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In this article, we explore the utilization of the Caputo derivative and the Riemann–Liouville (R–L) fractional integral to analyze
the optimal auxiliary function method for approximating fractional nonlinear long waves. Approximate long wave equation with
a distinct dispersion relation ofers the most accurate description of shallow water wave properties. Various methods, including
the Adomian decomposition technique, the variational iteration method, the optimum homotopy asymptotic method, and the
new iterative technique, have been employed and compared to those obtained using the fractional-order approximate long wave
equation. Te results of our study indicate that the optimal auxiliary function method is highly successful and practically simple,
achieving better and more rapid convergence after just one repetition. Tis method is recognized as an efcient approach,
demonstrating high precision in solving intriguing and intricate problems. Furthermore, it proves to be more time and resource
efcient than other relevant analytical techniques, leading to signifcant savings in both volume and time. Compared to the
Adomian decomposition technique, the new iterative technique, the variational iteration method, and the optimum homotopy
asymptotic method, the suggested technique is extremely accurate computationally. It is also easy to analyze and solve fractionally
linked nonlinear complex phenomena that arise in science and technology. We present the numerical and graphical fndings that
support these conclusions.

1. Introduction

A variation of classical calculus known as fractional calculus
(FC) deals with noninteger (fractional)-order integration
and diferentiation procedures. Fractional operator theory
was introduced nearly simultaneously with the creation of
classical ones.Te subject of the semiderivative meaning was
brought up in a correspondence between G.W. Leibniz and
Marquis de l’Hospital in 1695, and here is where the earliest

instance of this may be discovered [1–3]. As a result, this
problem attracted the attention of several eminent mathe-
maticians, including Euler, Liouville, Laplace, Riemann,
Grünwald, Letnikov, and many more [4]. Te rapid de-
velopment of the theory of fractional calculus throughout
the eighteenth century has been extremely benefcial to
fractional diferential equations (FDEs), fractional dynam-
ics, and other practical domains. FC is employed in many
diferent applications these days. It is accurate to state that
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fractional calculus’s techniques and tools have an infuence
on almost every area of modern engineering and science in
general.

Te versatility of fractional calculus is evident in its
applications across diverse felds such as bioengineering,
rheology, viscoelasticity, acoustics, optics, robotics, control
theory, chemical and statistical physics, and electrical and
mechanical engineering [5–8]. One may even claim that
fractional-order systems in general explain real-world oc-
currences. Te major reason for the success of FC appli-
cations is that these new fractional-order models are often
more accurate than integer-order models; that is, the
fractional-order model has more degrees of freedom than
the similar classical one. Fractional derivatives (and in-
tegrals) are not local (or point) variables, which is one of the
subject’s fascinating aspects. In order to simulate the non-
local and dispersed efects frequent in technological and
natural events, all fractional operators take into account the
whole history of the process being studied.

In practice, fractional calculus serves as a valuable tool
for understanding the memory and hereditary characteris-
tics of materials and processes. Tere are several available
methods in the literature for approximating problem-related
diferential equations, both linear and nonlinear. A linear
problem’s solution is easier to approach than a nonlinear
one. For these issues, several numerical and analytical
methods have been proposed, including the control volume
scheme, the Laplace transformation method, the fnite el-
ement method (FVM), the Adomain decomposition method
(ADM), the variation iteration method (VIM), and the
homotopy analysis method (HAM) [9–12]. Although these
techniques ofer many advantages, not all issues can be
solved with them. Te strategy put out by Vasile Marinca
uses a potent method called optimum auxiliary function. For
fractional-order equations containing the Caputo operator,
we introduce OAFM in this study as a unique variation of
the recently created semianalytical technique known as the
optimal auxiliary function method (OAFM). It is explained
how OAFM works mathematically, and its efcacy is
demonstrated by applying it to the well-known ALW. To
show the OAFM’s validity, tables and charts are used to
contrast the results of the OAFM with those of other ap-
proaches and their precise answers. A quick convergence
series solution from OAFM is verifed by contrasting it with
other outputs.

Te study shows that our approach is straightforward to
use, needs minimal computing efort, and quickly converges
to the precise solution within the frst iteration. A variety of
solutions to the issue are found using OAFM. By contrasting
the OAFM results with those from the literature, the validity
of the results is confrmed. OAFM is discovered to be quickly
convergent, less computationally intensive, and easily
adaptable. OAFM involves less computing work than other
approaches, and even a low-spec machine can easily com-
plete it. Te Optimal Auxiliary Function Method, despite its
advantages, has certain limitations. One key limitation is its
applicability to specifc types of problems. Te method may

not be suitable for all types of fractional nonlinear long wave
equations or for problems with certain boundary conditions.
Additionally, the method’s efectiveness can depend on the
choice of the auxiliary function, which may not always be
straightforward to determine, especially for complex
problems. Overall, while the Optimal Auxiliary Function
Method is a powerful tool, its limitations should be con-
sidered when applying it to solve fractional nonlinear long
wave equations.

Te future direction of this work could involve further
exploring the capabilities of the adapted Optimal Auxiliary
Function Method (OAFM) for solving a wider range of
complex fractional diferential equations. One direction
could be to investigate its applicability to systems of
equations or to problems with more intricate boundary
conditions. Additionally, the method could be refned or
extended to handle problems in diferent domains or with
diferent types of fractional orders.

Te novelty of this work lies in its successful appli-
cation of the adapted OAFM to a wide range of linear and
nonlinear fractional diferential equations, showing its
potential for solving real-world problems with simplicity,
speed, and efciency. Tis study’s contribution is its in-
novative approach to improving an existing method and
its demonstration of the method’s applicability to various
complex models, highlighting its usefulness in solving
fractional-order integro-diferential equations arising
from physical processes. It is strongly advised that you
carry out the suggested system research in order to un-
derstand continuous quantum measurement and estima-
tion. We are dealing with the ALW system, which is given
as follows:
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2θ(α, β)

zα2
� 0,

(1)

where 0< η, ω≤ 1.
Subject to the subsidiary conditions,

ϕ(α, 0) � λ − 2k coth(k(α + h)),

θ(α, 0) � − 2 k
2 cos h

2
(k(α + h))􏼐 􏼑.

(2)

Tis article’s sections are organised as follows. Basic
terms are given in Section 2. In Section 3, the proposed
method for solving the current model is covered in detail.
Several challenges are tried in Section 4, and the results and
conclusions of the tests are provided in Section 5.

2. Basic Terminologies

To understand the OAFM concept, the following is a list of
basic terms.
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Defnition 1. Te fractional integral of Riemann–Liouville
(R–L) is specifed as [13–15]

IFϖ �

1
Γ(F)

􏽚
ϖ

o
(ϖ − v)

F− 1
f(v)dr, if F> 0, v> 0,

f(r), if F � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where the special function symbolised by Γ is the gamma
function.

Defnition 2. Te Riemann–Liouville order function f′s
fractional derivative is defned as

D
F
ϖf(ϖ) �

1
Γ(p − F)

d
p

dϖp 􏽚
ϖ

o
(ϖ − v)

q− F− 1
f(v)dr, if F> 0, v> 0.

(4)

In this case, p is a positive integer that satisfed

p − 1<F≤p. (5)

Defnition 3. Caputo states that a fractional derivative of
order is as follows [16].

For

p ∈ N,ϖ> 0, r≥ − 1 andφ ∈ Cr;

D
F
r f(ϖ) �

I
p− F z

p

zr
p f(ϖ)􏼢 􏼣, if p − 1<F≤p, p ∈ N,

d
F

dr
F

f(ϖ), if F ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Defnition 4. A numerical technique for resolving an in-
tegral, partial, or ordinary diferential equation is the col-
location method. A fnite-dimensional space of polynomials
up to a specifed degree and a specifc number of points
(collocation points) in the domain is chosen, and the so-
lution that solves the provided equation is then chosen at the
collocation points.

Defnition 5. Auxiliary functions are not predetermined
types of functions; instead, they are functions that are either
expressly established or at the very least proved to exist,
present a contradiction to some presumptive notion, or
otherwise prove the desired outcome.

Defnition 6. A mistake often manifests as a diference be-
tween an estimated value and an exact mathematical value.
Terefore, absolute error refers to the size of the discrepancy
between the precise value and the approximate value.

ε � |(a − 􏽥a)|, (7)

where a is exact solution and 􏽥a is approximate solution.

3. Formulation of Mathematical Models

A partial diferential equation of fractional order is expressed
in general form as

z
ηϕ(α, β)

zβη
� ℘(α, β) + L2(ϕ(α, β)). (8)

Subject to the boundary conditions,

D
η− k
0 α(χ, 0) � hk(χ), (k � 0, 1, . . . . . . . . . , j − 1),

D
η− n
0 α(χ, 0) � 0, j � [η],

D
k
0α(χ, 0) � gk(η), (k � 0, 1, . . . . . . . . . , j − 1)

D
n
0ψ(η, 0) � 0, j � [η],

(9)

where (zη/zβη) denotes the Caputo or R–L operator, an
unknown function is denoted by ϕ(α, β), whereas a known
statistical function is denoted by θ(α, β).

Step 7. Two-component form of equation (8) will be taken
into account in order to get the estimated answer of the
equation and is presented as

􏽥ϕ(α, β) � ϕ0(α, β) + ϕ1 α, β, Ci( 􏼁,

n � 1, 2, 3, 4, 5 . . . . . . ρ.
(10)

Step 8. We obtain the zero- and frst-order solution by
substituting equation (10) into (8), which is given as

z
ηϕ0(α, β)

zβη
+

z
ηϕ1(α, β)

zβη
+ θ(α, β)

+ L2
z
ηϕ0(α, β)

zβη
+

z
ηϕ1(α, β), Ci

zβη
􏼢 􏼣 � 0.

(11)

Step 9. Because the nonlinear equation is complicated and
has a difcult time being solved, we utilise the linear
equation to generate an initial approximation of the kind
shown below. Lastly, we use the result to inform our frst
forecast.

z
ηϕ0(α, β)

zβη
+ θ(α, β) � 0. (12)

With the help of the inverse operator, we arrive to
ϕ0(α, β) as follows:

ϕ0(α, β) � ℘(α, β). (13)

Step 10. Te expanding version of the nonlinear component
in equation (11) is
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L2
z

e
taϕ0(α, β)

zβη
+

z
ηϕ1 α, β, Ci( 􏼁

zβη
􏼢 􏼣 � L2 ϕ0(α, β)􏼂 􏼃 + 􏽘

∞

k�1

μk
1

k!
N(k) ϕ0(α, β)􏼂 􏼃. (14)

Step 11. Let us suggest an equation to simplify equation (14),
smooth its convergence, and accelerate the frst-order ap-
proximation. Te expression is shown below 􏽥ϕ(α, β):

z
ηϕ1 α, β, Ci( 􏼁

zβη
� − G1 ϕ0(α, β)􏼂 􏼃L2 ϕ0(α, β)􏼂 􏼃 − G2 ϕ0(α, β), Cj􏽨 􏽩,

(15)

where G1 and G2 are the auxiliary functions depending upon
ϕ0(α, β) and convergence control parameter Ci and
Cj n � 1, 2, 3, 4, . . . , j � Ω + 1,Ω + 2, . . .

Remark 12. G1 and G2 are in the form of ϕ0(α, β) or
L2[α0(χ, ξ)] in the combination of both ϕ0(α, β) and
L2[θ0(α, β)] but they are not particular.

Step 13. After substituting an auxiliary function into
equation (15), we use the inverse operator (Defnition 1) to
arrive at the frst-order solution ϕ1(α, β) using OAFM.

Step 14. Tere are many methods in the literature such as
Galerkins method, Ritz method, and collocation method, for
the values of Ci and Cj, using which one must compute the
square of the residual error.

G Ci, Cj􏼐 􏼑 � 􏽚
β

0
􏽚
Ω

R
2 α, β; Ci, Cj􏼐 􏼑dα dβ. (16)

In this context, the residual R is defned.

R α, β, Ci, Cj􏼐 􏼑 �
z
η􏽥ϕ(α, β), Ci, Cj

zt
+ θ(α, β) + L2 α α, β, Ci, Cj􏼐 􏼑􏽨 􏽩

i � 1.2.3, . . . ,Ω, j � Ω + 1,Ω + 2,Ω + 3 . . . ,l.

(17)

Te following system will function as the convergence
control parameter:

zC

zC1
�

zC

zC2
�

zC

zC3
�

zC

zCi

� 0, i � 1, 2, . . . (18)

4. Applications

In this part of the article, a few instances are given to
demonstrate the precision and intensity of the method that
was previously explained.

4.1. Problem. Utilizing the time-fractional ALW equation,
assume the following structure [17–20]:
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zβη
+ ϕ(α, β)
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+
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z
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zβω
+
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zα
zθ(α, β)

zβ
−
1
2

z
2θ(α, β)

zα2
� 0,

(19)

where 0< η, ω≤ 1.
Subject to the supplementary conditions,

ϕ(α, 0) � λ − 2k coth(k(α + h)),

θ(α, 0) � − 2 k
2 cos h

2
(k(α + h))􏼐 􏼑.

(20)

Exact solution of equation (19) when η � ω � 1 is

ϕ(α, β) � λ − k coth(k(h + α − λβ)),

θ(α, β) � λ − k csc h
2
(k(h + α − λβ)).

(21)

In equation (19), we defne the terms “linear” and
“nonlinear” as

L1(ϕ(α, β)) �
z
ηα(χ, ξ)

zχη
,

L2(ϕ(α, β)) � ϕ(α, β)
zϕ(α, β)

zα
+

zϕ(α, β)

zα
+
1
2

z
2ϕ(α, β)

zα2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L1(θ(α, β)) �
z
ωθ(α, β)

zαω
,

L2(θ(α, β)) �
zϕ(α, β)

zα
zθ(α, β)

zα
−
1
2

zθ2(α, β)

zα2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

According to OAFM, the following is the answer to the
zero-order problem:

z
ηϕ1(α, β)

zβη
� 0,ϕ1(α, 0) � λ − k coth(k(α + h)),

z
ωθ1(α, β)

zαω
� 0, θ1(α, 0) � − k

2 csc h
2
(k(α + h)).

(23)

By applying the R–L operator to (23), the answer is
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ϕ0(α, 0) � λ − k coth(k(α + h)), (24)

θ0(α, 0) � − k
2 csc h

2
(k(α + h)). (25)

By using (24) into (23), the nonlinear operator becomes

L2 ϕ1(α, β)( 􏼁 � ϕ1(α, β)
zϕ1(α, β)

zα
+

zϕ0(α, β)

zα
+
1
2

z
2ϕ1(α, β)

zα2
,

L2 θ1(α, β)( 􏼁 �
zϕ1(α, β)

zα
zθ0(α, β)

zα
−
1
2

zθ20(α, β)

zα2
.

(26)

Table 1: Confguring convergence control settings for varying η values in given problem.

η � 1.0 η � 0.7 η � 0.8
C1 0.99999999999 1.11072369965 1.57080328204
C2 0.99999999998 1.11073032374 1.57085426364

Table 2: Te time-fractional ALW equation’s ϕ (α, β) has an OAFM solution at various η values.

(α, β)
ϕ (α, β)

η � 0.5
ϕ (α, β)

η � 0.75
ϕ (α, β)

η � 1.0 Exact solution

(0.1, 0.1) − 0.1255978967929 − 0.125595289954 − 0.1255924013294 − 0.125592401329
(0.1, 0.3) − 0.125608344314 − 0.125604326552 − 0.1255994566257 − 0.125599456626
(0.1, 0.5) − 0.125616717337 − 0.125612129860 − 0.1256065137643 − 0.125606513765
(0.2, 0.1) − 0.124901434598 − 0.124898894786 − 0.1248960804333 − 0.124896080433
(0.2, 0.3) − 0.124911613481 − 0.124907699026 − 0.1249029543175 − 0.124902954317
(0.2, 0.5) − 0.124919771193 − 0.124915301675 − 0.1249098299871 − 0.124909829988
(0.3, 0.1) − 0.124222834069 − 0.124220359220 − 0.1242176168533 − 0.124217616853
(0.3, 0.3) − 0.124232752585 − 0.124228938256 − 0.1242243149110 − 0.124224314911
(0.3, 0.5) − 0.124240701617 − 0.124236346426 − 0.1242310146993 − 0.124231014700
(0.4, 0.1) − 0.123561547366 − 0.123559135496 − 0.1235564629148 − 0.123556462914
(0.4, 0.3) − 0.123571213469 − 0.123567496208 − 0.1235629905178 − 0.123562990518
(0.4, 0.5) − 0.123578960196 − 0.123574715840 − 0.1235695197987 − 0.123569519800
(0.5, 0.1) − 0.122917047497 − 0.122914696696 − 0.1229120917853 − 0.122912091785
(0.5, 0.3) − 0.122926468842 − 0.122922845704 − 0.1229184541020 − 0.122918454102
(0.5, 0.5) − 0.122934019399 − 0.122929882516 − 0.1229248180459 − 0.122924818047

Table 3: Te time-fractional ALW equation’s θ(α, β) has an OAFM solution at various η values.

(α, β)
θ (α, β)

η � 0.5
θ (α, β)

η � 0.75
θ (α, β)

η � 1.0 Exact solution

(0.1, 0.1) − 0.0070558106346 − 0.0070551297422 − 0.00705443752849 − 0.00705437528500
(0.1, 0.3) − 0.0070585395122 − 0.0070574900451 − 0.0070562180709 − 0.00705621807103
(0.1, 0.5) − 0.0070607266792 − 0.0070595283452 − 0.0070580614374 − 0.00705806143806
(0.2, 0.1) − 0.0068743826998 − 0.0068737228515 − 0.0068729917119 − 0.00687299171193
(0.2, 0.3) − 0.0068770272312 − 0.0068760102007 − 0.0068747775403 − 0.00687477754051
(0.2, 0.5) − 0.0068791467890 − 0.0068779854942 − 0.0068765639270 − 0.00687656392766
(0.3, 0.1) − 0.0066985408355 − 0.0066979012228 − 0.0066971925052 − 0.00669719250527
(0.3, 0.3) − 0.0067011042607 − 0.0067001184208 − 0.0066989235642 − 0.00669892356431
(0.3, 0.5) − 0.0067031588067 − 0.0067020331283 − 0.0067006551600 − 0.00670065516057
(0.4, 0.1) − 0.0065280714529 − 0.0065274513059 − 0.0065267641571 − 0.00652676415716
(0.4, 0.3) − 0.0065305568585 − 0.0065296010224 − 0.0065284425308 − 0.00652844253096
(0.4, 0.5) − 0.0065325488672 − 0.0065314574498 − 0.0065301214210 − 0.00653012142161
(0.5, 0.1) − 0.0063627710333 − 0.0063621696181 − 0.0063615032248 − 0.00636150322489
(0.5, 0.3) − 0.0063651813610 − 0.00636425439974 − 0.0063631308998 − 0.00636313089993
(0.5, 0.5) − 0.0063671131906 − 0.0063660547423 − 0.0063647590719 − 0.00636475907243
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Table 4: Te ALW equation’s absolute errors for ϕ(α, β) were compared to the solutions obtained by ADM, VIM, OHAM, and NIM at
η � 1.

(α, β)
Absl error
ADM [26]

Absl error
VIM [24]

Absl error
OHAM [24]

Absl error
NIM

Absl error
OAFM

(0.1, 0.1) 8.029 × 10− 6 3.176 × 10− 6 3.176 × 10− 6 1.203 × 10− 13 1.210 × 10− 14

(0.1, 0.3) 7.382 × 10− 6 9.542 × 10− 6 9.542 × 10− 6 3.250 × 10− 12 3.267 × 10− 13

(0.1, 0.5) 6.799 × 10− 6 1.592 × 10− 6 1.592 × 10− 6 1.504 × 10− 11 1.512 × 10− 12

(0.2, 0.1) 3.232 × 10− 5 3.094 × 10− 5 3.094 × 10− 5 1.138 × 10− 13 1.168 × 10− 14

(0.2, 0.3) 2.971 × 10− 5 9.297 × 10− 5 9.297 × 10− 5 3.074 × 10− 12 3.140 × 10− 13

(0.2, 0.5) 2.736 × 10− 5 1.551 × 10− 4 1.551 × 10− 4 1.423 × 10− 11 1.454 × 10− 12

(0.3, 0.1) 7.320 × 10− 5 3.015 × 10− 5 3.015 × 10− 5 1.436 × 10− 14 1.119 × 10− 14

(0.3, 0.3) 6.730 × 10− 5 9.059 × 10− 5 9.059 × 10− 5 2.909 × 10− 13 3.021 × 10− 13

(0.3, 0.5) 6.197 × 10− 5 1.512 × 10− 4 1.512 × 10− 4 1.346 × 10− 12 1.398 × 10− 12

(0.4, 0.1) 1.310 × 10− 4 2.936 × 10− 5 2.936 × 10− 5 1.020 × 10− 14 1.079 × 10− 14

(0.4, 0.3) 1.204 × 10− 4 8.828 × 10− 5 8.828 × 10− 5 2.754 × 10− 13 2.906 × 10− 13

(0.4, 0.5) 1.109 × 10− 4 1.473 × 10− 4 1.473 × 10− 4 1.275 × 10− 12 1.345 × 10− 12

(0.5, 0.1) 2.061 × 10− 4 2.864 × 10− 5 2.864 × 10− 5 9.660 × 10− 14 1.036 × 10− 14

(0.5, 0.3) 1.895 × 10− 4 8.605 × 10− 5 8.605 × 10− 5 2.608 × 10− 13 2.797 × 10− 13

(0.5, 0.5) 1.745 × 10− 4 1.436 × 10− 4 1.436 × 10− 4 1.207 × 10− 12 1.295 × 10− 12

Table 5:TeALW equation’s absolute errors for θ(α, β)were compared to the solutions obtained by ADM,VIM, OHAM, andNIM at η � 1.

(α, β)
Absl error
ADM [17]

Absl error
VIM [18]

Absl error
OHAM [19]

Absl error
NIM

Absl error
OAFM

(0.1, 0.1) 4.819 × 10− 4 8297 × 10− 6 8.297 × 10− 6 6.719 × 10− 14 4.719 × 10− 15

(0.1, 0.3) 4.508 × 10− 4 9.542 × 10− 6 2.493 × 10− 6 1.814 × 10− 12 1.292 × 10− 13

(0.1, 0.5) 4.222 × 10− 4 1.592 × 10− 6 4.162 × 10− 6 8.399 × 10− 12 5.982 × 10− 13

(0.2, 0.1) 9.766 × 10− 4 3.094 × 10− 5 8.040 × 10− 5 6.308 × 10− 14 4.572 × 10− 15

(0.2, 0.3) 9.135 × 10− 4 9.297 × 10− 5 2.416 × 10− 5 1.703 × 10− 12 1.230 × 10− 13

(0.2, 0.5) 8.554 × 10− 4 1.551 × 10− 4 4.043 × 10− 4 7.885 × 10− 12 5.696 × 10− 13

(0.3, 0.1) 1.484 × 10− 3 3.015 × 10− 5 7.794 × 10− 5 5.925 × 10− 14 4.349 × 10− 15

(0.3, 0.3) 1.388 × 10− 3 9.059 × 10− 5 2.342 × 10− 5 1.599 × 10− 12 1.172 × 10− 13

(0.3, 0.5) 1.300 × 10− 3 1.512 × 10− 4 3.910 × 10− 4 7.407 × 10− 12 5.426 × 10− 13

(0.4, 0.1) 2.007 × 10− 3 7.536 × 10− 5 7.556 × 10− 5 5.569 × 10− 14 4.151 × 10− 15

(0.4, 0.3) 1.876 × 10− 3 2.270 × 10− 5 2.270 × 10− 5 1.509 × 10− 12 1.117 × 10− 13

(0.4, 0.5) 1.756 × 10− 3 3.791 × 10− 4 3.791 × 10− 4 6.691 × 10− 12 5.771 × 10− 13

(0.5, 0.1) 2.543 × 10− 3 7.328 × 10− 5 7.328 × 10− 5 5.236 × 10− 14 3.957 × 10− 15

(0.5, 0.3) 2.378 × 10− 3 2.202 × 10− 5 2.202 × 10− 5 1.413 × 10− 12 1.065 × 10− 13

(0.5, 0.5) 2.225 × 10− 3 3.676 × 10− 4 3.676 × 10− 4 6.545 × 10− 12 4.931 × 10− 13

OAFM
Exact
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–0.10548
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 (α

,β
)

2 4 6 8 100
β

Figure 1: 2D charts displaying the precise and OAFM solution
ϕ(α, β) of the problem.

exact
OAFM

–0.002230

–0.002225

–0.002220
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θ 
(α

,β
)

2 4 6 8 100
β

Figure 2: 2D charts displaying the precise and OAFM solution
θ(α, β) of the problem.
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Te frst approximation as ϕ1(α, β) and θ1(α, β) is ob-
tained as

z
ηϕ2(α, β)

zβη
� − G1 ϕ1(α, β), Cι􏼂 􏼃L2 ϕ1(α, β)􏼂 􏼃 − G2 ϕ1(α, β), Cj􏽨 􏽩,

z
ωθ2(α, β)

zβω
� − G3 θ1(α, β), Cι􏼂 􏼃L2 θ1(α, β)􏼂 􏼃 − G4 θ1(α, β), Cj􏽨 􏽩,

(27)

where we get G1, G2, G3, G4, using initial approximation

G1 � − C1 k
2λ − k

3λ coth2(hk + kα)) + k
2λ2 coth(hk + kα))β􏼐 􏼑,

G2 � 0,

G3 � − C2 − k
3λ coth(hk + kα)csc h

2
(hk + kα) + − k

4λ2 csc h − − k
4λ2 coth2(hk + kα)csc h

2
(hk + kα)β􏼐 􏼑􏼐 􏼑,

G4 � 0.

(28)

Exact
ω=1

ω=0.8
ω=0.7

–0.002230

–0.002225

–0.002220

–0.002215

–0.002210

θ 
(α

,β
)

2 4 6 8 100
β

Figure 4: Efect of ω on the solution for OAFM to the problem.
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Figure 5: 3D charts displaying the precise and OAFM solution
ϕ(α, β) of the problem.
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Figure 6: Efect of β on the solution for OAFM to the problem
ϕ(α, β).
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η=0.8

η=1
Exact

2 4 6 8 100
β

–0.10558

–0.10556

–0.10554

–0.10552

–0.10550

–0.10548

Ø
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Figure 3: Efect of η on the solution for OAFM to the problem.
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Using equations (26) and (28) into (27), we obtained the
frst approximation as

􏽥ϕ(α, β) � −
C1k

2βηλ 1 + ktλ coth(k(α + h))csc h
2
(k(α + h))􏼐 􏼑

Γ(1 + η)
,

􏽥θ(α, β) � −
C2k

3βη csc h
4
(k(α + h))(ktλ(2 + cosh(2k(α + h)) + sinh(2k(α + h))

Γ(1 + η)
.

(29)

We derive an approximation of the frst-order solution
as equations (28) and (29).

􏽥ϕ(α, β) � ϕ1(α, β) + ϕ2 α, β, C1( 􏼁,

􏽥θ(α, β) � θ1(α, β) + θ2 α, β, C2( 􏼁,

(30)

􏽥ϕ(α, β) � λ − k coth(k(α + h)) −
C1k

2βηλ(1 + ktλ coth(k(α + h))csc h
2
(k(α + h))

Γ(1 + η)
,

􏽥θ(α, β) � − k
2 csc h

2
(k(α + h)) −

C2k
3βη csc h

4
(k(α + h))(ktλ(2+cosh(2k(α + h)) + sinh(2k(α + h))

Γ(1 + η)
.

(31)
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Figure 7: 3D charts displaying the precise and OAFM solution θ(α, β) of the problem.
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Figure 8: Efect of β on the solution for OAFM to the problem θ(α, β).
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5. Discussion

OAFM was used to resolve the nonlinear ALW system’s
fractional-order equations. Section 4, tables, and fgures for
the ALW system give the results of OAFM for the fractional-
order equation using ADM, VIM, and OHAM.

In the problem, the absolute errors of the variational
iteration method (VIM) solution, the Adomian de-
composition method (ADM) solution, the optimum
homotopy asymptotic method (OHAM) solution, and the
second-order new iterative method (NIM) solution for the
fractional-order approximate long wave (ALW) equation’s
ϕ(α, β) and θ(α, β) variables are compared with η � ω � 1.
Table 1 displays the various values of C1 and C2 used in the
calculations. Te values of C1 and C2 are crucial parameters
in the solutions obtained by the diferent methods.
Tables 2–5 provide insight into how the methods perform
with diferent choices of these parameters, showing which
combinations lead to more accurate solutions for ϕ(α, β)

and θ(α, β). Te tables likely contain numerical values
showing the errors for each method and parameter com-
bination, allowing for a detailed comparison of their
performance.

Figures 1 and 2 compare the precise and Optimal
Auxiliary FunctionMethod (OAFM) solutions in 2D plots of
ϕ(α, β) and θ(α, β) at β � 0.1. Tese fgures likely illustrate
how well the OAFM approximates the precise solution for
diferent values of α. In Figures 3 and 4, the frst-order
OAFM solution of ϕ(α, β) and θ(α, β) is shown for various
values of the parameter ω. Tese fgures likely demonstrate
how the OAFM solution changes with diferent values of ω
and how it compares to the precise solution. Figures 5–8
display the accurate answer and the OAFM 3D graphic of
ϕ(α, β) and θ(α, β) for the problem at β � 1. Tese fgures
likely provide a detailed comparison between the accurate
solution and the OAFM solution in a 3D graphical format,
showing the behavior of ϕ and θ in the α-β plane and
highlighting any discrepancies between the two solutions.

6. Conclusion

In this work, we instituted a systematic adaptation in
employing the OAFM to approximate the fractional non-
linear long wave equation with the application of Caputo
fractional order. Several problems, both linear and non-
linear, that entail fractional diferential equations were in-
vestigated, and it is shown that the suggested adjustment to
the Optimal Auxiliary Function Method has increased the
method’s efectiveness compared to it’s the previous itera-
tion. Te OAFM takes less computational work than pre-
vious methods, and even a machine with smaller space may
successfully fnish the operation. Tis method is currently
unrestricted, allowing us to utilize it in the future for more
intricate models drawn from real-world difculties. More-
over, it is observed in this paper that OAFM is simple, quick,
and efcient. Tus, fractional-order integro-diferential
equations that arise from physical processes can be solved
using the suggested approach based on our mathematical
fndings. However, certain limitations, such as scope,

assumptions, and numerical stability, should be considered
when applying the method to real-world problems. Future
research can address these limitations to further improve the
method’s applicability and accuracy.

Data Availability

No underlying data were collected or produced in this study.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

Te authors are grateful to the Federal University of
Technology Babura, Jigawa State, Nigeria, and the Women
University Swabi, Pakistan, for the support provided.

References

[1] N. A. Shah, E. R. El-Zahar, J. D. Chung, and J. D. Chung,
“Fractional analysis of coupled Burgers equations within Yang
Caputo-Fabrizio operator,” Journal of Function Spaces,
vol. 2022, pp. 1–13, 2022.

[2] B. Ross, “A brief history and exposition of the fundamental
theory of fractional calculus,” in Fractional Calculus and its
Applications: Proceedings of the International Conference Held
at the University of New Haven, pp. 1–36, Springer Berlin
Heidelberg, Heidelberg, Germany, 1974.

[3] K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad,
and A. Gumaei, “Numerical investigation of the time-
fractional Whitham–Broer–Kaup equation involving with-
out singular kernel operators,” Complexity, vol. 2021, Article
ID 7979365, 21 pages, 2021.

[4] K. Oldham and J. Spanier,Te Fractional Calculus Teory and
Applications of Diferentiation and Integration to Arbitrary
Order, Elsevier, Amsterdam, Netherlands, 1974.

[5] R. Nawaz, A. Iqbal, H. Bakhtiar et al., “A new Extension of
optimal auxiliary function method to fractional non-linear
coupled ITO system and time fractional non-linear KDV
system,” Axioms, vol. 12, no. 9, p. 881, 2023.

[6] M. A. Arefn, U. Sadiya, M. Inc, and M. H. Uddin, “Adequate
soliton solutions to the space–time fractional telegraph
equation and modifed third-order KdV equation through
a reliable technique,” Optical and Quantum Electronics,
vol. 54, no. 5, p. 309, 2022.

[7] R. Nawaz, H. Hina, A. Iqbal, A. G. Ahmad, R. Ashraf, and
H. Emadifar, “Extension of optimal auxiliary function method
to non-linear ffth order lax and Swada-Kotera problem,”
Alexandria Engineering Journal, vol. 84, pp. 227–233, 2023.

[8] M. A. Arefn, M. A. Khatun, M. S. Islam, M. A. Akbar, and
M. H. Uddin, “Explicit soliton solutions to the fractional order
nonlinear models through the atangana beta derivative,”
International Journal of Teoretical Physics, vol. 62, no. 6,
p. 134, 2023.

[9] M. M. Meerschaert, H. P. Schefer, and C. Tadjeran, “Finite
diference methods for two-dimensional fractional dispersion
equation,” Journal of Computational Physics, vol. 211, no. 1,
pp. 249–261, 2006.

[10] S. H. Chowdhury, “A comparison between the modifed
homotopy perturbation method and adomian decomposition

Complexity 9



method for solving nonlinear heat transfer equations,”
Journal of Applied Sciences, vol. 11, no. 8, pp. 1416–1420, 2011.

[11] H. Yaghoobi and M. Torabi, “Te application of diferential
transformation method to nonlinear equations arising in heat
transfer,” International Communications in Heat and Mass
Transfer, vol. 38, no. 6, pp. 815–820, 2011.

[12] D. D. Ganji, “Te application of He’s homotopy perturbation
method to nonlinear equations arising in heat transfer,”
Physics letters A, vol. 355, no. 4-5, pp. 337–341, 2006.

[13] S. G. Samko, “Fractional integrals and derivatives,” Springer,
Heidelberg, Germany, 1993.

[14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “ATeory and
applications of fractional diferential equations,” Elsevier,
vol. 204, 2006.

[15] I. Podlubny, “A Fractional diferential equations: an in-
troduction to fractional derivatives, fractional diferential
equations, to methods of their solution and some of their
applications,” Elsevier, 1998.

[16] M. Caputo, “Linear models of dissipation whose Q is almost
frequency independent--II,” Geophysical Journal In-
ternational, vol. 13, no. 5, pp. 529–539, 1967.

[17] S. Saha Ray, “A novel method for travelling wave solutions of
fractional Whitham–Broer–Kaup, fractional modifed Bous-
sinesq and fractional approximate long wave equations in
shallow water,”Mathematical Methods in the Applied Sciences,
vol. 38, no. 7, pp. 1352–1368, 2015.

[18] S. M. El-Sayed and D. Kaya, “Exact and numerical traveling
wave solutions of Whitham–Broer–Kaup equations,” Applied
Mathematics and Computation, vol. 167, no. 2, pp. 1339–1349,
2005.

[19] L. Wang and X. Chen, “Approximate analytical solutions of
time fractionalWhitham–Broer–Kaup equations by a residual
power series method,” Entropy, vol. 17, no. 12, pp. 6519–6533,
2015.

[20] M. Rafei and H. Daniali, “Application of the variational it-
eration method to the Whitham–Broer–Kaup equations,”
Computers and Mathematics with Applications, vol. 54, no. 7-
8, pp. 1079–1085, 2007.

10 Complexity




