖ ‖Sq ) is a Banach space.

Defnition 2. Let

S(ω) � y(1) + 
ω

1
υ1(s, y(s))ds + 

n

i�2
βi 

ω

1
ln

ω
s

  
βi − 1υi(s, y(s))

s
ds + 

ω

1
g(s, y(s))dW(s), (6)

where y(1) � ψ ∈ R, 0< βi < 1 for i ∈ 2, 3, . . . , n{ },
ω ∈ [1,Θ], and υi, g : [1,Θ] × R⟶ R, i ∈ 2, 3, . . . , n{ } are
measurable functions.

Equation (3) is Ulam–Hyers stable with respect to ϵ if
there exists ∆> 0 such that for each ϵ> 0 and for each so-
lution y ∈ Sq([1,Θ]), with

y(ω) − S(ω)
����

����
q

q
≤ ϵ, ∀ ω ∈ [1,Θ], (7)

there is a solution φ ∈ Sq([1,Θ]) of (3), with φ(1) � y(1),
and

y(ω) − φ(ω)
����

����
q

q
≤Cϵ, ∀ ω ∈ [1,Θ]. (8)
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Theorem 3. Assume that H1 and H2 hold. Let z ∈ Sq

([1,Θ]), satisfying

y(ω) − S(ω)
����

����
q

q
≤ ϵ, ∀ ω ∈ [1,Θ], (9)

with

S(ω) � y(1) + 
ω

1
υ1(s, y(s))ds + 

n

i�2
βi 

ω

1
ln

ω
s

  
βi− 1υi(s, y(s))

s
ds + 

ω

1
g(s, y(s))dW(s), (10)

where ϵ> 0. Ten, there is a solution φ ∈ Sq([1,Θ]) of (3),
with

y(ω) − φ(ω)
����

����
q

q
≤Mϵ, ∀ ω ∈ [1,Θ, ] (11)

where

M �
Θρ

(1 − c)
q,

λ � (n + 1)
q− 1 �D

qΘq− 1
+ 

n

i�2
βq

i
�D

q ln (Θ)
βiq− 1 q − 1

βiq − 1
 

q− 1

+ �D
q
MqΘ

q− 2/2⎡⎣ ⎤⎦,

Mq �
(q − 1)q

2
 

q/2

Θq− 2/2
,

(12)

and ρ is some positive constant such that

c �
λΘ
ρ + 1

 

1/q

< 1. (13)

Proof. Consider .‖ ‖ρ norm on Sq([1,Θ]) defned by

ξ‖ ‖
q
ρ � esssupω∈[1,Θ]

E|ξ(ω)|
q

ωρ . (14)

We have, .‖ ‖Sq and .‖ ‖ρ are equivalent.
Let K: Sq([1,Θ])⟶ Sq([1,Θ]) given by

(Kξ)(ω) � y(1) + 
ω

1
υ1(s, ξ(s))ds + 

n

i�2
βi 

ω

1
ln

ω
s

  
βi − 1υi(s, ξ(s))

s
ds + 

ω

1
g(s, ξ(s))dW(s), (15)

for every ω ∈ [1,Θ]. We will split our proof into the fol-
lowing three steps:

Step 1: K is well defned.
Let ξ ∈ Sq([1,Θ]), we get for ω ∈ [1,Θ],

(Kξ)(ω)‖ ‖
q
q ≤ (n + 2)

q− 1
y(1)

����
����

q

q
+ 

ω

1
υ1(s, ξ(s))ds

�������

�������

q

q
 + 

ω

1
g(s, ξ(s))dW(s)

�������

�������

q

q

+ 
n

i�2
βq

i 
ω

1
ln

ω
s

  
βi − 1υi(s, ξ(s))

s
ds

�������

�������

q

q

.

(16)

By the Hölder inequality, we obtain
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ω

1
υ1(s, ξ(s))ds

�������

�������

q

q

≤E 
ω

1
υ1(s, ξ(s))


ds 

q

≤ωq− 1
E

ω

1
υ1(s, ξ(s))



qds

≤Θq− 1
E

ω

1
υ1(s, ](s))



qds

≤Θq− 1
E

ω

1
υ1(s, ](s)) − υ1(s, 0) + υ1(s, 0)



qds

≤ (2Θ)
q− 1

E
ω

1
D

q
|ξ(s)|

q
+ υ1(s, 0)



q

 ds

≤ (2Θ)
q− 1

D
qΘ ξ‖ ‖

q

Sq +(2Θ)
q− 1


Θ

1
υ1(s, 0)



qds,


ω

1
ln

ω
s

  
βi − 1υi(s, ξ(s))

s
ds

�������

�������

q

q

≤E 
ω

1

1
r

ln
ω
r

  
βi− 1

υi(r, ξ(r))


dr 

q

≤E 
ω

1

1
r

ln
ω
r

  
βi− 1( )q/q− 1( )

dr 

q− 1


ω

1
υi(r, ξ(r))



qdr⎛⎝ ⎞⎠

≤
(lnΘ)

βiq− 1
(q − 1)

q− 1

βiq − 1( 
q− 1 

ω

1
υi(s, ξ(s))

����
����

q

q
ds

≤
(lnΘ)

βiq− 1
(2q − 2)

q− 1

βiq − 1( 
q− 1 D

qΘ ξ‖ ‖
q

Sq + 
Θ

1
υi(s, 0)



qds .

(17)

Using the Hölder inequality andTeorem 7.1 in [28], we
get


ω

1
g(s, ξ(s))dW(s)

�������

�������

q

q

≤MqE 
ω

1
|g(s, ξ(s))|

2ds





q/2

≤MqE 
ω

1
|g(s, ξ(s))|

qds  
ω

1
ds 

q− 2/2

≤MqΘ
q− 2/2

E 
ω

1
|g(s, ξ(s))|

qds 

≤Mq2
q− 1Θq/2

D
q ξ‖ ‖

q

Sq + d
q
).

(18)
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Terefore, Kξ(ω)‖ ‖Sq <∞.
Step 2: K is contractive.

We have for all ω ∈ [1,Θ],

Kξ(ω) − Kξ(ω)
�����

�����
q

q
≤ (n + 1)

q− 1

ω

1
υ1(w, ξ(w)) − υ1(w, ξ(w)) dw

�������

�������

q

q

+ 
ω

1
(g(w, ](w)) − g(w, ](w)))dW(w)

�������

�������

q

q


+ 
n

i�2
βq

i 
ω

1
ln

ω
w

  
βi − 1

υi(w, ξ(w)) − υi(w, ξ(w)) 
dw

w

�������

�������

q

q

⎤⎦.

(19)

Using H1 and the Hölder inequality, we obtain


ω

1
υ1(l, ξ(l)) − υ1(l, ξ(l)) dl

�������

�������

q

q

≤ωq− 1
E 

ω

1
υ1(s, ξ(s)) − υ1(s, ξ(s))




q
ds 

≤D
qΘq− 1


ω

1
ξ(s) − ξ(s)ds

�����

�����
q

q


ω

1

1
l

ln
ω
l

  
βi − 1

υi(l, ξ(l)) − υi(l, ξ(l)) dl

�������

�������

q

q

≤E 
ω

1

1
sq/q− 1 ln

ω
s

  
q βi− 1( )/q− 1( )

ds 

q− 1


ω

1
υi(s, ξ(s)) − υi(s, ξ(s))




q
ds⎛⎝ ⎞⎠

≤
D

q ln (Θ)
βiq− 1

(q − 1)
q− 1

βiq − 1( 
q− 1 

ω

1
ξ(s) − ξ(s)

�����

�����
q

q
ds.

(20)

Using H1, the Hölder inequality and Teorem 7.1 in
[28], we get


ω

1
(g(ϖ, ξ(ϖ)) − g(ϖ, ξ(ϖ)))dW(ϖ)

�������

�������

q

q

≤MqE 
ω

1
|g(ϖ, ξ(ϖ)) − g(ϖ, ξ(ϖ))|2dϖ





q/2

≤MqD
qΘq− 2/2


ω

1
ξ(ϖ) − ξ(ϖ)

�����

�����
q

q
dϖ.

(21)

Terefore, we get
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Kξ(ω) − Kξ(ω)‖
q

q ≤ λ
ω

1
ξ(s) − ξ(s)‖

q

qds.
�����

�������
(22)

Ten,

Kξ(ω) − Kξ(ω)
�����

�����
q

q
≤ λ

ω

1
ξ(s) − ξ(s)

�����

�����
q

q
ds

≤ λ
ω

1

ξ(s) − ξ(s)
�����

�����
q

q

s
9 s

9ds

≤ λ ξ − ξ
�����

�����
q

9

ω

1
s

9ds

≤
λω9+1

(9 + 1)
ξ − ξ

�����

�����
q

9

≤
λΘ

9 + 1
ξ − ξ

�����

�����
q

9
ω9

.

(23)

Tus,

Kξ − Kξ̂
�����

�����9
≤ c ] − ]‖ ‖9. (24)

Terefore, K is contractive.
Step 3: An estimation of y(ω) − φ(ω)

����
����

q

q
. It follows from

(9) that

E|y(ω) − Ky(ω)|
q

ω9 ≤ ϵ. (25)

Ten,

Ky − y
����

����9
≤ ϵ. (26)

In view ofTeorem 2.1 in [13], there is a unique solution
φ ∈ Sq([1,Θ])(φ(1) � y(1)) such that

φ − y
����

����9
≤
ϵ1/q

1 − c
. (27)

Consequently, ∀ω ∈ [1,Θ], and we have

E|φ(ω) − y(ω)|
q ≤Mϵ. (28)

□

4. Illustrative Examples

Tree examples are given to show the efectiveness of our
results.

Example 1. Let equation (3) be with Θ � 2, n � 3, β2 � 0.6,
and β3 � 0.4.

υ1(ω, ξ) � sin(2ξ),

υ2(ω, ξ) �
cos(2ξ)

1 + ω2 ,

υ3(ω, ξ) � ω sin(ξ),

g(ω, ξ(ω)) � ω2 sin(ξ).

(29)

We have,

υ1 ω, ξ1(  − υ1 ω, ξ2( 


≤ 2 ξ1 − ξ2


,

υ2 ω, ξ1(  − υ2 ω, ξ2( 


≤ 2 ξ1 − ξ2


,

υ3 ω, ξ1(  − υ3 ω, ξ2( 


≤ 2 ξ1 − ξ2


,

g ω, ξ1(  − g ω, ξ2( 


≤ 4 ξ1 − ξ2


.

(30)

Tus, assumption H1 holds for �D � 4. Moreover, for
i ∈ 1, 2, 3{ }, we have

ess sup
ω∈[1,2]

υi(ω, 0)


≤
1
2
,

ess sup
ω∈[1,2]

|g(ω, 0)|≤
1
2
.

(31)

Terefore, assumption H2 holds for d � 1/2.
Assume that y satisfes

E y(ω) − y(1) − 
ω

1
sin(2y(s))ds − 0.6

ω

1
ln

ω
s

  
− 0.4cos(2y(s))

s 1 + s2( )
ds − 0.4

ω

1
ln

ω
s

  
− 0.6

sin(y(s))ds − 
ω

1
s
2 sin(y(s))dW(s)





3

≤ ϵ,

(32)

for every ω ∈ [1, 2], where ϵ> 0. Ten, it follows from Teorem 3 that there is
φ ∈ S3([1, 2]),

φ(ω) � y(1) + 
ω

1
sin(2φ(s))ds + 0.6

ω

1
ln

ω
s

  
− 0.4cos(2φ(s))

s 1 + s
2

 
ds

+ 0.4
ω

1
ln

ω
s

  
− 0.6

sin(φ(s))ds + 
ω

1
s
2 sin(φ(s))dW(s),

(33)
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such that

E|φ(ω) − y(ω)|
3 ≤

22λ

1 − (2λ/2λ + 1)
1/3

 
3 ϵ, (34)

for every ω ∈ [1, 2], where λ � 45[4 +
���
108

√
+ 1.35 ln (2)0.8

+ 6.4 ln (2)0.2].

Example 2. Let equation (3) be with Θ � 3, n � 3, β2 � 0.5,
and β3 � 0.5.

υ1(ω, ξ) � 3ξ,

υ2(ω, ξ) � 3 sin(ξ)e
− ω

,

υ3(ω, ξ) �
1
3
ω cos(ξ),

g(ω, ξ(ω)) � 2ω arctan(ξ).

(35)

We have,

υ1 ω, ξ1(  − υ1 ω, ξ2( 


≤ 3 ξ1 − ξ2


,

υ2 ω, ξ1(  − υ2 ω, ξ2( 


≤ 3 ξ1 − ξ2


,

υ3 ω, ξ1(  − υ3 ω, ξ2( 


≤ 3 ξ1 − ξ2


,

g ω, ξ1(  − g ω, ξ2( 


≤ 6 ξ1 − ξ2


.

(36)

Tus, assumption H1 holds for �D � 6. Moreover, for
i ∈ 1, 2, 3{ }, we have

ess sup
ω∈[1,3]

υi(ω, 0)


≤ 1,

ess sup
ω∈[1,3]

|g(ω, 0)|≤ 1.
(37)

Terefore, assumption H2 holds for d � 1.
Assume that y satisfes

E y(ω) − y(1) − 3
ω

1
y(s)ds − 1.5

ω

1
ln

ω
s

  
− 0.5sin(y(s))e− s

s
ds −

0.5
3


ω

1
ln

ω
s

  
− 0.5

cos(y(s))ds − 2
ω

1
s arctan(y(s))dW(s)





3

≤ ϵ,

(38)

for every ω ∈ [1, 3], where ϵ> 0. Ten, it follows from Teorem 3 that there is
φ ∈ S3([1, 3]),

φ(ω) � y(1) + 3
ω

1
φ(s)ds + 1.5

ω

1
ln

ω
s

  
− 0.5sin(φ(s))e

− s

s
ds

+
0.5
3


ω

1
ln

ω
s

  
− 0.5

cos(φ(s))ds + 2
ω

1
s arctan(φ(s))dW(s),

(39)

such that

E|φ(ω) − y(ω)|
3 ≤

33λ

1 − (3λ/3λ + 1)
1/3

 
3 ϵ, (40)

for every, where λ � 243[18 + 4 ln (3)0.5].

Example 3. Let equation (3) be with Θ � 4, n � 3, and
β2 � β3 � 0.5.

υ1(ω, ξ) � ω arctan(ξ),

υ2(ω, ξ) � 4 sin(ξ) cos(ω),

υ3(ω, ξ) � ωξ,

g(ω, ξ(ω)) � ω cos(ξ).

(41)

We have,

υ1 ω, ξ1(  − υ1 ω, ξ2( 


≤ 4 ξ1 − ξ2


,

υ2 ω, ξ1(  − υ2 ω, ξ2( 


≤ 4 ξ1 − ξ2


,

υ3 ω, ξ1(  − υ3 ω, ξ2( 


≤ 4 ξ1 − ξ2


,

g ω, ξ1(  − g ω, ξ2( 


≤ 4 ξ1 − ξ2


.

(42)

Tus, assumption H1 holds for �D � 4. Moreover, for
i ∈ 1, 2, 3{ }, we have

ess sup
ω∈[1,4]

υi(ω, 0)


≤ 4,

ess sup
ω∈[1,4]

|g(ω, 0)|≤ 4.
(43)

Terefore, assumption H2 holds for d � 4.
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Assume that y satisfes

E y(ω) − y(1) − 
ω

1
s arctan(y(s))ds − 2

ω

1
ln

ω
s

  
− 0.5sin(y(s))cos(s)

s
ds − 0.5

ω

1
ln

ω
s

  
− 0.5

y(s)ds − 
ω

1
s cos(y(s))dW(s)





3

≤ ϵ,

(44)

for every ω ∈ [1, 4], where ϵ> 0. Ten, it follows from Teorem 3 that there is
φ ∈ S3([1, 4]),

φ(ω) � y(1) + 
ω

1
s arctan(φ(s))ds + 2

ω

1
ln

ω
s

  
− 0.5sin(φ(s))cos(s)

s
ds

+ 0.5
ω

1
ln

ω
s

  
− 0.5

φ(s)ds + 
ω

1
s cos(φ(s))dW(s),

(45)

such that

E|φ(ω) − y(ω)|
3 ≤

44λ

1 − (4λ/4λ + 1)
1/3

 
3 ϵ, (46)

for every ω ∈ [1, 4], where λ � 46[4 + ln (4)0.5 + 3
�
3

√
].

5. Conclusion

Tis paper focuses on the Hyers–Ulam stability of Hada-
mard fractional Itô–Doob stochastic integral equations by
employing the Banach fxed point method, some stochastic
analysis, and mathematically useful techniques. Te appli-
cability of the obtained results is proved through three il-
lustrative examples. Combining with some related research
in the literature about the fractional stochastic pantograph
equations, we can explore various extensions and stability
problems for pantograph Hadamard fractional Itô–Doob
stochastic integral equations.
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développement de Taylor,” Journal de Mathematiques Pures et
Appliquees, vol. 8, no. 1892, pp. 101–186.

[7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Teory and
Applications of Fractional Diferential Equations, Elsevier,
Amsterdam, Netherlands, 2006.

[8] C. P. Li and F. H. Zeng, Numerical Methods for Fractional
Calculus, Chapman and Hall/CRC Press, Boca Raton, FL,
USA, 2015.

[9] I. Podlubny, Fractional Diferential Equations, Academic
Press, Cambridge, MA, USA, 1999.

[10] S. M. Ulam, A Collection of Mathematical Problems, Inter-
science Publishers, New York, NY, USA, 1968.

[11] D. H. Hyers, “On the stability of the linear functional
equation,” Proceedings of the National Academy of Sciences,
vol. 27, no. 4, pp. 222–224, 1941.

[12] T. M. Rassias, “On the stability of the linear mapping in
Banach spaces,” Proceedings of the American Mathematical
Society, vol. 72, no. 2, pp. 297–300, 1978.

8 Complexity



[13] O. Kahouli, A. Ben Makhlouf, L. Mchiri, and H. Rguigui,
“Hyers–Ulam stability for a class of Hadamard fractional
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