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Systems are designed to perform specifc task by giving certain input which produces the required output in an orderly manner
known as process. Te input, output, and the state variables should be known that will help in interacting with the system. Te
relation between these variables can be brought out by building a model that resembles or expresses the original performance of
the system. Te parameters of the model are estimated using the least squares approximation, maximum likelihood, maximum
log-likelihood, and Bayesian parameter estimation methods by utilizing the experimental data from the multiprocess station. Te
selected parameters are converted to nine diferent transfer function models that represent the given dynamic system.Temodels
framed are analyzed by the criterion curve technique using seven criterion functions evaluating the ftness of the model. Order of
the model is found from Hankel matrix representation methods such as singular value decomposition and determinant method.
Response of the models is compared with the original response to choose the best ft model by calculating ISE standard. All the
above methods are used to model the system without physical and theoretical laws which is known as system identifcation.

1. Introduction

Our day-to-day lives depend on a lot of dynamic systems. In
order to improve the quality and behaviour of the system,
the stability, controllability, and observability of the system
should be analyzed or even a controller design might be
required. Te knowledge about the input and the output
variables of the system is required so as to make the design
better. Te system must be modeled, which means the input
and the output of the system should be related in the form of
a transfer function. Modeling is done with the help of ex-
perimental data [1] collected from the experiments con-
ducted in the system without physical laws, known as system
identifcation.

Te prior knowledge about the process and the response
of the system [2] helps to conduct the experiments [3] in the

system. Hence, the input, output, and state variables can be
framed.

Te least squares method is used, which approximates
the experimental data with least prediction error into useful
parameters. It can be used hierarchically and iteratively [4]
for linear and nonlinear transfer function models. Te
objective function of the least squares method is based on
prediction error [5]. Te parameter that minimizes the
objective function [2, 6] will have better ftness [4] and is
chosen to form the system model. Genetic algorithm [7] or
any such search algorithms can also be used to minimize the
objective function. Te statistical parameter estimation
methods are also similar to the least squares approximation
method in minimizing the cost function [8] or the objective
function. One of the statistical methods is maximum like-
lihood method [9] that chooses the parameters with the
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maximum possibility to occur and also with the least pre-
diction error. Te maximum log-likelihood method [1, 9] is
the same as maximum likelihood in addition to the loga-
rithmic term, which eliminates the complexity of large
numbers. Te Bayesian’s estimation is a priori estimator
predicting the posterior parameters.

Te estimated parameters are used to form the transfer
function models. Te models are formed by using the input
variables, output variables, delay variables, error variables,
and errorless or undisturbed output variables under dif-
ferent combinations [10, 11]. Te Autoregressive eXoge-
nous model (ARX) is the combination of input and output
parameters. Te Autoregressive Moving Average model
(ARMA) is the combination of output and error param-
eters. Te Autoregressive Moving Average eXogenous
model (ARMAX) is the combination of output, input, and
error parameters. Te Auto Regressive Auto Regressive
eXogenous model (ARARX) is the combination of output,
input, and delay parameters. Te Autoregressive Autore-
gressive Moving Average eXogenous model (ARARMAX)
is the combination of output, input, error, and delay pa-
rameters [12]. Te Output Error model (OE) is the com-
bination of input and undisturbed output parameters. Te
Box–Jenkins model (BJ) is the combination of input, un-
disturbed output, error, and delay parameters. Te
Autoregressive Integration Moving Average model
(ARIMA) is the integrated ARMA model. Te Autore-
gressive Integration Moving Average eXogenous model
(ARIMAX) is the integrated ARMAX model.

Te best model is selected on certain factors based on
complexity, performance, and accuracy. To fnd the best
model, certain assumptions [13] should be made which leads
to the complexity of the model. Terefore, the models are
selected by using criterion functions [14] which depend
upon the number of datasets, number of parameters in the
model, loss function, and penalty functions. Te criterion-
based model selection overcomes [15] the drawback of
prespecifed order or any order assumption for the system.
Te ftness of the model is checked by comparing the
predicted output and mean value of the output with the
original output data. Te ftness can also be checked by
comparing the response [16] of the models with the original
response of the system or by changing the signal to noise
ratio [17] value each time. Te best ft model is selected and
subjected to various kinds of disturbances [18] for analyzing.
Te models are also given for analog to digital conversion
[19] tests to check its reconstructability. Te Lev-
enberg–Marquardt algorithm [20] is used to check the ft-
ness of the models after evaluating them using various
parameter estimation methods.

Criteria are used to fnd the order of the system. Te
order of the system is found [21] instead of fxing the order
limits that avoids the overestimation of orders. Te model
with least criterion value [22] is found from the pool of
models with various orders. Te selected model will have the
order equal or close to the true order of the system.Te order
of the system can also be found [23] by the Hankel matrix
representation. Te Hankel matrix is the state-space model
of the selected model [24].Te singular value decomposition

[25] of the state model shows how far the experimental data
are approximated into the parameters [26]. Te determinant
method is an order estimation method using Hankel matrix
which eliminates the assumption of orders. Once the order is
estimated, the model is reduced to the true order of the
system by the use of order reduction technique. Tus, the
model for the dynamic system could be evaluated from the
experimental data and it is known as system identifcation.

2. System Identification

Modeling the given process station is the aim of identif-
cation and the model should resemble the true performance
of the system. Te order of the model should be the same
order when found using the physical laws. Te precision
during the manufacture may vary due to ageing or by rough
usage of instrument from time to time. Terefore, it is better
to use the experimental data rather than using the theoretical
equation in evaluating the model. Also, the controller could
be designed for the current state of the system. System
identifcation is creating a mathematical model for the
dynamic systems from the experimental dataset. Figure 1
shows how to identify a system.

Te concept for the input, output, and disturbance
variables, as well as the method for measuring the system's
variables, is determined. Based on this knowledge, the ex-
perimental setup is arranged for the collection of data.

Te collected data are converted into useful parameters
as the input to the model sets. Te best model has to be
selected from the model sets using the criterion functions.
Te order of the selected model is estimated.Te model with
best ftness is chosen to be the fnal model for the system.

3. Multiprocess Station

Te multiprocess station [2] with tank and heater system is
chosen for this work. Te fow, level, and temperature of the
process are analyzed. Te water is collected in the reservoir
tank of the process station. Tis water is pumped to the
overhead tank of the process station, from which the water is
supplied to the level tank and the heater system separately
through a rotameter to control the fow rate. Figure 2 gives
the hardware setup for the process station.

Tere is a front panel fow diagram to give connections
for the required process. Tere are two separate switches for
the power and heater on/of. Te pump speed can be varied
to vary the fow rate. Tere are two diferential pressure
transmitters or transducers where the pressure and the fow
rate relation are converted to level in the level tank.Tere are
two temperature transducers to measure the temperature of
the heater.Tere are two input channels to give the analog to
digitally converted input for data acquisition and an output
channel which gets controller output. Tis controller output
can be changed to manual mode in order to get an output
without controller. Tere are indicators to show the output
current, output pressure, air regulator output, and the
output of current to pressure converter.

Te pumping motor is turned on to fll the water in the
tank. Te water fows through the rotameter to measure the
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fow rate. Te fow rate can be adjusted by opening and
closing the valve. Te change in water level along with the
change in fow rate can be observed from the dataset.
Similarly, while working on with the heater system, the fow
rate, time, and temperature change can be recorded. Data
acquisition card or digital controller is inbuilt with analog
to digital and digital to analog converters that link the
process and the controller actions. Te specifcations of the
components used in the multiprocess station are listed in
Table 1.

4. Parameter Estimation

Te experimental data have to be converted into useful
parameters by the least squares approximation method
which fnds the parameters with least standard deviation.
Tis method estimates a set of parameters depending upon
the order assumed for the model. Te input and the output
data are arranged in a matrix with the order as the model
order and the number of datasets collected. Terefore, the
estimated parameters are completely dependent on the input
and the output collected from the experimental setup. Te
input and the output are frst represented as the linear
diference equation as

y(t) + a1y(t − 1) +, . . . , + ana
y t − na( 

� b1u(t − 1) +, . . . , + bnb
u t − nb( ,

(1)

φ(k) �
y(k)

u(k)
 , where k� 1, 2, . . ., l is the length of the

experimental data collected.

θ � b0 −a1 b1(  · · · −ap bp  . (2)

Te parameters are estimated for various orders, and the
parameter that gives the least prediction error or the pa-
rameter that minimizes the cost function, which is the
function of prediction error, is chosen. Te error could be
predicted from the estimated output and the measured
output values as in

e � y − y, (3)

J �
1
N



N

i�1
e e

T . (4)

Te objective function J (4) is formed from the error. It is
also known as the cost function where N is the number of
datasets considered.

Tere are a few statistical methods which are used to
estimate the parameters for the models. Te maximum
likelihood method estimates the parameters that are more
likely suitable for the given model that is with the least
prediction error. As said prior, these methods depend on the
cost function of the least squares method. Te likelihood
function method depends upon the type of distribution
considered. Te distribution considered is the normal dis-
tribution. Te likelihood function is the probability density
function for maximum likelihood; the maximum log-
likelihood and Bayesian’s estimation methods are repre-
sented in (8), (9), and (11), respectively.
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Figure 1: Block diagram of system identifcation.

Figure 2: Hardware of the multiprocess station.
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2σ2
 , (5)

logf θ, y1, · · · , yN(  � log
N
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1
���
2π

√
σ
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2

2σ2
 , (6)

P(μ|X) �
P(X|μ)P(μ)

P(X)
� likelihood × prior. (7)

Te general form or the standard form of the estimation
is y � Xβ + E, where X is the vector of probability density
function of data with known standard deviation andmean. E
is the vector of probability density function of data with zero
mean and one standard deviation.

5. Transfer Function Models

Te transfer functionmodels are used to relate the parameters
estimated from the least squares, maximum likelihood, and
Bayesian parameter estimation methods as listed in Table 2.
Te transfer function models are framed using the fve dif-
ferent parameter sets. Tey are A, B, C, D, and F representing
the output, input, error, delay, and disturbance as vectors.

A(q) � 

na

k�0
akq

−k
� a0 + a1q

−1
+, . . . , + ana

q
−na , with a0 � 1, (8)

B(q) � 

nb

k�0
bkq

−k
� +b1q

−1
+, . . . , + bnb

q
−nb , with b0 � 0, (9)

C(q) � 

nc

k�0
ckq

−k
� c0 + c1q

−1
+, . . . , + cnc

q
−nc , with c0 � 1, (10)

D(q) � 

nd

k�0
dkq

−k
� d0 + d1q

−1
+, . . . , + dnd

q
−nd , with d0 � 1, (11)

F(q) � 

nf

k�0
fkq

−k
� f0 + fq

−1
+, . . . , + fnf

q
−nf , with f0 � 1, (12)

Table 1: Specifcation of components used in process station.

S. no Name
of the component Parameter Specifcation

1 Rotameter Range (50–100) lph
2 Heater Power 3 kW

3 Pump
RPM 6500 RPM

Voltage 230V AC/DC, 50Hz
Discharge 800 lph

4 Reservoir Capacity 15 liters

5 RTD sensor
Type Pt-100
Length 60mm

Tube material SS 316

6 RTD transmitter
Temperature range (0–100)°C

Supply 24V DC
Output (4–20)mA DC
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where A(q), B(q), C(q), D(q), and F(q) are the coefcients
of the output, input, error, delay, and disturbance co-
efcients. Te general representation of the OE model is
represented as follows: OE model gives the relation between
the input and the undisturbed output. Te undisturbed
output can be expressed as follows:

y � ϕTθ, (13)

ϕT
(t) � u(t), . . . , u t − na( y(t), . . . , y t − nf  

T
, (14)

θ � b1, . . . , bnaf1, . . . , fnf 
T
. (15)

Te diferential equation can be written as

y(t) + f1y(t − 1) +, . . . , + fnf y t − nf 

� b1u(t − 1) + bnbu t − nb(  + f0e(t) +, . . . , f1e(t − 1)

+, . . . , + fnfe t − nc( .

(16)

Te above equation can be written as

y(t) �
B(q)

F(q)
 u(t) + e(t). (17)

Te transfer functions for the OE model obtained from
the MATLAB programming were run on a Dell Inspiron I5
processor and are given by

B(q)

F(q)
 u(t) �

0.01765s

2.128e
−005

s
2

+ 2.625e
−007

s + 1
u(t),

y(t) �
0.01765s

2.128e
−005

s
2

+ 2.625e
−007

s + 1
u(t) + e(t).

(18)

6. Criterion Selection

Te models are selected on the basis of number of datasets
considered, number of parameters in the model, amount of
estimation error in the model parameters, and the penalty
which is directly proportional to the error. Akaike In-
formation Criterion (AIC) has penalty higher than the

Kullback–Leibler Information Criterion (KIC). Terefore,
AIC produces least values when compared with the KIC.
Bayesian Information Criterion (BIC) produces more
penalty for the lower order systems, and as the order in-
creases, the penalty decreases when compared with the AIC
and KIC. Hannan–Quinn Information Criterion (HQC)
gives fne-tuning of the data, that is, tells how far it ap-
proximates the large amount of data into a very few pa-
rameters. Minimum Description Length criterion (MDL)
probabilistically predicts the parameters by compressing the
long length of unseen data. Mallows’ Cp Criterion (MCp)
depends on the number of parameters in the model, sum of
squares of errors, and the variance in the prediction of the
parameters. Akaike’s Final Prediction Error Criterion
(AFPEC) depends on the same likelihood or loss functions as
in AIC, BIC, and KIC, but the penalty increases as the ratio
of the number of datasets taken into account to the total
amount of data measured increases. Te criterion values for
statistical estimation for both the level and the temperature
process are analyzed in Tables 3 and 4. It is found that the OE
model has the best criterion value. Terefore, the selected
model is the OE model.

7. Order Estimation from Criterion Curve

Te order of the system could only be estimated using the
knowledge model structure, and the prediction error of the
estimated parameters could be estimated using the criterion
functions. Te AIC, BIC, and KIC criteria are used to es-
timate the order of the system. Figures 3 and 4 show the
estimated order for the level and the temperature process.

Figures 4 and 4 represent the results of estimating the
order of the system using the criterion curve method. Here
AIC, KIC, and BIC are the criterion functions chosen. Tese
criteria are objective functions framed using number of
samples considered, error, standard deviation, and order of
the system.Te order which reduces the objective function is
2 and 1 for level and temperature process, respectively, and
so it is chosen as the order of the system. Tis can be seen
from Figures 3 and 4.

Te order of the level process is fxed to be 2. Since, the
least value of all the three criteria in Figure 3 is at order 2,
while the order for the temperature process is fxed to be 1,
the least value of all the three criteria in Figure 4 is at order 1.

Table 2: Simplifed combinations of transfer function models.

S. no Transfer function model Parameters of the model
1 ARX A, B
2 ARMA A, C (experimental output)
3 ARIMA A, C (integration of exp. output)
4 ARMAX A, B, C (exp. output)
5 ARIMAX A, B, C (integration of exp. output)
6 ARARX A, B, D
7 ARARMAX A, B, C, D
8 Output error (OE) B, F
9 Box–Jenkins (BJ) B, F, C, D
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8. Model Fitness

Te ftness of the models is seen by comparing the response
of the models formed with response of the true system from
the experimental data. Each transfer function model formed
from the parameters of the diferent estimation methods is
compared with the original response of the system for both
level and temperature processes. Finally, the OE model from
Maximum Log-Likelihood estimation for both level and
temperature process lies more accurately on the original
response of the system shown in Figures 5 and 6.

9. Performance Parameters of Final OE Model

Te performance of the selected OE model from the four
diferent types of estimation is analyzed after giving a dis-
turbance. Te Integral of Squared Errors for the models is
evaluated and listed in Table 4. It is seen that the model from
the least squares method gives a better response and the least
ISE value. So, the OE model estimated from the least squares
method is chosen to be the fnal model for the multiprocess
station. Te responses of the level and temperature models
after the disturbance are given in Figures 7 and 8, respectively.
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Figure 3: Criterion curve for level process.
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Te transfer function for the level process is

G(s) �
0.02255s

2
− 0.01418s + 0.01013

s
2

+ 0.41s + 0.009741
. (19)

Te transfer function for the temperature process is

G(s) �
0.9257s + 12.99

s + 21.35
. (20)

Te order of the system can also be found using the
Hankel matrix representation which has been formed from
the state-space model of the fnalized model without any

order fxation. Te rank of the decomposed matrix in the
singular value decomposition matrix will be equal to the
true order of the system.Te ratio of the eigenvalues reveals
the order of the system [12]. Te order of the least de-
terminant value predicted for the possible least and max-
imum order of the Hankel matrix gives the order of the
system.

Hankel matrix is formed using the state-space model of
the selected OE transfer function. Te controllability and
observability matrix is determined from the state-space
model. Te product of observability and controllability
matrix is the Hankel matrix.
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Figure 5: Output response of OE model for level process.
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H �

0.0446 1.412 −1.9256 1.542
1.4122 −1.9258 1.5424 −0.6505
−1.926 1.5426 −0.6504 −0.2635
1.5424 −0.6501 −0.2636 0.8316

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Ten the determinants are found for the Hankel matrix.
Te order for which the determinant value is minimum or
close to one is chosen. And the order less than one of the
corresponding order is taken as the order of the system.
Tus, the given multiprocess station is modeled using the
system identifcation technique.

10. Results and Discussion

Te experiment was conducted in the multiprocess station
and the datasets for level and temperature process are
collected using the data acquisition system. Te datasets are
transformed into parameter for the transfer function model
by the approximation methods. Te parameters are utilized
in the transfer function models and the models are validated
using the criterion function. Te OE model has no error or
disturbance coefcients in its structure while analyzing
Tables 3 and 4, which is guessed to be suitable for the given
multiprocess station. Te order of the system must be fxed
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Figure 7: Step response of the OE model for level process.
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since the order of the validated models is high. Te criterion
curve method is been adopted to estimate the order of the
system. In analyzing Figures 3 and 4, the order for level and

temperature process can be fxed to 2 and 1, respectively, as it
matches the original experimental data curve.Te OEmodel
for both level and temperature process whose parameters are

Table 5: Performance analysis of the selected models.

S. no Estimation type Process Rise time
(sec)

Settling time
(sec)

Magnitude of
settling ISE value

1 Least squares approximation Level 86.9706 159.0413 55.4937 4.51010
Temperature 0.1030 0.1832 33.2416 351.8775

2 Statistical methods Level 34.5701 78.1639 42.3107 122.3081
Temperature 2.67 7.49 23.42 824.8384

Im
ag

in
ar

y 
A

xi
s (

ra
d/

se
c)

Pole-Zero Map for LEVEL process from LEAST SQUARES APPROXIMATION method

Poles = -0.3847, -0.0253
Zeros = 0.3144 + 0.5919 i,

0.3144 - 0.5919 i

Real Axis (rad/sec)

0.8

0.6

0.4

0.2

0

0

-0.2

-0.4

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

-0.6

-0.8

Figure 9: Pole zero location of level process.

Im
ag

in
ar

y 
A

xi
s (

ra
d/

se
c)

Pole-Zero Map of OE model for TEMPERATURE process from LEAST SQUARES APPROXIMATION method

Pole = -21.35
Zero = -14.0326

Real Axis (rad/sec)

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-25 -20 -15 -10 -5 0

Figure 10: Pole zero location of temperature process.

Complexity 11



estimated from the Maximum Log-Likelihood method
seems to be more accurate with the original response of the
system while observing Figures 5 and 6. And so the cor-
responding transfer function is selected.Te step response of
the OE model for three parameter estimation methods is
taken and it is found that the OE model using Least Squares
Approximation method has better response and ISE value as
shown in Table 5. Terefore, the model is fnalized for the
chosen multiprocess station. Te stability of the model is
then analyzed. Te transfer function of the temperature
process has all the poles and zeros on the left half of S-Plane
and so it is stable as shown in Figures 9 and 10. Te transfer
function of the level process has all the poles on the left half
of S-Plane and zeros are complex conjugate in the
nonminimum phase.

11. Conclusion

Te experimental data are collected using prior knowledge
about the multiprocess station and the variables required for
modeling the given tank and heater system. Te data col-
lected are converted into parameters for system modeling
using the least squares approximation method, maximum
likelihood method, maximum log-likelihood method, and
Bayesian estimation method. Te parameters estimated are
applied to the transfer function models such as ARX,
ARMA, ARMAX, ARARX, ARARMAX, OE, BJ, ARIMA,
and ARIMAX models. Te models are analyzed for the
selection using the criterion functions such as AIC which
gave the least value of 8.3516 where the parameters are
predicted using the log-likelihood method. KIC gave the
least value of 8.421 where the parameters are predicted using
the log-likelihood method. Similarly, all other criteria such
as BIC, HQC, AFPEC, MCp, and MDL gave least values for
the parameters predicted using the log-likelihood method.
Te least values from various criteria are analyzed for
various models. Te OE model has the least error of
−66.0051. Te selected model is checked for its ftness by
examining its response with the experimental data response.
Te model that is more accurate to the original data is
formed from the parameters estimated using the maximum
log-likelihood method. Te true order of the model is
evaluated using the criterion curve. Te models are further
examined with step response. Te data approximated using
least squares have least ISE standard value of 4.5101 for level
process and 351.8775 for temperature process. Finally it is
found that the OE model from the least squares algorithm
has better performance. Te general representation of the
OE model does not include the disturbance parameters. Te
experimental data are collected by neglecting the distur-
bance parameters. Tus, the multiprocess station is modeled
using the system identifcation method. Te work will be
extended in future by implementing the technique in real-
time applications like boilers in plants.
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