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Tis study utilizes the Takagi–Sugeno fuzzy model to represent a subset of nonlinear systems and presents an innovative adaptive
approach for optimal dynamic terminal sliding mode control (TSMC). Te systems under consideration encompass bounded
uncertainties in parameters and actuators, as well as susceptibility to external disturbances. Performance evaluation entails the
design of an adaptive terminal sliding surface through a two-step process. Initially, a state feedback gain and controller are
developed using LinearMatrix Inequality (LMI) techniques, grounded on H2-performance and partial eigenstructure assignment.
Dynamic sliding gain is subsequently attained via convex optimization, leveraging the derived state feedback gain and the
designed terminal sliding mode (TSM) controller. Tis approach diverges from conventional methods by incorporating control
efort and estimating actuator uncertainty bounds, while also addressing sliding surface and TSM controller design intricacies.Te
TSM controller is redefned into a strict feedback form, rendering it suitable for addressing output-tracking challenges in
nonlinear systems. Comparative simulations validate the efectiveness of the proposed TSM controller, emphasizing its practical
applicability.

1. Introduction

Sector nonlinearity and approximation are two approaches
which widly used to describe the Takagi–Sugeno (T-S) fuzzy
model of a nonlinear system. the sector nonlinearity ap-
proach present an exact model of the nonlinear system.
Additionally, it transforms the nonlinear system into a col-
lection of local linear models through fuzzy blending [1–3].
Tis T-S fuzzy model proves valuable for characterizing
uncertain nonlinear systems. Furthermore, addressing
added uncertainties, like those associated with actuators,
recent work has proposed integrating T-S model repre-
sentation with sliding mode control (SMC) designs [4–7].

Sliding mode control is a well-established approach in
robust control theory, particularly for handling known but
bounded-matched uncertainty [8–10]. To extend its appli-
cability to scenarios with unknown upper bounds [11, 12],
adaptive methods have been explored for estimating un-
certainty boundaries [13–15]. An example is presented in
[16], which introduces an adaptive SMC design for a non-
linear suspension system with unknown bound uncertainty.
Additionally, the Terminal Sliding Mode Control (TSMC)
technique is frequently used to rapidly converge system
dynamics to the sliding surface. Proper design of TSMC
parameters ensures infnite stability of the closed-loop
system [17–19]. In [20], an adaptive TSMC is developed
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for a variable load DC-DC buck converter, where nonlinear
sliding surface coefcients are adjusted to account for load
resistance changes. An adaptive law is integrated to manage
load fuctuations and achieve dynamic sliding along the
surface. TSMC ofers advantages such as swift response,
disturbance resistance, and ease of implementation. Con-
sequently, the focus of our literature analysis revolves
around TSMC design for linear systems or TSFM, the fuzzy
blending of local linear subsystems.

Various controller design methods exist for linear systems,
such as Linear Quadratic Regulator (LQR), Pole Placement,
Eigenvalue Assignment, and eigenstructure assignment tech-
niques [21–24]. A comparative study [25] demonstrated that
eigenstructure assignment yields fast, non-overshooting re-
sponses, outperforming other methods by enabling eigenvalue
and eigenvector assignment. Combining diferent state feed-
back and robust approaches can enhance robust controller
performance and achieve desired transient behavior in the
presence of uncertainty or disturbance [26–29]. In [26], a blend
of pole placement objectives an H∞ performance is proposed.
Also, combines eigenstructures assignment and H2-charac-
terization is presented in [27] for state feedback gain calcu-
lation, which is used to achieve sliding surface and control
inputs. Te defnition of sliding surface signifcantly infuences
control system performance. In [28], a constrained bilinear
quadratic regulator which is known as an optimal quadratic
control problem was designed by a performance index. In [29],
a combination of the sliding mode control (SMC) and non-
linear control law is proposed and the proposed controller
parameter were optimized utilizing the particle swarm opti-
mization (PSO) method [29].

Conversely, addressing output tracking control in non-
linear systems has long been a challenge [30–32]. Output signal
convergence to reference signal was achieved in [33–35]
through output feedback control. However, robustness against
external disturbances was not fully considered. State and input
constraints were incorporated in [36] for static output feedback
control of T-S fuzzy systems. New design criteria were
established using Finsler’s lemma and fuzzy Lyapunov func-
tions to ensure stabilizing controller existence. Further relaxed
LMI conditions were obtained using slack variables. None-
theless, this study lacked robustness against uncertainties,
external disruptions, or optimized performance. Addressing
these concerns, Köhler et al. [37] introduced a method for
designing static output feedback controllers for constrainedT-S
fuzzy systems. Te fuzzy control framework integrated Lya-
punov stability theory to consider state and input constraints.
Te fuzzy control design was reformulated as an optimization
problem with LMI constraints. Despite producing positive
results, this study did not fully address controller robustness
against uncertainty and external disturbances.

In the realm of control theory, recent advancements have
addressed critical challenges in various domains. Paper [38]
introduces a hybrid Q-learning method for adaptive fuzzy H∞
control in discrete-time nonlinear Markov jump systems, of-
fering innovative solutions to address complexities in solving
fuzzy game-coupled algebraic Riccati equations (FGCAREs)
[38]. However, despite its merits, this approach may encounter
limitations in computational complexity and generalizability

beyond Takagi–Sugeno fuzzy models [38]. Meanwhile, paper
[39] proposes nonfragileH∞ synchronization for discrete-time
T-S fuzzy Markov jump systems, leveraging a novel matrix
transformation method and nonfragile controller design [39].
While promising, challenges such as computational complexity
and conservatism in criteria underscore the need for further
research to enhance practical applicability and robustness [39].
Furthermore, investigations in sliding mode control (SMC) for
discrete-time T-S fuzzy networked singularly perturbed sys-
tems, as explored in paper [40], highlight the integration of
observer-based techniques to manage communication burdens
and improve networked control system (NCS) efectiveness
[40]. Nevertheless, complexities in implementation and limited
applicability to certain system dynamics remain notable con-
cerns [40]. Future endeavors may delve into stochastic time-
delayed NCSs to bolster system performance and stability,
mitigating these potential limitations [40]. Tese collective
eforts refect the ongoing pursuit to advance control meth-
odologies, addressing real-world complexities and pushing the
boundaries of system robustness and efciency.

A literature review highlights the limited discussion on
adaptive estimation of uncertainty boundaries combined with
optimal TSMC based on T-S fuzzy systems. Building on the
discussed advantages, this paper investigates an adaptive ap-
proach to design optimal TSMC for T-S fuzzy-based nonlinear
systems. Te proposed method involves online adjustment of
the nonlinear sliding surface gain and adaptive TSM control
input. Fuzzy rule consequences allocate local subsystems to
desired negative values based on partial eigenstructure as-
signment. Te study assumes unknown actuator uncertainty
bounds, deriving an adaptive formula to determine these
bounds. Te TSMC design is a two-step process: proposing
a new TSM control input and adaptive formula to fnd un-
certainty bounds, followed by calculating suboptimal gains for
each rule consequence usingH2-performance index and partial
eigenstructure assignment likewise [41]. Convex combination
identifes state feedback control associated with H2-perfor-
mance criteria and generalized partial eigenstructure assign-
ment. An optimization problem determines the online optimal
nonlinear sliding matrix gain. Extending this approach, the
study addresses output tracking for strict feedback form
nonlinear systems using the T-S fuzzy model, demonstrating
efectiveness of the presented method through comparative
simulations.

Tis paper presents an innovative approach to tackle the
complex challenge of achieving optimal output tracking control
in strict feedback nonlinear systems with unknown actuator
uncertainty bounds, modeled using the TSFM. It introduces
the concept of extending eigenstructure assignment to non-
linear systems, enabling the optimization of transient response
characteristics by defning sliding surfaces and control inputs
aligned with desired eigenvalues corresponding to local sub-
systems within fuzzy rule consequences. Additionally, this
paper proposes the novel idea of online TSMC design, where
the level of control efort is considered during sliding surface
and control input design. Suboptimal gains are computed for
each fuzzy rule consequence based on system and actuator
uncertainty, as well as external disturbance, and then combined
to derive a customized control law tailored to the specifc
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nonlinear system. Troughout the control design process,
H2-optimization techniques are applied to enhance transient
response characteristics.

Tis paper is structured as follows. Section 2 introduces
nonlinear systems with matched uncertainty subjected to
external disturbance. Section 3 outlines major design pro-
cesses and formulation derivations. Section 4 presents
a comparative case study to showcase the strategy’s efec-
tiveness, followed by the conclusion in Section 5.

Hint herm(∆) � ∆ + ∆∗, where ∆ is a square matrix and
∆∗ represents the conjugate transpose of ∆; ∆T denotes the
transpose of∆. In addition, ‖∆‖ denotes the Euclidean norm∆.

2. Problem Statement and Preliminaries

Consider the following class of nonlinear systems with
matched uncertainty that are subjected to external
disturbance:

_x1(t) � x2(t),

_x2(t) � f1(x, t) + f2(x, t)(u(t) + g(x, t))

+ f3(x, t)w(t),

z(t) � g1(x(t), t)x(t) + g2(x, t)(u(t) + g(x, t)),

(1)

where the state vector, the H2-performance output vector,
the control input vector, the external disturbance input with
bounded energy, and the actuator matched uncertainty with
unknown bounded value ρ(x, u, t) are denoted by x ∈ Rn,
z ∈ Rq, u ∈ Rm, w ∈ Rq, and g(x, t) ∈ Rm, respectively.
Additionally, the nonlinear functions f1(x(t), t),
f2(x(t), t), f3(x(t), t), g1(x(t), t), and g2(x(t), t) have
suitable dimensions and undetermined parameter values.
Te fuzzy system can be used to represent the nonlinear
system mentioned in (1) as follows.

2.1. Plant Rule i. If μ1(t) is F1,i and . . .and μg(t) is Fg,i, then
_x1(t) � x2(t),

_x2(t) � As,ix(t) + B1s,i(u(t) + g(x, t)) + B2s,iw(t),

z(t) � Cix(t) + Diu(t); i � 1, . . . , r,

(2)

where μj(t) and Fj,i (j � 1, . . . , g) are the premise variables
and fuzzy sets, respectively; r is standing the number of the
fuzzy rules; and matrices B1s,i ∈ Rn2×m; B2s,i ∈ Rn2×q;
Asi ∈ Rn2×n; Ci ∈ Rq×n; and Di ∈ Rq×m have appropriate
dimensions. Furthermore, x � x1 x2 

T, x1 ∈ Rn1 ,
x2 ∈ Rn2 , n1 + n2 � n, and n1 � n2.

Te overall T-S fuzzy model of the nonlinear system
given in (1) will be inferred using a singleton fuzzifer,
product inference, and center-average defuzzifer as follows:

_x1(t) � x2(t),

_x2(t) � 
r

i�1
hi(μ) As,ix(t) + B1s,i(u(t) + g(x, t)) + B2s,iw(t) ,

z(t) � 

r

i�1
hi(μ) Cix(t) + Di(u(t) + g(x, t)) ,

(3)

where hi(μ) denotes the relative weighting value (normal-
ized membership function), in which hi(μ)≥ 0 and


r
i�1hi(μ) � 1 and

hi(μ) �


g
j�1Fj,i μj(t) 


r
i�1

g

j�1Fj,i μj(t) 
, (4)

where Fj,i(μj(t)) represents the grade of membership of
μj(t) in Fj,i. Following that, the T-S fuzzy controller will be
designed in the same way as (1). Parallel Distributed
Compensator (PDC) [1] is used to design the fuzzy con-
troller u(t) as follows.

2.2. Controller Rule i. If μ1(t) is F1,i and . . .and μg(t) is Fg,i,
then

u(t) � Kix(t); i � 1, . . ., r, (5)

where Ki indicates the feedback gain. Te overall PDC
controller can then be represented as

u(t) � 
r

i�1
hi(μ(t))Kix(t), (6)

where hi(μ) denotes the normalized fuzzy membership
functions presented in (4).

3. Main Results

In this section, we employ the conventional methodology for
designing control inputs in the context of nonlinear systems
characterized by matched uncertainties and external dis-
turbances to establish a sliding mode control input. Te
process entails the utilization of both a reaching control
input and an equivalent control input, constituting the input
strategy for the reaching and sliding phases, respectively.Te
standard control input design procedure itself is composed
of two primary constituents. In cases where nonlinear
systems are subject to matched uncertainty in the absence of
external disturbances, we propose the adoption of the
reaching control input as the initial step. Subsequently, in
the second phase, the development of an equivalent control
input is carried out for nonlinear systems exposed to ex-
ternal disturbances, employing state feedback control while
ensuring alignment with the performance benchmarks of
robust control design. Tese benchmarks encompass
H2-performance and eigenstructure assignment. As a result,
during the process of designing the state feedback control
input, we are empowered to address the challenge of robust
control design for the Takagi–Sugeno fuzzy model when
confronted with the presence of external disturbances. Tis
is achieved by conscientiously incorporating considerations
related to H2-performance characterization and partial
eigenstructure assignment. Tis section is methodically di-
vided into three subsections. Te frst and second sub-
sections delineate the formulation of a Terminal Sliding
Mode (TSM) controller tailored to the Takagi–Sugeno fuzzy
model. Tis formulation is rooted in the primary and
subsequent stages of the conventional sliding mode control
design methodology, respectively. Te third subsection
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subsequently delves into the intricate matter of output
tracking.

3.1. Terminal Sliding Mode Controller Design. In the initial
stage of our proposed development approach, it is imper-
ative to consider the system state (3) when there is no ex-
ternal disturbance. Tis step is pivotal to the subsequent
methodology.

_x1(t) � x2(t), (7)

_x2(t) � 
r

i�1
hi(μ) As,ix(t) + B1s,i(u(t) + g(x, t)) , (8)

z(t) � 

r

i�1
hi(μ) Cix(t) + Di(u(t) + g(x, t)) . (9)

Tis subsection proposes a terminal sliding surface for
the TSFM given in (7) and (8). Consider the following
terminal sliding surface:

σ � _x1 + sx
q/β
1 � x2 + sx

q/β
1 , (10)

where the matrix s � 
r
i�1hi(μ)si > 0 denotes the nonlinear

sliding surface gain with the appropriate dimension to be
designed. Also, q> 0, β> 0 are integer odd numbers, and
2q> β> q.

Lemma 1. Te reduced-order sliding mode dynamics surface
(10) for control the T-S fuzzy model (7) and (8) can be reached
through the following control input.

u(t) � 
r

i�1
hi(z) MB1s,i 

− 1
M − As,ix(t) − ρsign(σ) − sσe + φσ  , (11)

where σe � (q/β) _x1x1
(q/β− 1); is infnitely stable and M is

a non-zero arbitrary matrix of appropriate dimension such
that MB(1s,i) becomes an invertible matrix. Similarly, is
a scalar matrix of appropriate dimension such that
Real(φ) < 0.

Proof. Select a Lyapunov candidate function as follows:

V � σTσ, (12)

where the time derivative of the sliding surface (10) is

_σ � x1 + s
q

β
 x1

q/β− 1
_x1. (13)

Now, applying time derivation to the Lyapunov function
(12) leads to

_V � σT _σ + _σ
T
σ � _x1 + sx1

q/β
 

T
x1 + s

q

β
_x1x1

q/β− 1
 

+ x1 + s
q

β
  _x1x1

q/β− 1
 

T

_x1 + sx1
q/β

 .

(14)

Ten, by defnition of σe � (q/β) _x1x1
q/β− 1, (14) is re-

written as

_V � σT


r

i�1
hi(μ) As,ix(t) + B1s,i(u(t) + g(x, t)) + sσe ⎛⎝ ⎞⎠ +(∗). (15)

Let As � 
r
i�1hi(μ)As,i, B1s � 

r
i�1hi(μ)B1s,i. Ten, the

system state dynamics (7) and (8) and the time derivative of
the Lyapunov function (15) are rewritten as

_x1(t) � x2(t),

_x2(t) � Asx(t) + B1s(u(t) + g(x, t)),

_V � σT
Asx(t)(  + B1s u(t) + g (x, t) + sσe( (  +(∗).

(16)

Now, suppose that the Euclidean norm of the
B1sg(x, u, t) is bounded by a known function ρ(x, u, t), i.e.,
‖

r
i�1hi(μ)B1s,ig(x, u, t)‖≤ ρ, where ρ> 0 is a known scalar

value. Hence, substituting (11) in (16) yields

_V � σT
− ρsign(σ) + B1s,ig(x, t) 

+ σTφσ + − ρsign(σ) + B1s,ig(x, t) 
T
σ + φσTσ,

(17)
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where (17) according to uncertainty upper-bound ρ(x, u, t)

can be rewritten as

_V � − ρ | σT
| + σT

B1s,ig(x, t) + σTφσ  +(∗)≤ − ρ‖σ‖2 + σT
B1s,ig(x, t) + φσTσ 

+(∗)≤ − ρ‖σ‖2 +‖σ‖2 | B1s,ig(x, t) | + φσTσ  +(∗)≤ 0.
(18)

Terefore, from (18), one can conclude

_V≤ 2φ‖σ‖
2 ≤ 0, (19)

where φ is a matrix with a negative real part value; then
reachability conditions are held and the proof is complete.

Te uncertainty upper-bound ρ can be simplifed by
supposing ρ � ϵ + δ‖x(t)‖, where ϵ is a known small positive
scalar value. In this paper, we suppose that the uncertainty
bound is unknown and we should estimate the uncertainty
bound, i.e., ρ̂. Terefore, the proposed terminal sliding mode
control input (11) can be rewritten as

u(t) � MB1s,i 
− 1

M − Asx(t) − sσe + φσ − ρ̂sign(σ) . (20)

Let δ � δ − δ be the diference between the estimated and
real values of the upper-bound parameter δ. Ten, the es-
timated uncertainty bound and its parameter are obtained as
follows:

ρ̂ � ϵ + δ‖x(t)‖
_δ � η‖σ‖‖x(t)‖, (21)

where η is a known small positive constant. □

3.1.1. Attention. According to the above explanations, the
Lyapunov function has been chosen as a function of the delta
sliding surface that frst satisfes the above conditions;
secondly, the Lyapunov function and then the sliding surface
and then the frst and second state variables converge to zero,
which makes the system stable.

Lemma 2. Te sliding surface described in (10) converges in
a fnite amount of time when the state trajectories in (7) and
(8) are combined with the control input (20), the estimated
bound of matched uncertainty, and the parameter updating
rule (21).

Proof. we select a candidate Lyapunov functions as follows:

V1 �
1
2
(σ)

T
(σ) +

1
2η

(δ)
2
. (22)

Now, applying the time derivative to (22) yields

_V1 � σT _σ +
1
η

δ _δ � − _ρ|σ| + σT
B1s,ig(x, t) + φσTσ +

1
η

δ _δ ≤ − _ρ|σ| + σT
B1s,ig(x, t)

+ φ | σTσ | +
1
η

δ _δ ≤ − _ρ|σ| + | σT
| | B1s,ig(x, t) | + φ | σTσ | +

1
η

δ _δ ≤ − _ρ|σ| + ρ|σ|

+ φ‖σ‖
2

+
1
η

δ _δ ≤ − _ρ‖σ‖ + ρ‖σ‖ + φ‖σ‖
2

+
1
η

δ _δ

� φ‖σ‖
2

− ( _δ − δ)‖x(t)‖‖σ‖ +
1
η

δ _δ.

(23)

Substituting _δ given in (20) in (22) yields

_V1 � φ‖σ‖
2 ≤ 0, (24)

where the reachability condition is held and the proof is
complete.

Te TSFM (7) and (8) and the control input (20) must
now be revised and represented in new form in order to
achieve the optimal state feedback gain (25). To accomplish
this, take into account the following representation for the
entire TSFM with actuator uncertainty.

_x(t) � 
r

i�1
hi(μ) Aix(t) + B1,i(u(t) + g(x, t)) ,

z(t) � 
r

i�1
hi(μ) Cix(t) + D i(u(t) + g(x, t)) ,

(25)

where Ai ∈ Rn×n, B1,i ∈ Rn×q, and B2,i ∈ Rn×m are the ap-
propriate dimension matrices. Te strict feedback form T-S
fuzzy model in (7) and (8) can be proven equivalent to the
TSFM proposed in (25) by introducing the parameter-
varying matrices as follows:
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As,i � α21,i α22,i ,

Ai �
α11,i α12,i

α21,i α22,i

 ,
(26)

where

Ai �
0n1×m In2×m

α21,i α22,i

 ,

B1,i �
0n1×m

B1s,i

 ;

B2,i �
0n1×q

B2s,i

 .

(27)

For the sake of simplicity, let

As � 
r

i�1
hi(μ)As,i,

A � 
r

i�1
hi(μ)Ai,

B1 � 
r

i�1
hi(μ)B1,i,

B2 � 
r

i�1
hi(μ)B2,i,

(28)

where the overall matrices in (28) are as follows:

As � α21 α22 ;

A �
α11 α12
α21 α22

 ;

B1 �
0n1×m

B1s

 ;

B2 �
0n1×q

B2s

 .

(29)

Te control input (20) can be recast by taking into ac-
count the reformulated parameters stated in (29), as follows:

u(t) � MB1s( 
− 1

M − Asx(t) − ρsign(σ) − sσe + φσ( 

� MB1s( 
− 1

M − α21 x1 − α22x2 + φx2 + φsx
q/β
1 − ρsign(σ) − sσe 

� MB1s( 
− 1

M − α21 φI − α22(  x + φsx
q/β
1 − ρsign(σ) − sσe 

� MB1s( 
− 1

M 0 I Aλx − φsx
q/β
1 − ρsign(σ) − sσe ,

(30)

where Aλ � φIn×n − A. Terefore, the control input can be
rewritten as

u(t) � ure(t) + un(t),

ure(t) � MB1s( 
− 1

M 0 I Aλx − φsx
q/β
1 − sσe ,

un(t) � − MB1s
− 1

Mρsign(σ),

(31)

where ure(t) and un(t) stand for the equivalent and
switching control inputs. Section 3.2 delves into how
Generalized Partial Eigenstructure Assignment optimizes
sliding gain, driven by factors discussed earlier. Tese in-
clude using the Takagi–Sugeno (T-S) fuzzy model to handle
uncertain nonlinearities, integrating it with sliding mode

control for robustness and wider use, using adaptive
methods for uncertainties linked to actuator dynamics,
employing Terminal Sliding Mode Control (TSMC) to
swiftly guide system dynamics to the sliding surface with
robustness, recognizing the efectiveness of eigenstructure
assignment for rapid control responses, and exploring the
combination of adaptive uncertainty estimation with opti-
mal TSMC. Tis method adjusts sliding surface gain dy-
namically for better responsiveness. Additionally, Section
3.3 expands to address output tracking in strict feedback
nonlinear systems through the T-S fuzzy model. Te main
goal is to enhance control robustness, adaptability, and
performance in complex and uncertain system
dynamics. □
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3.2. Optimal Sliding Gain Design Using Generalized Partial
Eigenstructure Assignment. In the second step of the ideal
TSMC design, we set g(∙) � 0 and un(t) � 0 and then as-
sume that the TSM controller (30) only contains the
equivalent control part, which corresponds to the control
law (31), to demonstrate the disturbance attenuation/re-
jection property of the suggested approach for the nonlinear
T-S fuzzy model (3). Te system dynamics (3) is therefore
revised as follows.

_x(t) � 
r

i�1
hi(μ) Aix(t) + B1,iu(t) + B2,iw(t) ,

z(t) � 
r

i�1
hi(μ) Cix(t) + Diu(t) .

(32)

Te core challenge pertains to the adaptive identifcation
of the optimal nonlinear sliding surface coefcient, denoted
as S, with the dual objectives of ensuring system stability and
fulflling the performance criteria of H2 characterization.
Tis challenge remains pertinent even within the constraints
of motion governed by H2 considerations. To efectively
address this intricate challenge, the approach involves
addressing a multichannel H2 state-feedback predicament,
aimed at judiciously selecting the most suitable state feed-
back control input. Tis selection holds signifcant infuence
over the subsequent design of the sliding matrix gain, S. Te
formulation of a H2-centric sliding mode control strategy is
predicated on the delineation of two pivotal steps:

Step 1. Te amalgamation of the multichannel H2
optimization problem with the generalized partial
eigenstructure assignment technique takes precedence.
Tis entails the derivation of a state feedback matrix,
denoted as K, which serves to fulfll not only the
multichannel H2 constraints but also the nuanced
requirement of situating the m poles of individual rule
consequence subsystems at precisely predefned neg-
ative eigenvalues.
Step 2. Te explicit determination of the sliding matrix
gain, S, is contingent upon the state feedback outcomes
gleaned from the preceding Step 1.

Te subsequent sections undertake a comprehensive
exegesis of these critical steps, elucidating their intricacies
and implications in depth.

3.2.1. H2-LMI Characterization. Tis subsection presents
a new extended LMI characterization of H2 performance for
the TSFM (32) from disturbance input w to output z.

Lemma 3. Te following claims are identical for the non-
linear system (32):

(a) ∃Kj, j, i � 1, . . . , r, such that Ai + B1,iKj is a stable
matrix and the H2 performance specifcation from the
disturbance input w to the output z is less than c.

(b) ∃X> 0 and Z> 0 such that



r

i�1


r

j�1
hihj

AiX + B1,iYj + XAi
T

+ Yj
T
B1,i

T ∗

B2,i
T
X − cI

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦< 0, (33)



r

i�1


r

j�1
hihj

X CiX + DiYj 
T

CiX + DiYj Z

⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠> 0, (34)

trace(Z)< 1, (35)

where Yj � KjX.
(c) ∃X> 0, Z> 0 and nonsingular matrix Gj such that

for i, j � 1, . . . , r

− Gj + Gj
T

  ∗ ∗

AiGj + B1,iYj + X + Gj − 2X ∗

B2,i
T
Gj 0 − cI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (36)

− Gj + Gj
T

  ∗ ∗
X − X 0

CiGj + DiYj  0 − Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (37)

trace(Z)< 1, (38)

where Yj � KjGj.

Proof. It should be noted that (a) and (b) are equivalent
versions of the conventional H2-state-feedback synthesis for
the T-S fuzzy system proposed by Lemma (1) in [42]. Schur
complement lemma allows for the rewriting of (36) as

− Gj + Gj
T

 +

c
− 1

B2,i
T
Gj 

T
B2,i

T
Gj 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∗

AiGj + B1,iYj + X + Gj − 2X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (39)

in which Gj + Gj
T > 0. Applying the congruence trans-

formation Gj
− T 0
0 X

− 1  on (39) results in
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− Gj + G
T

j  + c
− 1

B2,iB
T
2,i  ∗

X Ai + B1,iKj  + X + Gj − 2 X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (40)

where Gj � Gj
− 1, X � X− 1, and Kj � Yj Gj

− 1. Ten, (40) can
be rewritten as

c
− 1

B2,iB
T
2,i  ∗

X Ai + B1,iKj  + X − 2 X

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + herm
− I

I
 G

T

ij I 0  < 0. (41)

By using the Projection lemma [37], inequality (41) holds
if the following inequalities are satisfed:

I

I
 

T c
− 1

B2,iB
T
2,i  ∗

X Ai + B1,iKj  + X − 2 X

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
I

I
 < 0, (42)

0
I

 

T c
− 1

B2,iB
T
2,i  ∗

X Ai + B1,iKj  + X − 2 X

⎡⎢⎢⎣ ⎤⎥⎥⎦
0
I

 < 0. (43)

Inequality (42) indicates X< 0 and inequality (43) is
equivalent to

X Ai + B1,iKj  + Ai + B1,iKj 
T X

T
+ c

− 1
B2,iB

T
2,i < 0.

(44)

By multiplying both sides of (44) by X � X
− 1, one

obtains

AiX + B1,iYj + AiX + B1,iYj 
T

+ c
− 1

XB2,iB2,i
T
X < 0, (45)

where Yj � KjX. From the Schur complement, (45) is
equivalent to (33). Te proof is completed. □

Note that by using the Projection lemma, one can realize
that (37) is an extension of (34), and the proof is omitted for
brevity.

3.2.2. Multichannel-H2 State-Feedback Gain Design Using
LMI Characterization. Te state feedback gain in this
subsection is designed to conform to the following per-
formance categorization.

minimize ‖Twψzψ
‖2 subject to ‖Tw1z1

‖
2
2 < c1, . . . , ‖Twψ− 1zψ− 1

‖
2
2
< cψ− 1,

‖Twψ+1zψ+1
‖
2
2
< cψ+1, . . . , ‖Twℵzℵ

‖
2
2 < cℵ,

(46)

where Lψ and Rψ are weighted vectors used to select a specifc
input/output channel and Twz represents a H2 performance
from w to the output vector z [43].Te number of channels is
specifed by ℵ. By replacing B2,i, Ci, and Di in (32) with
B2ψ,i, Cψ,i, and Dψ,i, respectively, where ψ � 1, . . .ℵ, it is
possible to derive ‖Twψzψ

‖2 ≔ ‖LψTwzRψ‖2. Byminimizing the
H2 norm, a specifc H2 performance associated with signals

wψ � Rψw and zψ � Lψz can be ensured (46). Now, by re-
casting (36)–(38) with diferent Lyapunov variables Xψ > 0 of
ψth channel and global variables Gj, Yj for all channels, the
multichannel H2 LMI characterization can be derived.
Terefore, by using Lemma 3, the LMI characterization for
the ψ th channel can be expressed as follows:

− Gj + Gj
T

  ∗ ∗

AiGj + B1,iYj + Xψ + Gj − 2Xψ ∗

B2,i
T
Gj 0 − cI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (47)

− Gj + Gj
T

  ∗ ∗
X − X 0

CiGj + DiYj  0 − Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (48)

trace(Z)< 1, (49)
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where Xψ > 0, Z> 0; Gj, and Yj are global LMI decision
variables and Yj � KjGj (i, j � 1, . . . , r). Te optimization
problem (46) is then modifed to

minimize cψ subject to

(47) and (48), and (49) forψ − th channel,

(47) and (48), and (49) for θ − th channel,

with given cθ; θ≠ψ; θ � 1, . . . ,ℵ.

(50)

3.2.3. Generalized Partial Eigenstructure Assignment. Te
LMI characterizations (47)–(49) can be utilized to assign the
m poles of each rule consequence linear subsystem (27) to
a set of predetermined negative values (51) utilizing the PDC
controller. Assignments of partial eigenstructures, which
combine H2 performance, are suggested in this subsection.
Te assignment of the following partial eigenstructures is
done by state feedback.

λ, . . . , λ{ }
√√√√√√√√m times

,
(51)

Tis issue can be broken down into the following two steps.

(1) Calculate the base vector Mλ,j Nλ,j 
T
in the null

space Aj − λI B1,j  for j � 1, . . . , r.
(2) Te state feedback can be calculated as Kj � YjGj

− 1

with arbitrary η1, . . . , ηmϵRm

Yj � NjΣN, Gj � MjΣM, (52)

where

Nj ≔ Nλ,j, . . . , Nλ,j

√√√√√√√√√√
,

m times

I, . . . , I
√√√√(n− m)times

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Mj ≔ Mλ,j, . . . , Mλ,j

√√√√√√√√√√√√
,

m times

I, . . . , I
√√√√(n− m)times

⎡⎢⎢⎣ ⎤⎥⎥⎦,

ΣN ≔ diag η1, . . . , ηm, k1, . . . , kn− m ,

ΣM ≔ diag η1, . . . , ηm, l1, . . . , ln− m ,

(53)

such that k1, . . . , kn− mϵRn, and l1, . . . , ln− mϵRn. It should be
noted that some ΣN and ΣM arrays are dependent on the
assignment of m eigenstructure to a predetermined value λ.
In other words, other arrays that are not used for eigenvalue
assignment can be used to achieve additional constraints. As
a result, the frst step in designing a H2-based SMC is to
recast (50) by the LMI characterizations (47)–(49) with
X> 0, Z> 0, ΣN,j,ΣM,j, and ci > 0 as shown below.

minimize cψ

subject to

(47), (48), (49) and (52) forψ − th channel,

(44), (45), (46) and (52) for θ − th channel,

with given cθ; θ≠ψ; θ � 1, . . . ,ℵ.

(54)

Each local subsystem (2) with PDC controller (5) contain
eigenvalues (51), if (52) be used to calculate state feedback,
which is proved by the following lemma.

Lemma 4. Te set of eigenvalues Aj + B1,jkj for each fuzzy
rule with the state feedback kj � YjGj

− 1, where Yj and Gj are
reported in (52), contains the subset (51) for each fuzzy rule.

Proof. Te following brief proof demonstrates that a set of
(51) is the subset of eigenvalues Aj + B1,jkj.

Aj + B1,jKj Mλ,jηi � Aj + B1,j NjΣN,j  MjΣM,j 
− 1

 Mλ,jηi

�

Aj + B1,j Nλ,j
, . . . diag η1, . . .  

Mλ,j
, . . . diag η1, . . .  

− 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

Mλ,j
, . . . diag η1, . . .  ei

� AjMλ,jηi + B1,jNλ,jηi � λMλ,jηi,

(55)
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where i � 1, . . . , m, and ei stands for the canonical or
standard basis of Rn [44–47]. □

3.2.4. Adaptive Sliding Gain Matrix Design. Te fact that (6)
equals (11) can lead to one approach for determining the
sliding gain matrix, which proceeds as follows:

MB1s,i 
− 1

M 0n2×n1
In2×n1 Aλ,ix − φsix

q/β
1 − siσe  � Kix. (56)

If ui(t) � Kix is used as the state feedback control input,
then (56) can be expressed as follows:

0 I Aλ,ix − φsx
q/β
1 − siσe  � B1s,iKix. (57)

Flowing minimization is suggested to resolve (57):

0 I Aλ,ix − φsix
q/β
1 − siσe  − B1s,iKix≤ | 0 I Aλ,ix − φsix

q/β
1 − siσe  − B1s,iKix |

≤ ‖ 0 I Aλ,ix − φsix
q/β
1 − siσe  − B1s,iKix ‖ < δi,

(58)

where Ki is the state feedback gain, derived from (56), and
δi > 0 is the scalar variable. Tis ensures that the m poles of
each rule consequence subsystem with PDC controller are
precisely situated at λ [48–50].

By employing a straightforward relaxation procedure,
one can analyze (58) and obtain the positive defnite matrix
si as shown below:

minimize δi subject to

‖ 0 I Aλ,ix − φsix
q/β
1 − siσe − B1s,iKix ‖ < δi, for i � 1, . . . , r.

(59)

Using LMI optimization, the minimization problem
stated in (59) is reformulated as follows:

minimize δi subject to

− δi I ∗

0 I Aλ,ix − φsix
q/β
1 − siσe − B1s,iKix − δi I

⎡⎣ ⎤⎦< 0; for i � 1, . . . , r.
(60)

As a result, the multichannel-H2-based terminal SMC
problem is summarised in (60) to fnd the global solution for
the optimization problem, yielding the terminal sliding
mode gain s [51, 52].

Te following theorem ofers a concise statement of the
suggested design strategy for the multichannel H2-based
Adaptive Dynamic TSMC for (25) [53–55].

Theorem  . Assume that the state feedback K is a solution to
the optimization problem (56) for some cψ > 0, ψ � 1, . . .ℵ.
Te multichannel H2-performance constraints ‖Twψ∅ψ‖

2
2
< cψ ,

ψ � 1, . . .ℵ are then guaranteed, and the resulting reduced-

order sliding mode dynamics obtained by the control law are
demonstrated as

u(t) � 
r

i�1
hi(z(t))kix(t) + un(t), (61)

where un(t) represents the switching control component of the
proposed controller in (20), which is asymptotically stable.

Proof. Select a candidate Lyapunov function as follows:

V2 �
1
2
x

T
x. (62)
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Using the time derivative to analyze the Lyapunov
function (62) now results in

_V2 � x
T

_x, (63)

and substituting _x(t) from (25) in (63) yields

_V2 � x
T



r

i�1
hi(μ) Aix(t) + B1,i(u(t) + g(x, t)) ⎛⎝ ⎞⎠. (64)

After that, (64) is revised as follows:

_V2 � x
T



r

i�1
hi(μ) As,ix(t) + B1,i(u(t) + g(x, t)) ⎛⎝ ⎞⎠. (65)

Substituting u(t) from (61) into (65) yields

_V2 � x
T



r

i�1


r

j�1
hihj Ai + B1,iKj x(t) + B1s,ig(x, t) − ρ̂

σ
‖σ‖

 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠

≤ x
T



r

i�1


r

j�1
hihj Ai + B1,iKj x(t) ⎛⎝ ⎞⎠

− 
r

i�1


r

j�1
hihj | x

Tρ̂ − x
T
B1s,ig(x, t) | 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠≤x

T


r

i�1


r

j�1
hihj Ai + B1,iKj x(t) ⎛⎝ ⎞⎠

− ϵ‖x‖
2
.

(66)

In this study, it is claimed that Ai + B1,iΚj are Hurwitz
matrices; hence, (66) leads to

_V2 < 
r

i�1


r

j�1
hi(μ)hj(μ)λmax,ij‖x(t)‖

2 < 0, (67)

where the reachability condition is satisfed, and the max-
imum eigenvalues of the Hurwitz matrices Ai + B1,iΚj, i.e.,
λmax,ij, are located on the left side of the s-plane.

Hint 3.1. When the trajectories in this investigation are
on the sliding surface, that is, when σ � 0, the system
tracking dynamic is

_e1 � − se1
q/β

. (68)

Te real components of the e1 eigenvalues are entirely
negative, proving the infnite stability of the TSMC system.
We can also rewrite (68) as

dt � −
de

se1
q/β. (69)

We now integrate both sides of (69). Ten, using the
closed interval (e1(0)≠ 0, e1(ts) � 0), we derive the resulting
equation as follows:

ts � −
1
s


0

e1(0)

de

e1
q/β �

| e1(0) |
1− q/β

s(1 − q/β)
. (70)

We can deduce from (70) that when the system with the
initial condition e1(0)≠ 0 arrives at the terminal sliding
mode at t � tr, the system state e1 converges to e1(ts) � 0 in
fnite time and remains there for ≥ ts. In other words, for
t≥ tr, the state trajectory will belong to the sliding line.
However, the convergence time, ts, given in (70), is afected
by the parameters q/β and s. □

3.3. Application to Output Tracking. Te suggested method
in this paper is expanded to handle the challenge of output
tracking in nonlinear systems characterized by strict feed-
back structure, employing the T-S fuzzy model. Te output
to be measured is represented asy(t) � x1(t). Te sub-
sequent steps are recommended to achieve this objective.

Step 1. Te frst state tracking error can be expressed as
e1 � y(t) − yd(t) � x1 − xd, where yd(t) and xd stand
for the desired output vector and desired frst state
vector, respectively. Tis is because the measured
output vector y(t) is an available output vector. Te
frst and second time derivatives of e1 are then cal-
culated as shown below.

_e1 � _x1 − _xd � x2 − _xd,

€e1 � €x1 − €xd � _x2 − €xd

� 
r

i�1
hi(μ) As,ix(t) + B1s,i(u(t) + g(x, t))  − €xd.

(71)

Defne e2 � _e1, and the system tracking error dynamics
(8) is rewritten as
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_e1 � e2,

_e2 � 
r

i�1
hi(μ) As,ix(t) + B1s,i(u(t) + g(x, t))  − €xd.

(72)

Te output tracking problem (72), which is now
expressed in terms of the tracking error
e(t) � e1 e2 

T and time-derivative of the tracking
error _e(t) � _e1 _e2 

T, is to be developed with a new
control input τ(t). Tis equation must be true for the
new control input:



r

i�1
hiB1s,iτ(t)≜ 

r

i�1
hiB1s,iu(t) + 

r

i�1
hiA s,ixd(t) − €xd(t).

(73)

Ten, system (72) is rewritten as

_e1 � e2,

_e2 � 
r

i�1
hi(μ) As,ie(t) + B1s,i(τ(t) + g(x, t)) .

(74)

Now, the terminal sliding surface for the state tracking
error (74) can be modifed as

σ � _e1 + se
q/β
1 � x2 − _xd(  + se

q/β
1 , (75)

where the appropriate dimension matrix s> 0 stands
for the nonlinear sliding surface gain. Te new control
input of the TSMC given in (75) can be proposed as

τ(t) � τre(t) + τn(t),

τre(t) � MB1s,i 
− 1

M 0n2×n1
In2×n1 Aλe − φse1

q/β
− s

q

β
 _e1e1

q/β− 1
 ,

τn(t) � − MB1s,i 
− 1

Mρ sign(σ),

(76)

where τre(t) and τn(t) denote the equivalent and
switching new control input, respectively.
Step 2. In this case, assuming that Di|i�1,..,r � 0, we
defne the H2-performance output tracking error as

z(t) � z(t) − zd(t), where zd(t) represents the desired
H2-performance output vector. Te output tracking
error dynamics is then changed as (77) to evaluate the
disturbance attenuation supplied for the system dy-
namic given in (32).

_e(t) � 
r

i�1
hi(μ) Aie(t) + B1,iτ(t) + B2,iw(t) ,

z(t) � 
r

i�1
hi(μ) Cie(t) .

(77)

According to the PDC form, the new control input τ(t)

is now designed for the tracking error dynamic (77) as

τ(t) � 
r

i�1
hi(μ(t))Kix(t), (78)

such that the new control input gains in (78) are ac-
quired by solving the optimization problem (56).
Step 3. For the output tracking problem, the terminal
sliding mode gain s must be obtained. As a result of (77)
and (78), the minimization problem (60) is modifed
accordingly in this case.

minimize δi subject to

− δi I ∗

0 I Aλie + φsie
q/β
1 + si

q

β
 _e1e

(q/β)− 1
1 − B1s,iKie − δi I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, for i � 1, . . . , r.

(79)
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Step 4. Te sliding surface gain S obtained in the op-
timization problem (79) and the new control input
condition given in (76) are used to calculate the
practical control input u(t).

4. Simulation Results

In this section, a real-world illustration involving a mass-
spring mechanical system is examined to evaluate the ef-
fectiveness and practicality of the suggested optimal adaptive
terminal sliding mode control system design.

Example 1. Consider a mass-spring mechanical system
depicted in Figure 1, where (x1, x2), (Ff1

, Ff2
), (Fs1

, Fs2
),

(Fμ1, Fμ2), (m1, m2), and u denote the displacement from the
reference points, the viscous damping forces, the restoring
forces of the springs, the kinetic friction forces, the masses,
and the external input, respectively. Newton’s law states that
the motion equations can be represented as

m1 €x1 − €x2(  + k 1 + ka
2

x1 − x2( 
2

  x1 − x2(  + c _x1 − _x2( 

� u1(t) + g(x) − w1(t),

m2€x2 − c _x1 − _x2(  − k 1 + ka
2

x1 − x2( 
2

  x1 − x2(  + c _x2

+ k 1 + ka
2
x
2
2 x2

� u2(t) + g(x) − w2(t),

(80)

where the actuator uncertainty (g(x)) and the external
disturbance (w(t)) are denoted correspondingly. Te vis-
cous damping force and the restoring force of the spring are
both described by the variables m1 � m2, c> 0, k, and a2 as
Ff � c _x and Fs � k(1 + a2)x2, respectively. Te nonlinear
system (80) is represented as the following state-space form
by the defnitions X1 � x1 − x2, X2 � _X1, X3 � x2, and
X4 � _X3.

_X1

_X2

_X3

_X4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 1 0 0

− k − ka
2
X

2
1 − c 0 0

0 0 0 1

k + ka
2
X

2
1 c − k − ka

2
X

2
3 − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X1

X2

X3

X4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 0

1 0

0 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(u(t) + g(x)) +

0

− 1

0

− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w(t),

y(t) �
1 0

0 1
 

X1

X3
 , z1(t) � X1, z2(t) � X3.

(81)

Using the sector nonlinearity approaches [1], we select
X2

1 and X2
3 as the premise variables with the corresponding

membership functions as M1(X2
1 ) � (X2

1 − d1)/(D1 − d1)

and M2(X2
1 ) � 1 − M1(X2

1 ), N1(X2
3) � (X2

3 − d)/(D3 − d3)

and N2(X2
3) � 1 − N1(X2

3), where D1, D3 and d1, d3 denote

the upper and lower bounds of the premise variable, re-
spectively. For the system dynamic (81), one derives the
following desired state variable as

X1d(t) X3d(t) 
T

� yd(t), X2d(t) X4d(t) 
T

� _X1d(t) _X3d(t) 
T
.

(82)

Terefore, one obtains the practical input from (71) and
(81) as u(t) � τ(t) + cX2d + (k + ka2X2

1)X1d. Here, the
system parameters are set as m1 � m2 � 1kg, c � 0.4, k � 1.1,
a2 � 0.9. Also, X1d � sin (0.2t) and X3d � 0.5 sin (0.2t)

are selected as the desired output vector.Ten, the upper and
the lower bounds of the premise variables are obtained as
D1 � 1, D3 � 0.25, and d1 � d3 � 0, respectively. Te fuzzy
rule matrices are obtained as

A1 �

0.00 1.00 0.000 0.00
− 2.09 − 0.40 0.000 0.00
0.00 0.00 0.000 1.00
2.09 0.40 − 1.595 − 0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

0.00 1.00 0.000 0.00
− 1.10 − 0.40 0.000 0.00
0.00 0.00 0.000 1.00
1.10 0.40 − 1.595 − 0.40

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A3 �

0.00 1.00 0.000 0.00
− 2.09 − 0.40 0.000 0.00
0.00 0.00 0.000 1.00
2.09 0.40 − 1.100 − 0.40

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A4 �

0.00 1.00 0.000 0.00
− 1.10 − 0.40 0.000 0.00
0.00 0.00 0.000 1.00
1.10 0.40 − 1.100 − 0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1,1 �

0 0
1 0
0 0
0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2,1 �

0.0
− 1
0.0
− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1,1 �

1
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, C2,1 �

0
0
1
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(83)

and B1,i � B1,1, B2,i � B2,1, C1,i � C1,1, C2,i � C2,1, D2,i � D2,i

� 0 0  (i � 1, . . . , 4).
In this study, we select the predetermined eigenvalue as

λ � − 10, the nonlinear sliding fractional power as p/q � 7/9,
the initial state condition as X1 X2 X3 X4 

T

� 0 0.1 0 0 .1 
T, the actuator uncertainty as

g(x) � 0.1X1(t) 0.1X3(t) 
T, and the arbitrary un-

certainty parameters as ϵ � 1 × 10− 4, η � 0.5, and the ex-
ternal disturbance is as follows:
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w(t) � 0.005 sin πX1(t)( , if 0≤X1(t)≤
1
10

. (84)

We devote diferent Lyapunov matrix variables for each
channel in (51). Also, the predetermined value c2 � 2.3638 is
considered for the H2-performance from the external dis-
turbance vector to the frst H2 output vector, i.e., z2(t).
Ten, the results show that the H2-performance c1 � 2.9776
is obtained for the frst H2 output vector, i.e., z1(t). In this
case, the state feedback gains and the optimal sliding gains
are obtained as

Y1 �
0.5634 − 5.6198 − 0.0017 − 0.2495

0.0336 − 0.5254 1.8202 − 2.8749
 ,

Y2 �
0.5633 − 5.6198 − 0.0017 − 0.2495

0.0345 − 0.5254 1.8202 − 2.8749
 ,

Y3 �
0.5634 − 5.6198 − 0.0017 − 0.2495

0.0336 − 0.5254 1.8202 − 2.8749
 ,

Y4 �
0.5633 − 5.6198 − 0.0017 − 0.2495

0.0345 − 0.5254 1.8202 − 2.8749
 ,

G1 �

0.0057 0.0637 − 0.0005 0.0019

− 0.0574 0.3854 0.0005 − 0.0011
0.0002 0.0020 0.7833 0.3983

− 0.0023 0.0043 − 1.0300 1.0571

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G2 �

0.0058 0.0637 − 0.0005 0.0019

− 0.0580 0.3854 0.0005 − 0.0011
0.0002 0.0020 0.7833 0.3983

− 0.0023 0.0043 − 1.0300 1.0571

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G3 �

0.0057 0.0637 − 0.0005 0.0019

− 0.0574 0.3854 0.0005 − 0.0011
0.0002 0.0020 0.7833 0.3983

− 0.0023 0.0043 − 1.0300 1.0571

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G4 �

0.0058 0.0637 − 0.0005 0.0019

− 0.0580 0.3854 0.0005 − 0.0011
0.0002 0.0020 0.7833 0.3983

− 0.0018 0.0043 − 1.0300 1.0571

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

F1 �
− 18.0133 − 11.6054 − 0.1949 − 0.1428

− 3.1727 − 0.8082 − 0.8346 − 2.4005
 ,

F2 �
− 18.3823 − 11.5444 − 0.1945 − 0.1423

− 3.0549 − 0.8276 − 0.8348 − 2.4007
 ,

F3 �
− 18.0133 − 11.6053 − 0.1949 − 0.1428

− 3.1745 − 0.8079 − 0.8346 − 2.4005
 ,

F4 �
− 18.3824 − 11.5444 − 0.1945 − 0.1423

− 3.0566 − 0.8274 − 0.8347 − 2.4007
 .

(85)

A standard TSMC based on T-S fuzzy model (81) and
(82) combined with H2 performance is analyzed in order to
compare the proposed approach’s efectiveness with that of
similar eforts. Tis approach demonstrates that the H2
performance c � 14.4588 is assured. Figures 2–13 contain
the illustrated comparative simulations.

F1 �
− 0.8955 − 0.8822 − 0.0184 0.0020

− 2.1030 − 0.3899 − 1.3906 − 0.8823
⎡⎢⎢⎣ ⎤⎥⎥⎦,

F2 �
− 1.8855 − 0.8822 − 0.0185 0.0020

− 1.1130 − 0.3899 − 1.3906 − 0.8823
⎡⎢⎢⎣ ⎤⎥⎥⎦,

F3 �
− 0.8955 − 0.8822 − 0.0184 0.0020

− 2.1030 − 0.3899 − 1.8856 − 0.8823
⎡⎢⎢⎣ ⎤⎥⎥⎦,

F4 �
− 1.8855 − 0.8822 − 0.0185 0.0020

− 1.1130 − 0.3899 − 1.8856 − 0.8823
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(86)

Figures 2–4 illustrate the superiority of the adaptive
optimal TSMC approach over the conventional method
with respect to reference tracking. In Figures 6 and 7, the
trajectories of the frst and second vectors on the surface
demonstrate that the adaptive optimal TSMC approach
reaches the origin point more rapidly and with minimal
chattering compared to the conventional method. Fig-
ures 8 and 9 visualize the new control inputs proposed in
(76), computed by integrating the H2 characterization and
the generalized eigenstructure assignment method
through the adaptive optimal TSMC minimization
problem (79) alongside the calculation using the con-
ventional method. Figures 6–9 indicate that the method
proposed in this paper ofers numerous advantages, in-
cluding a signifcant reduction in chattering phenomena
and its adverse efects, decreased control efort, and no-
tably reduced reaching time.

To demonstrate the efectiveness of the proposed ap-
proach in reducing reaching time and chattering phe-
nomena, refer to Figures 10 and 11. Furthermore, according
to (81) and Figure 1, the frst H2 output vector, z1(t), de-
notes the diference between the displacements of the frst
and second masses. It is preferable for these functions to
reach zero in fnite time with minimal chattering to ensure
smooth displacement. On the other hand, the second H2
output vector, z2(t), solely represents the displacement of
the second mass. Figure 12 shows that z1(t) reaches zero
faster than that with the conventional method. Figures 12
and 13 demonstrate that although the diference in the
second mass displacement (z1(t)) is not substantial using
both approaches, the disparity in fnding the displacement of
the frst mass (e1(t)) between the two approaches is
remarkable.
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Figure 1: Mass-spring mechanical system.
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5. Conclusion and Future Works

Tis study presents an innovative strategy aimed at devising
the optimal switching surface for implementing sliding
mode control in a nonlinear system defned by TSFM. To
achieve this objective, the approach involves the generation
of a state feedback gain for each localized subsystem within
the closed-loop setup. Tis gain is computed using a convex
optimization strategy, which ensures the allocation of pre-
determined complex values with negative real components
to a predefned number of eigenvalues, while simultaneously
adhering to the H2-norm criteria. Following the acquisition
of the state feedback during the initial phase, the associated
convex optimization problem is subsequently solved to
ascertain the sliding surface. Notably, the suggested method
ofers several notable benefts. It takes into account the level

of control eforts during the design of SMC and facilitates the
adaptive determination of the nonlinear sliding surface gain
based on trajectory conditions. Te efcacy of this proposed
approach is substantiated through simulation outcomes. In
the realm of future research, potential avenues could en-
compass the development of efective techniques to address
matched/unmatched uncertainty and the judicious selection
of optimal TSMC parameters to ensure the attainment of the
desired outcomes.
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