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Systems are designed to perform specific task by giving certain input which produces the required output in an orderly manner
known as process. The input, output, and the state variables should be known that will help in interacting with the system. The
relation between these variables can be brought out by building a model that resembles or expresses the original performance of
the system. The parameters of the model are estimated using the least squares approximation, maximum likelihood, maximum
log-likelihood, and Bayesian parameter estimation methods by utilizing the experimental data from the multiprocess station. The
selected parameters are converted to nine different transfer function models that represent the given dynamic system. The models
framed are analyzed by the criterion curve technique using seven criterion functions evaluating the fitness of the model. Order of
the model is found from Hankel matrix representation methods such as singular value decomposition and determinant method.
Response of the models is compared with the original response to choose the best fit model by calculating ISE standard. All the
above methods are used to model the system without physical and theoretical laws which is known as system identification.

1. Introduction

Our day-to-day lives depend on a lot of dynamic systems. In
order to improve the quality and behaviour of the system,
the stability, controllability, and observability of the system
should be analyzed or even a controller design might be
required. The knowledge about the input and the output
variables of the system is required so as to make the design
better. The system must be modeled, which means the input
and the output of the system should be related in the form of
a transfer function. Modeling is done with the help of ex-
perimental data [1] collected from the experiments con-
ducted in the system without physical laws, known as system
identification.

The prior knowledge about the process and the response
of the system [2] helps to conduct the experiments [3] in the

system. Hence, the input, output, and state variables can be
framed.

The least squares method is used, which approximates
the experimental data with least prediction error into useful
parameters. It can be used hierarchically and iteratively [4]
for linear and nonlinear transfer function models. The
objective function of the least squares method is based on
prediction error [5]. The parameter that minimizes the
objective function [2, 6] will have better fitness [4] and is
chosen to form the system model. Genetic algorithm [7] or
any such search algorithms can also be used to minimize the
objective function. The statistical parameter estimation
methods are also similar to the least squares approximation
method in minimizing the cost function [8] or the objective
function. One of the statistical methods is maximum like-
lihood method [9] that chooses the parameters with the
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maximum possibility to occur and also with the least pre-
diction error. The maximum log-likelihood method [1, 9] is
the same as maximum likelihood in addition to the loga-
rithmic term, which eliminates the complexity of large
numbers. The Bayesian’s estimation is a priori estimator
predicting the posterior parameters.

The estimated parameters are used to form the transfer
function models. The models are formed by using the input
variables, output variables, delay variables, error variables,
and errorless or undisturbed output variables under dif-
ferent combinations [10, 11]. The Autoregressive eXoge-
nous model (ARX) is the combination of input and output
parameters. The Autoregressive Moving Average model
(ARMA) is the combination of output and error param-
eters. The Autoregressive Moving Average eXogenous
model (ARMAX) is the combination of output, input, and
error parameters. The Auto Regressive Auto Regressive
eXogenous model (ARARX) is the combination of output,
input, and delay parameters. The Autoregressive Autore-
gressive Moving Average eXogenous model (ARARMAX)
is the combination of output, input, error, and delay pa-
rameters [12]. The Output Error model (OE) is the com-
bination of input and undisturbed output parameters. The
Box-Jenkins model (BJ) is the combination of input, un-
disturbed output, error, and delay parameters. The
Autoregressive Integration Moving Average model
(ARIMA) is the integrated ARMA model. The Autore-
gressive Integration Moving Average eXogenous model
(ARIMAX) is the integrated ARMAX model.

The best model is selected on certain factors based on
complexity, performance, and accuracy. To find the best
model, certain assumptions [13] should be made which leads
to the complexity of the model. Therefore, the models are
selected by using criterion functions [14] which depend
upon the number of datasets, number of parameters in the
model, loss function, and penalty functions. The criterion-
based model selection overcomes [15] the drawback of
prespecified order or any order assumption for the system.
The fitness of the model is checked by comparing the
predicted output and mean value of the output with the
original output data. The fitness can also be checked by
comparing the response [16] of the models with the original
response of the system or by changing the signal to noise
ratio [17] value each time. The best fit model is selected and
subjected to various kinds of disturbances [18] for analyzing.
The models are also given for analog to digital conversion
[19] tests to check its reconstructability. The Lev-
enberg-Marquardt algorithm [20] is used to check the fit-
ness of the models after evaluating them using various
parameter estimation methods.

Criteria are used to find the order of the system. The
order of the system is found [21] instead of fixing the order
limits that avoids the overestimation of orders. The model
with least criterion value [22] is found from the pool of
models with various orders. The selected model will have the
order equal or close to the true order of the system. The order
of the system can also be found [23] by the Hankel matrix
representation. The Hankel matrix is the state-space model
of the selected model [24]. The singular value decomposition
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[25] of the state model shows how far the experimental data
are approximated into the parameters [26]. The determinant
method is an order estimation method using Hankel matrix
which eliminates the assumption of orders. Once the order is
estimated, the model is reduced to the true order of the
system by the use of order reduction technique. Thus, the
model for the dynamic system could be evaluated from the
experimental data and it is known as system identification.

2. System Identification

Modeling the given process station is the aim of identifi-
cation and the model should resemble the true performance
of the system. The order of the model should be the same
order when found using the physical laws. The precision
during the manufacture may vary due to ageing or by rough
usage of instrument from time to time. Therefore, it is better
to use the experimental data rather than using the theoretical
equation in evaluating the model. Also, the controller could
be designed for the current state of the system. System
identification is creating a mathematical model for the
dynamic systems from the experimental dataset. Figure 1
shows how to identify a system.

The concept for the input, output, and disturbance
variables, as well as the method for measuring the system's
variables, is determined. Based on this knowledge, the ex-
perimental setup is arranged for the collection of data.

The collected data are converted into useful parameters
as the input to the model sets. The best model has to be
selected from the model sets using the criterion functions.
The order of the selected model is estimated. The model with
best fitness is chosen to be the final model for the system.

3. Multiprocess Station

The multiprocess station [2] with tank and heater system is
chosen for this work. The flow, level, and temperature of the
process are analyzed. The water is collected in the reservoir
tank of the process station. This water is pumped to the
overhead tank of the process station, from which the water is
supplied to the level tank and the heater system separately
through a rotameter to control the flow rate. Figure 2 gives
the hardware setup for the process station.

There is a front panel flow diagram to give connections
for the required process. There are two separate switches for
the power and heater on/off. The pump speed can be varied
to vary the flow rate. There are two differential pressure
transmitters or transducers where the pressure and the flow
rate relation are converted to level in the level tank. There are
two temperature transducers to measure the temperature of
the heater. There are two input channels to give the analog to
digitally converted input for data acquisition and an output
channel which gets controller output. This controller output
can be changed to manual mode in order to get an output
without controller. There are indicators to show the output
current, output pressure, air regulator output, and the
output of current to pressure converter.

The pumping motor is turned on to fill the water in the
tank. The water flows through the rotameter to measure the
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FIGURE 1: Block diagram of system identification.

flow rate. The flow rate can be adjusted by opening and
closing the valve. The change in water level along with the
change in flow rate can be observed from the dataset.
Similarly, while working on with the heater system, the flow
rate, time, and temperature change can be recorded. Data
acquisition card or digital controller is inbuilt with analog
to digital and digital to analog converters that link the
process and the controller actions. The specifications of the
components used in the multiprocess station are listed in
Table 1.

4. Parameter Estimation

The experimental data have to be converted into useful
parameters by the least squares approximation method
which finds the parameters with least standard deviation.
This method estimates a set of parameters depending upon
the order assumed for the model. The input and the output
data are arranged in a matrix with the order as the model
order and the number of datasets collected. Therefore, the
estimated parameters are completely dependent on the input
and the output collected from the experimental setup. The
input and the output are first represented as the linear
difference equation as

y®) +ay(t—-D+,...,+a, y(t—n,) 0
? 1
=bju(t-1)+...,+b,u(t-m),

u (k)
experimental data collected.

o (k) = [y(k) ], where k=1, 2, ..., [ is the length of the

FIGURE 2: Hardware of the multiprocess station.

0 =[by(-a, by)-(-a, by)] 2)

The parameters are estimated for various orders, and the
parameter that gives the least prediction error or the pa-
rameter that minimizes the cost function, which is the
function of prediction error, is chosen. The error could be
predicted from the estimated output and the measured
output values as in

e=y-7, 3)
1 Y .
]=N;[ee ] (4)

The objective function J (4) is formed from the error. It is
also known as the cost function where N is the number of
datasets considered.

There are a few statistical methods which are used to
estimate the parameters for the models. The maximum
likelihood method estimates the parameters that are more
likely suitable for the given model that is with the least
prediction error. As said prior, these methods depend on the
cost function of the least squares method. The likelihood
function method depends upon the type of distribution
considered. The distribution considered is the normal dis-
tribution. The likelihood function is the probability density
function for maximum likelihood; the maximum log-
likelihood and Bayesian’s estimation methods are repre-
sented in (8), (9), and (11), respectively.
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TaBLE 1: Specification of components used in process station.
Name . .
S. no of the component Parameter Specification
Rotameter Range (50-100) Iph
2 Heater Power 3kwW
RPM 6500 RPM
3 Pump Voltage 230V AC/DC, 50Hz
Discharge 800 Iph
4 Reservoir Capacity 15 liters
Type Pt-100
5 RTD sensor Length 60 mm
Tube material SS 316
Temperature range (0-100)°C
6 RTD transmitter Supply 24V DC
Output (4-20) mA DC
N 2
1 (i =)
8) > >t = €X] : > (5)
FECSTSINENTY. ]_1[ s p[ =
N 2
1 (i -6)
lo 0, vy, =lo ex] ! , (6)
g f (B30 ) g[l[ o p[ >
P(X|w)P ()
P (u|X) = —————— = likelihood x prior. 7
(ulX) P(X) P (7)

The general form or the standard form of the estimation
is y = XB + E, where X is the vector of probability density
function of data with known standard deviation and mean. E
is the vector of probability density function of data with zero
mean and one standard deviation.

5. Transfer Function Models

The transfer function models are used to relate the parameters
estimated from the least squares, maximum likelihood, and
Bayesian parameter estimation methods as listed in Table 2.
The transfer function models are framed using the five dif-
ferent parameter sets. They are A, B, C, D, and F representing
the output, input, error, delay, and disturbance as vectors.

nﬂ
Ag) = Z akqfk =a,+ al(f1 S N +anuq7””, witha, =1, (8)

k=0

L)
B(g) =) bg " =+b,q " +...

k=0

C(g) = Z qu—k =co+eq .

k=0

4
D(q)=) diq*=dy+dyq "+,

k=0

ny
F@=Y fiqd*=fo+fa'+
k=0

+b,q ™, withb, =0, 9)
st q e, withey =1, (10)
cotd, g™, withd, =1, (11)
...,+fnfq_nf, withf, =1, (12)
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TaBLE 2: Simplified combinations of transfer function models.

S. no Transfer function model Parameters of the model

1 ARX A, B

2 ARMA A, C (experimental output)

3 ARIMA A, C (integration of exp. output)
4 ARMAX A, B, C (exp. output)

5 ARIMAX A, B, C (integration of exp. output)
6 ARARX A, B, D

7 ARARMAX A, B, C D

8 Output error (OE) B, F

9 Box-Jenkins (B]) B,F,C D

where A(q), B(q), C(q), D(q), and F(q) are the coeflicients
of the output, input, error, delay, and disturbance co-
efficients. The general representation of the OF model is
represented as follows: OE model gives the relation between
the input and the undisturbed output. The undisturbed
output can be expressed as follows:

y=9¢"6, (13)
¢' () =[u®),...,u(t-n)y®),....,5(t- nf)]T, (14)

0=[brree s by frreer fug] - (15)

The differential equation can be written as
YO+ f17E =D+ f(t—ny)
=bju(t—1)+byu(t-mn,)+ foe(®)+, ..., fre(t—1)
+ot fupe(t—ng).

(16)
The above equation can be written as
y(t) =<ﬁ§2;>u(t} +e(t). (17)

The transfer functions for the OE model obtained from
the MATLAB programming were run on a Dell Inspiron I5
processor and are given by

B(g) 0.01765s
u(t) = - - u(t),
(F(q) 2.128¢ "% +2.625¢ s + 1
0.01765s
t) = u(t) +e(t).
(@ 2.128¢ 7 %%¢* +2.625¢ s + 1 ) +e®)

(18)

6. Criterion Selection

The models are selected on the basis of number of datasets
considered, number of parameters in the model, amount of
estimation error in the model parameters, and the penalty
which is directly proportional to the error. Akaike In-
formation Criterion (AIC) has penalty higher than the

Kullback-Leibler Information Criterion (KIC). Therefore,
AIC produces least values when compared with the KIC.
Bayesian Information Criterion (BIC) produces more
penalty for the lower order systems, and as the order in-
creases, the penalty decreases when compared with the AIC
and KIC. Hannan-Quinn Information Criterion (HQC)
gives fine-tuning of the data, that is, tells how far it ap-
proximates the large amount of data into a very few pa-
rameters. Minimum Description Length criterion (MDL)
probabilistically predicts the parameters by compressing the
long length of unseen data. Mallows” Cp Criterion (MCp)
depends on the number of parameters in the model, sum of
squares of errors, and the variance in the prediction of the
parameters. Akaike’s Final Prediction Error Criterion
(AFPEC) depends on the same likelihood or loss functions as
in AIC, BIC, and KIC, but the penalty increases as the ratio
of the number of datasets taken into account to the total
amount of data measured increases. The criterion values for
statistical estimation for both the level and the temperature
process are analyzed in Tables 3 and 4. It is found that the OE
model has the best criterion value. Therefore, the selected
model is the OF model.

7. Order Estimation from Criterion Curve

The order of the system could only be estimated using the
knowledge model structure, and the prediction error of the
estimated parameters could be estimated using the criterion
functions. The AIC, BIC, and KIC criteria are used to es-
timate the order of the system. Figures 3 and 4 show the
estimated order for the level and the temperature process.

Figures 4 and 4 represent the results of estimating the
order of the system using the criterion curve method. Here
AIC, KIC, and BIC are the criterion functions chosen. These
criteria are objective functions framed using number of
samples considered, error, standard deviation, and order of
the system. The order which reduces the objective function is
2 and 1 for level and temperature process, respectively, and
so it is chosen as the order of the system. This can be seen
from Figures 3 and 4.

The order of the level process is fixed to be 2. Since, the
least value of all the three criteria in Figure 3 is at order 2,
while the order for the temperature process is fixed to be 1,
the least value of all the three criteria in Figure 4 is at order 1.



Complexity

878801 878801 00216596 16596 L0021T°9 L0021T°9 £L002TT9 £002TT9 £L002TT9 uelsafeq
¥L€9°18 YLE9°18 ¥002€999°6 £¥¥'96 £L0021T°9 £0021T°9 £L0021T°9 L0021T°9 £L0021T°9 TTIN 307 TANW
€150°86 €150°86 ¥00257¥9°6 S¥'96 £0021T°9 £0021T°9 £L0021T°9 £L0021T°9 £0021T°9 JTN
18¥6'9S— 8¥6°65— 500°05— §00°99— 2000°05— 2000°95— 200095~ 2000°09— 99— uersofeq
CL6'SS— CL6'6S— 1500°05— 1500°99— 2000°0S— 00095~ 00095— <000°09— 99— TTN 80T Ao
S¥68'95— §68°65— 500°05— §00°99— 2000°05— 2000°95— 200095~ 2000°09— 99— TN
LY Ivy— VAdia e €009¥¢6'c— €009¥¢6'c— €0098¥°C— €0098¥°C— €0098¥°C— €0098¥°'C— €0098¥C— uersafeq
€9Cee— €qeee— €002LE6'c— €009L¢6'c— €00928¥°C— €00928¥'C— €0028¥°C— €0098¥°C— €0028¥'C— AT 307 odddv
8¢66'¢c— 8€66'¢— €0098C6°¢c— €0098¢6'¢c— €0098%°C— €0028¥°C— €0098%°C— €0098¥'C— €0028¥'C— TN
¥905v ¥905% SSHr Yy S9eYy 86€V°01 €0LV°01 0701 L06¥°01 CIes o1 uersofeq
91679 916C°9 l6sv'y oy (U4 I£¥°01 1Z¥°01 €16¥°01 61¢s01 TTIN 807 DOOH
L8TE °L8T'E woryYy LYoEYy 86€V°01 ¥0LY°01 Y0L¥ 01 L06¥°01 €1Cs01 TN
LT9°LT 6,91 €089°8 €0cv'8 v6crsl ¥¥00°ST ¥¥00°ST 112671 Y6L8 VI uersafeq
€6L V1 96°¢l 189°8 Iv'8 S6CI'SI S¥00°ST S¥00°ST 112671 S6L871 TTIN 8071 o
57991 °6LST 8898 88¢Y'8 S6CI'SI S¥00°ST S¥00°ST (4841 S6L871 dTN
¥90°S1 14871 8L7¢’8 102T°8 LLLYT I8VL Y1 I8VL V1 88CL VI COIL VI uersafeq
€eel 8¢0°CI 98C¢'8 80978 LLLYT 18771 187L %1 68CL Y1 €61LV1 TTN 80T olId
29071 8¢l €97¢8 989C'8 T1LLLVT [4:17474! (4174 4! 6CL V1 €61LV1 dTN
91591 96°S1 GLTS8 809¢8 992671 €681 €e68 V1 LLE8TVI 660871 uersofeq
89°¢l LTTET 875’8 91s¢’8 L9L6V1 €681 €E68 V1 8LE8V1 0018°%1 AT 301 oIV
V166l 65671 9S8 £65¢°8 89L671 €681 7e68 VI 6L£871 101871 TN
XVINIEV VINTEV dq 40 XVINIVIV Xxaviav XVINIV VNIV X4V poyawr uoneuwnsy 19PI0 T

‘aonewr)ss [ed1)sne)s I0J s[ppowr uondunj Isjsuer) Ioplo v:N Jim ssaooxd [2A9] 10J sonJeA UOLIIID) ¢ dTdV],



€0029%°¢C €0029%°¢C €00918°8 €00918°8 €002%90°L €002%90°L €002%90°L €002%90°L €002%90°L uersakeq
€009%°C €009¥%°¢C 009188 2009188 €002%90°L €009%90°L €002%90°L €002%90°L €002%90°L TTN 8071 TANW
¥0095°C ¥0095°¢C 2009¢¥'8 ¢009¢¥°8 €0028¥5°9 €0028¥5°9 €0028¥5°9 €0028¥5°9 €0028¥5°9 TN
6986°19— 6986'¢9— 1£66°LS— L666'69— 6L66°L5— 6L66°19— 666 19— 6L66°€9— 66669~ ueisofeq
G986'19— G986'¢9— ¥966°LS— ¥666'69— 8L66°LS— 8L66'19— 8L66'19— 8L66'€9— 816669~ TTN 80T dOW
€666 19— £666°¢9— €966°L5— 966669~ 9L66°L5— 9266'19— 9L66'19— 9L66'¢9— 9L66'69— TN
€009CS°C— €009CSC— €002T'6— €009T°6— €0029T°L— €0029T°L— €0029T°L— €0029T°L— €0029T°L— uelsofeq
€0029%°C— €0029%°C— €002T'6— €0092T°6— €0029T°L— €0029T°L— €0029C° L— €0029C° L— €0029C° L— TN 307 odddv
€0029°C— €0029°C— €009,'8— €009,'8— €009¢L'9— €009€L9— €002¢L9— €009¢L'9— €009¢L°9— TN
¥905% ¥905% SSYry y9¢vy 86¢V°01 €0LV°01 €0L¥°01 L06¥°01 Cres o1 uelsafeq
91679 9169 l6sv'y 9¢9¢v (U4 I£¥°01 IZ¥°01 €l6¥°01 612501 TN 307 OOH
TL8TE °L8TE Oy LY9E’L 86€V°01 ¥0LV°01 ¥0LV°01 L06¥°01 €1¢s’01 TN
S¥10°8 8TL6'L 8VLC6 180T°L FI10 CIL0'6 CI1L0°6 S620°6 6486'8 uersafeq
7886°L SOV6°L LYLE6 180T°2 S¥ST'6 1206 106 §620°6 6/86'8 TN 807 o
¥icc ol 6701 11ece6 ¥orTL 9820°6 €566'8 £566'8 9¢56'8 6116'8 dTN
1208°L 7908°L 1€80°6 6080°L €€98'8 67988 67988 67988 67988 uelsadeq
€08L°L 66LL°L 1€80°6 6080°2 £€98'8 6798'8 6798'8 6798'8 6798'8 TN 8071 ot
£9¢T01 €eCT ol ¥6€0°6 98¢0°L €L8L°8 6988 6988 6988 69828 dTN
15¥6°L €L16°L SLLT6 ¥99T°L €L50°6 8100°6 81006 0¥.6'8 9168 uersofeq
8816°L 168°L SLLT6 ¥99T'L €L50°6 8100°6 81006 0¥.6'8 9168 TN 307 oIV
(440! ¥rec ol 6€€T’6 8CCT’L 7186'8 86768 86768 18688 €0.88 TN
XVINTEY VINIEV d 40 XVINIVIV Xxaviav XVINGVY VNIV xXav poyiewr uonewnsy 19pI0 (1

Complexity

“uonRWINSI [edNSHEIS 10§ XVINIYV PUB ‘VINTIV ‘(d ‘1O S[PPOW UORIUNJ I9jsuei} I9pI0 T WM $s9001d ainjerodwiay 10§ sanfea UOLIDID F ATaAV],



8 Complexity
CRITERION CURVE PLOT FOR LEVEL PROCESS
9.1 T T T T T T T
9 - -t
89 e
5
2
=
Z
S
~
s3]
g
=4
o
82 F .
8.1 | | 1 | | | | |
1 2 3 4 5 7 8 9 10
ORDER
— AIC
—+— KIC
---BIC
F1GURE 3: Criterion curve for level process.
10 CRITERION CURVE PLOT FOR TEMPERATURE PROCESS
T T T T T T T T
52
=)
2
=
Z
)
=,
[sa]
=
=
®)
9 i | | 1 | | | | 1
1 2 3 4 5 6 7 8 9 10
ORDER
— AIC
—— KIC
---BIC
FIGURE 4: Criterion curve for temperature process.
8. Model Fitness 9. Performance Parameters of Final OE Model

The fitness of the models is seen by comparing the response
of the models formed with response of the true system from
the experimental data. Each transfer function model formed
from the parameters of the different estimation methods is
compared with the original response of the system for both
level and temperature processes. Finally, the OE model from
Maximum Log-Likelihood estimation for both level and
temperature process lies more accurately on the original
response of the system shown in Figures 5 and 6.

The performance of the selected OF model from the four
different types of estimation is analyzed after giving a dis-
turbance. The Integral of Squared Errors for the models is
evaluated and listed in Table 4. It is seen that the model from
the least squares method gives a better response and the least
ISE value. So, the OF model estimated from the least squares
method is chosen to be the final model for the multiprocess
station. The responses of the level and temperature models
after the disturbance are given in Figures 7 and 8, respectively.



Complexity

Time Vs Output Response of OE Model for Level process
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Time Vs Output Response of OE Model for Temperature process
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The transfer function for the level process is

0.02255s> — 0.01418s + 0.01013
G(s) = 5 . (19)
s2 +0.41s + 0.009741

The transfer function for the temperature process is

0.9257s + 12.99
G(s) = —— 2 (20)
s+21.35
The order of the system can also be found using the
Hankel matrix representation which has been formed from
the state-space model of the finalized model without any

order fixation. The rank of the decomposed matrix in the
singular value decomposition matrix will be equal to the
true order of the system. The ratio of the eigenvalues reveals
the order of the system [12]. The order of the least de-
terminant value predicted for the possible least and max-
imum order of the Hankel matrix gives the order of the
system.

Hankel matrix is formed using the state-space model of
the selected OE transfer function. The controllability and
observability matrix is determined from the state-space
model. The product of observability and controllability
matrix is the Hankel matrix.
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FIGURE 7: Step response of

the OE model for level process.

STEP RESPONSE FOR TEMPERATURE PROCESS
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FIGURE 8: Step response of the OE model for temperature process.
0.0446 1.412 -1.9256 1.542 10. Results and Discussion
H-= 14122 -1.9258 1.5424 —0.6505 ) (21)  The experiment was conducted in the multiprocess station

-1.926 1.5426 -0.6504 —0.2635 and the datasets for level and temperature process are
1.5424 —0.6501 —0.2636 0.8316 collected using the data acquisition system. The datasets are

Then the determinants are found for the Hankel matrix.
The order for which the determinant value is minimum or
close to one is chosen. And the order less than one of the
corresponding order is taken as the order of the system.
Thus, the given multiprocess station is modeled using the
system identification technique.

transformed into parameter for the transfer function model
by the approximation methods. The parameters are utilized
in the transfer function models and the models are validated
using the criterion function. The OE model has no error or
disturbance coefficients in its structure while analyzing
Tables 3 and 4, which is guessed to be suitable for the given
multiprocess station. The order of the system must be fixed
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TaBLE 5: Performance analysis of the selected models.

S. no Estimation type Process Rise time Settling time Magmtpde of ISE value
(sec) (sec) settling
) Least squares approximation Level 86.9706 159.0413 55.4937 451010
1 PP Temperature 0.1030 01832 332416 351.8775
L Level 34.5701 78.1639 42,3107 122.3081
2 Statistical methods Temperature 2.67 7.49 23.42 824.8384

Pole-Zero Map for LEVEL process from LEAST SQUARES APPROXIMATION method
08 T T T ! T | T

0 L. Poles < 03847, -0.0253 L i | -
: Zeros + 0.3144 + 0.5919 1, § i i g

{03144 -0.3919 i

0.4 froe

0.2 froveesseeeees e

Imaginary Axis (rad/sec)
[=}
5
:j.
.

S S— e @

0 | | | i | | |
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Real Axis (rad/sec)

FIGURE 9: Pole zero location of level process.

Pole-Zero Map of OE model for TEMPERATURE process from LEAST SQUARES APPROXIMATION method
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FIGURE 10: Pole zero location of temperature process.

since the order of the validated models is high. The criterion =~ temperature process can be fixed to 2 and 1, respectively, as it
curve method is been adopted to estimate the order of the = matches the original experimental data curve. The OE model
system. In analyzing Figures 3 and 4, the order for level and  for both level and temperature process whose parameters are
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estimated from the Maximum Log-Likelihood method
seems to be more accurate with the original response of the
system while observing Figures 5 and 6. And so the cor-
responding transfer function is selected. The step response of
the OF model for three parameter estimation methods is
taken and it is found that the OE model using Least Squares
Approximation method has better response and ISE value as
shown in Table 5. Therefore, the model is finalized for the
chosen multiprocess station. The stability of the model is
then analyzed. The transfer function of the temperature
process has all the poles and zeros on the left half of S-Plane
and so it is stable as shown in Figures 9 and 10. The transfer
function of the level process has all the poles on the left half
of S-Plane and zeros are complex conjugate in the
nonminimum phase.

11. Conclusion

The experimental data are collected using prior knowledge
about the multiprocess station and the variables required for
modeling the given tank and heater system. The data col-
lected are converted into parameters for system modeling
using the least squares approximation method, maximum
likelihood method, maximum log-likelihood method, and
Bayesian estimation method. The parameters estimated are
applied to the transfer function models such as ARX,
ARMA, ARMAX, ARARX, ARARMAX, OE, BJ, ARIMA,
and ARIMAX models. The models are analyzed for the
selection using the criterion functions such as AIC which
gave the least value of 8.3516 where the parameters are
predicted using the log-likelihood method. KIC gave the
least value of 8.421 where the parameters are predicted using
the log-likelihood method. Similarly, all other criteria such
as BIC, HQC, AFPEC, MCp, and MDL gave least values for
the parameters predicted using the log-likelihood method.
The least values from various criteria are analyzed for
various models. The OE model has the least error of
—66.0051. The selected model is checked for its fitness by
examining its response with the experimental data response.
The model that is more accurate to the original data is
formed from the parameters estimated using the maximum
log-likelihood method. The true order of the model is
evaluated using the criterion curve. The models are further
examined with step response. The data approximated using
least squares have least ISE standard value of 4.5101 for level
process and 351.8775 for temperature process. Finally it is
found that the OE model from the least squares algorithm
has better performance. The general representation of the
OE model does not include the disturbance parameters. The
experimental data are collected by neglecting the distur-
bance parameters. Thus, the multiprocess station is modeled
using the system identification method. The work will be
extended in future by implementing the technique in real-
time applications like boilers in plants.
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