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This study examines the discrete prey-predator model in the sense of Caputo fractional derivative by incorporating harvesting on
the predator population and immigration on the prey population. We establish the topological categories of the model’s fixed
points. We show analytically that a fractional order prey-predator model supports both a Neimark-Sacker (NS) bifurcation and
a period-doubling (PD) bifurcation under specific parametric circumstances. Using the central manifold and bifurcation theory,
we provide evidence for NS and PD bifurcations. It has been discovered that the parameter values and the initial conditions have
a significant influence on the dynamical behavior of the fractional order prey-predator model. Furthermore, two chaos man-
agement strategies are applied to eliminate the chaos that objectively exists in the model. Finally, numerical simulations are used to

demonstrate complicated and chaotic behavior in order to support our theoretical and analytical discussions.

1. Introduction

In ecological science, the investigation of the predator-prey
relationship with various ecological phenomena has gained
a lot of popularity. An essential model in population dy-
namics, the dynamics of interacting populations [1] are
examined using the prey-predator paradigm. Continuous-
time population models, like the Lotka-Volterra model, have
been utilized in population dynamics to comprehend the
interaction between ecological species [2-8]. On the other
hand, discrete-time population models have also gained
attention recently [9-11] because these can create more
complicated and interesting dynamical behaviors than
continuous-time models and are better suited to model
populations with non-overlapping generations. For exam-
ple, a 1-dimensional discrete-time autonomous system can
display chaos, but a continuous-time setup requires chaos in
at least a 3-dimensional autonomous system [12, 13].

The traditional predator-prey relationship always takes
the following shape:

x=xY(x,k) - yC:) (%),

_ (1
y=y(=0+Q(x)),

with
x(0), y(0) >0, (2)

where the time-dependent functions x (t) and y (¢) stand in
for the prey and predator population densities, respectively.
Every constant is assumed to be positive. The carrying ca-
pacity is indicated by parameter k. The predator’s mortality
rate is represented by constant 8. ®(x) represents the
functional response, while Q(x) represents the uptake
functions.

Each population system in an ecological system employs
a different strategy, such as refuging and grouping, to look
for food sources and to defend itself. Therefore, a variety of
ecological criteria and elements are used in the creation of
mathematical models. The functional response in population
dynamics, which refers to the amount of prey consumed by
a predator dependent on the density of the prey per unit of
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time, is a crucial element in every prey-predator encounter.
The functional response of the Holling type II [14] is
commonly employed and well researched to those from the
Holling types I, III, and IV for the majority of arthropod
predators. To explore the dynamical interplay between prey
and predator species, Iviev [15] devised a novel functional
response, known as the Iviev functional response:

p(x) =n(1 - exp(-ax))y, (3)

where the positive constants # and a represent the highest
rate of predation and the decrease in the urge to hunt, re-
spectively. Numerous investigations of the predator-prey
relationship with Ivlev-type functional responses have
been conducted. The results suggested that Iviev-type re-
lationships between the species have a number of models in
ecological applications, including dynamics in host-parasite
models [16], predator-prey models [17-25], animal coat
patterns [26], and phytoplankton-zooplankton model [27].
The following predator-prey model with Iviev functional
[28] reaction will be taken into consideration.

x
x=rx[1-5)-7n(l - exp(—ax))y,

y=p(1 - exp(-ax))y — dy.

The parameter r refers to the prey’s growth rate, while 5
represents the rate at which prey is turned into a predator
after being digested.

Global dynamics, Neimark-Sacker bifurcation, and hybrid
control in a Leslie’s prey-predator model were all examined by
Khan et al. in [22]. The discrete-time predator-prey model’s
stability, bifurcation, and chaos control are examined by the
authors in [21], along with the Allee impact on the predator.
Santra et al. systematically examined the bifurcation analysis
and chaos management of a discrete prey-predator model
using a unique prey-refuge idea in [24]. Evaluating the impact
of harvesting is realistic when studying the prey-predator
paradigm. Fisheries, forestry, and wildlife management all
regularly engage in population harvesting [29]. Everyone is
aware that one of the most significant systemic changes is
immigration. Immigration is a manifestation of an external
factor that affects an organism’s ability to create a specific
habitat and affects the rate of population increase. Different
climatic change responses could disrupt interactions, partic-
ularly those between predators and their prey. Occasional
roving and nomadic lifestyles are adopted by living species as
a result of frequent and seasonal movement and immigration
[30, 31]. Additionally, immigration is a significant development
that helps to stabilize the environment. In order to better
understand this discrete-time predator-prey model with con-
tinuous prey population immigration with harvesting on
predators, let us look at it.

x:rx<l—%>—11(1— exp (—ax))y +s, .

¥y =p(1 - exp(-ax))y - 8y — yy,

where the time-dependent functions x (t) and y (¢) stand in
for the prey and predator population densities, respectively.
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The highest rate of predation and the declining desire to
hunt are represented by the positive constants # and a,
respectively. The predator’s mortality rate is represented by
the constant §. The prey’s growth rate is indicated by the
parameter r, while the rate at which the prey becomes
a predator after being digested is indicated by the value f.
Also, s and y represent the immigration rate on prey
population and harvesting rate on predator population,
respectively.

Any degree of classical differentiation and integration is
generalized in fractional calculus. It is used in a variety of
scientific and engineering domains, including biology, fluid
mechanics, and medicine, which sparks a great deal of
curjosity among academics. Due to its use in numerous
domains [32-37] during the last two decades, fractional
order calculus has drawn the attention of researchers. Nu-
merous writers have recently studied biological models
[38-45] with fractional order. The primary factor is that
fractional order models are inherently connected to
memory-based systems, which are present in the majority of
biological systems [46, 47]. A fractional-order prey-predator
model was presented by Javidi and Nyamoradi [48] and its
biological behaviors were discussed. The dynamics in pa-
rameter spaces of two logistic population maps that are
linearly connected and have the same growth rate have
recently been studied by Layek and Pati [49].

We apply the Caputo fractional derivatives to the con-
tinuous system (5) in the current study and provide a the-
oretical explanation of the bifurcation occurrences. There
are various definitions for fractional derivatives. Caputo’s
definition of fractional derivatives, which is frequently used
in real-world settings, is one of the most well-known
definitions.

Definition 1. Consider
Df)=7""f" @), a>0, (6)

where f ! denotes the derivative of f (t) in the [-order, | = [a]

is the value of o rounded up to the nearest integer, and J4 is

the operator for the Riemann-Liouville integral of g-order.
J; (t - Te)q_ lh(Te)dTe

Jh(t) = @ g0, O

where I'(.) is the gamma function of Euler. The operator D*
is also known as the a-order Caputo differential operator.

The following is the model (5)’s fractional order form

D%x(t) = rx(t)(l —x](:)> —1(1 - exp(—ax(8))y(t) +s,

D% (t) = B(1 — exp(—ax(£)y () - 6y () = yy (¢).
(8)
There are a variety of techniques for discretizing the
model, like a model (8). The piece-wise constant approxi-

mation (PCA) [50-52] is one of them. Using the PCA
technique, the model is discretized. The steps are as follows:
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Assume that model (8) initial conditions are x (0) = x,,
y(0) = y,. The discretized version of model (8) is given as
follows:

e = 1)) el ()DL -

9)
t t t t t
Dy | 1) = p1-exp( —ax[ | D =sy( | E) =yl 1E]).
AL) sG] -A[E]) (2]
First, let t € [0, p), so t/p € [0, 1). Thus, we obtain The answer to (10) is simplified to
D*x(t) = rx0<1 —%) -n(1 - exp(—ax,))y, +
(10)
D%y (t) = B(1 - exp(-axo))yo — 6¥o — ¥¥o-
x, (1) = xy + ]“(rx()(l - %) -n(1- exp(-axy))y, + s)
tot
:x0+ar—w)(rxo<l—%>—n(l— exp(—axo))y0+s), -
y1(8) = yo+ " (B(1 - exp(-axo))yo — 6¥o — ¥¥o)
tlx
=Yt @ (B(1 - exp(-axg))yo — 6yo = ¥¥o)-
Second, let t € [p,2p), so t/p € [1,2). Then, which have the following solution:
x
D (t) = rx (1 -2 ) = (1 - exp(~ax,))y; +5,
1< a ) 1)) 12
D% () = B(1 - exp(-ax,))y; = 6y1 — yy1»
%, (1) = x,(p) + ]S(rx1<l —%) -n(1 - exp(-ax;))y, + s)
t— (1
=x,(p) + (“F(I;)) <1'X1<1 _%) = 1(1 - exp(-ax))y; + 5>, 1)

y2(8) = y1(p) + J5 (B(1 - exp(-ax))y; = 8y, = yy1)

(t-p)*
al («)

= y1(p) + (B(1 - exp(-ax,))y; = 0y; = yy1)s

where o = 1T () f; (t- 7,)*'dr,,a>0. After n times
repetition, we obtain
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t_ o
X1 (8) = X, (mp) + % (rxn (np)<1 - xgjp)) = 1(1 - exp(-ax, (np)))y, (np) + S),

(14)
Vet (£) = y,, (mp) + % (B(1 - exp(-ax, (np)))y, (np) = 8y, (np) = yy, (np)),
where t € [np, (n+1)p). For t — (n+ 1)p, model (14)
becomes
Xpp1 = X, t r((f_’_ 1) <1’Xn<]. _ﬁ> - ’7(1 — €Xp (_axn))yn + S)’
(15)

o

_ P
yn+l_yn+r((x+1)

The following are a few contributions that this research
makes:

(1) There are two interdependent species in the planned
model, each of which is a source of sustenance for the
other. In this study, we looked at how immigration
affected the community of prey and harvesting af-
fected the community of predator in the model.

(2) Potential fixed points are looked for when evaluating
the stability of the model in question.

(3) It has been demonstrated that the proposed model
can undergo PD and NS bifurcations.

(4) The model has become chaotic as a result of the
Neimark-Sacker bifurcation, so the OGY (Ott,
Grebogi, and Yorke) and state feedback control
approaches have been used to manage it.

(5) In order to verify the accuracy of our theoretical
findings, some numerical examples for our fractional
order discrete-time predator-prey model with im-
migration and harvesting have been provided.

The following sections of this paper are structured as
follows: The fixed point topological classes are examined in
Sect. 2. In Sect. 3, we investigate analytically the chance of
a PD or NS bifurcation of the model (15) under a given
parametric condition. In Sect. 4, we numerically show model
dynamics with bifurcation diagrams and phase portraits to
support our analytic results. In Sect. 5, we apply the OGY and
state feedback management techniques to stabilize the chaos
of the chaotic model. A short discussion is provided in Sect. 6.

2. Stability of Fixed Point

The three fixed points of model (15) are

~ k  Ak(kr +4s)
Ol,2 (x,y) =<EiT>O :(xl’z,O), (16)
and O; (x*, y*), where x* = —=1/aln[f - y— 8/B], y* = (ks+
krx* — rx*2)B/kn (8 +y), which, for any valid parameter

(B(1 — exp(-ax,))y, = 0¥, = YVu)-

value except few parameters must satisfy y + 6 < (1 — exp
(—ax;)), always exist. The fixed points O, (x,,0) and
O, (x*, y*) are nonnegative. B

Model (15)’s fixed point O(x, y)’s variational matrix is
provided by

Vi, v
va(x,y>=(~“ e ) (17)
Va1 Va2
where

~ =1+ r(k—2x)_ —ax pa

= k V)T ar 1y

- oy, P

= —1 ,

V12 ( +e )ﬂr(()(‘l' 1) (18)

o P°

Ya = apye ey

Ty =1 +(—6+,8—y—efaxﬂ)r(0/:+ 0

At 61 (x,,0), the characteristic equation becomes
Fiy () =22 (24 A )A +(1+ Ay, + i) =0,
(19)
where

_p
Ha = Tla+1)

x 2 —ax
A, =r<l—%)+(l—e DB - (y+9),

e 2ax,

k

Q

[e™r (—k + 2x;) (6™ + (1 - €™)B +e™yp)].
(20)
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So, Fi; (1) = 02 >0 and Fy, (-1) = 4+ 2 A, +Q 2. ) o - Y
The eigenvalues of the characteristic equation (19) are A; = (i) i\lon hyp erOhC ,.lf Ho= it Ay~ A/
1+7(k-2x)E/l Ay = 1= (p+ 0, +B(1 - ™) f, Ho# —2/4;,-4/4,
which are real with Zi — 40, > 0. The following lemma is one (iv) Saddle if otherwise

we make in relation to the stability criterion of O;. ~ - .
¥ ! At O;(x*, y*), the characteristic equation becomes

Lemma 2. For the axial fixed point O, (x,,0), the topological F,(\) = 22 _(2 + Ea.ﬁa))t +(1 + A+ ﬁaﬁﬁ) =0,
classification listed below is appropriate:

B T (21)
(i) Source if i, > — A, + \/Af - 40,/0,
B - _ where
(ii) Sink if i, < — A, — \JA] - 40Q,/Q,

~ 2x" —ax"  x —ax*
8= r(1-2) <oy (1 =,
(22)

—2ax*

Q,= eT [ka(-1 + e~ )y 1B +(eax*r(—k +2x") + aqu*)(éeax* +(1- e )B+ eax*y)],

So, F,, (1) = Q2 >0 and F,, (~1) = 4 + 2A i, + O, /. (ii.i) &> - 40, >0 and i, < — A, — \A. — 40,/ O

a a a a

The following lemma is one we make in relation to the 2= ~ = =
A ji.ii) A, —4Q, <0 and i, < — A,/Q,

stability criterion of O;. (iiii) 4, o<V and i, o/

(iii) Nonhyperbolic if
Lemma 3. For the cocxistnce fixed point Os(x' '), the (i) 2 ~ 48,20 and F, = - 3, + \F — a0y
opological classification listed below is appropriate: Do, # — 2/, —4/A,
(i) Source if

(ii.ii) A, — 40, <0 and fi, = —4/4,.

N T - - 2 = =
(i.9) f; B 4?“ 20 and fi, > - f“ +~ Aq =402/ Qq (iv) Saddle if otherwise
(i.i)) A2 - 40, <0 and i, > - A,/Q,
(ii) Sink if Let

Q

_ — — 1/
— 12 A+ \/Au - 40
PDBj = (r,a,k,(?,n,ﬁ,y,s,p,oc):p=< 2 ar(1+“)> =Pis [ (23)

a
with Zi -40, 20,4, # - 2/A,,-4/A, Also, let

1/a
_ -A, -
NSB53={(r,a,k,d,’1>ﬁ,)/,s,P,oc):P=<F(1+“)ﬁ ) :PNS’Aa_4‘Qa<O}' (24)

a

The model (15)’s positive fixed point’s topological cat- [0, 1.2] is depicted in Figure 1. The eigenvalues of the as-
egorization for r =4.25k=3.5#=0.6,a=0.35/3=2.0, sociated Jacobian matrix at the fixed point are complex in the
0=01,0=075p=0.846944 with se [0,6] and ye left side of the curve in the green color-shaded section. On
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B Source
@ Sink
O Saddle

FIGURE 1: Stability region of the positive fixed point of model (7).

the opposite side, the eigenvalues are real. Figure 2 shows
the maximum Lyapunov exponents and the bifurcation
diagram.

3. Analysis of Bifurcation

This section introduces a study that will look at the NS and
PD bifurcations at the fixed point O; (x*, y*) of the model
using parameter p as a bifurcation parameter.

Xptl = Xy

(p+p)

3.1. Neimark-Sacker Bifurcation. For the analysis of NS
bifurcation for the positive coexistence equilibrium point
O, (x*, y*), we consider the following study.

Assume p* is the small perturbation of p where |p*| <« 1.
Therefore, the model becomes using perturbation

(25)

Yne1 = Yn t m (B(L=e ™)y, =89, = y¥n) = 9 (X0 VP )-

If u,=x,-x"v,=y,—y*, then the fixed point
O, (x*, y*) becomes the origin, and by using Taylor series at
(u,,v,) = (0, 0) expanding f and g to the third order,
model (25) becomes
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maxLce

0.42

0.14 0.28 0.42

FIGURE 2: (a) 3D bifurcation diagram in (y, s, x) space. (b) 3D maximum Lyapunov exponents. (c) 2D projection of 3D maximum Lyapunov
exponents projected in two dimensions onto the (y,s) plane.

_ 2 2 3 2
Upp1 = Ex1Uy + Xx2Vn + Kx11Uy + Xx12UnVn + Xx20Vn + Kx1114y + Kx112UnVn
2 3.0 4
TOx122UnVy T Oy Vyy + |”n| +|"n| >
(26)

2 2 3 2
Vil = ﬁylun + ﬁyZvn + ﬁyllun +ﬁy12unvn +ﬁy22vn +ﬁylllun +ﬁy112unvn

+ﬂy122“n"i + ﬁyzzz"i + O((|un| +|Vn|)4>’

where



e ax” (a (rx"2-k(s+rx*))pB (p“/l"(oz+1))+e“* (y+6) (ke (p®/T (a+1)) - 2rx” (p*/T (a+1))))

1 = k(y+90)
_(_ —ax* plx
@ =(-1+e )”r(a+1f
(—2r+ ate ™ (—x"? + k(s +1x"))/y + 8)p*/T (a+ 1)
(xxll = k 4
_ —ax* p“
I P

Qe =0,

ale ™ (rx™ = k(s +1x") ) Bp"/T (& + 1)

(04 = >
x111 k(y + 8)
p(X
5 —axt
“x112 =ae o 111—‘(“4—1),
tein =0,
®yop =0,

ae™™ (rx™ = k(s + x") ) B2p"IT (a + 1)
P = k(y+9d)y ’

(%4

By, =1 +(ﬁ—e_“x*ﬁ—y—6)ﬁ,

ale” ™ (rx™ = k(s +rx"))Bp"/T (a+1)

/3y11 =

k(y+d)n

_ —ax”* Pa
ﬁylZ_ae ﬁf(oc+1)’
ﬁy22 =0,

ale ™ (—rx"® + k(s +7rx"))B?p /T (a + 1)

ﬂylll_ k(y+6)7] >

_ 2 -ax’ pa
ﬂy112_ ae /51"(04+1)’
ﬁylzz =0,
/3y222 =0.

The characteristic equation of the model (26) is
A+ p(p)rA+q(p*) =0, where p(p*) = (2+A,4,) and
q(p*) = (1 + A, + Q.2), with i, = (p+ p*)*/T (e + 1).

Complexity

>

(27)
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The characteristic equation’s roots are A,,(p*) =—p
(p*) + i4q(p*) — (p(p*)/2.

From [A,(p")I=1, and p*=0, we
M2 (P91 = [q(p)]"? and I = [dIA,, (p*)I/dp*], o #0.

Furthermore, it is imperative that when p* =0, 1}, #1,
i=1,2,3, 4, which is equivalent to p(0)+ +2, 0,1.

To study the normal form, let ¢ =1Im(A;,) and

have

where the functions f;; and g,,;, respectively, denote the
terms in the model (28) for the variables (x,,y,) with the
order at least two.

To transit through NSB, the following discriminating
amount () must be nonzero:

1- 201 1 -
0= _Re[( 1- ,1) f11520] B Elflllz _|502|2 + Re(Afll)’

¢ =Re(),,). We ascertain T = [ :Z ; ], and serving the (29)
transformation [ 5” ] = T[ ):C" ], the model (26) becomes where
)?ﬂ‘f’l = (chn - (pj/n + fxll(xn’ yn)’ (28)
ynﬂ = (P;cn + (Pj/n + gyll(';cn’ yn)’
_9 , ¢
€y = 3 (2ﬁy22 — Qo) — Oy + A0t +i (400, — 20,0 - ZSD“xzz)) * 3512
1 By 91 =2, + ¢3“x22 - ‘Pzﬁ 2= s + By
+z§(4¢/5y22+2¢2cxx22—2(xx11)+y—+ J o y 2=,
¢ oo 2
§n = E(ﬁyzz - S"“xzz) + ’5(‘/5 Oyp 0y + Q0 T @ “xzz)
N By — 9ar + 9Py - (pz‘xxIZ - 24’2/3)»22 + 29"3%22
2¢ ’
1 1
oo = Z‘P(zq’%zz Tay,t ﬁyzz) + "1 (ﬁylZ +20B,5 = 200, — ‘xxll) (30)

2 2 3
_ﬁyll — P PP P A T O Py — P Ay ]

4¢
/5y112 4

+a

3
§ = gﬂy222(¢2 + q)z) +

3 .3 2 2 3¢9
+§0‘x111 +z§ax222(<p +2¢ ) +1i o

4
g 4% + Zﬁylzz + “xlzz(_ +

+ Z“xzzi(‘/’z - 3‘P2)’

¢ 39" ¢
8 8 4

3¢9 .3[3)/111 = 3¢a,1

1 ,
g w122 T gﬁylzz‘/’l - 17/3}1222 -1 8¢

2 2 3 3 4
_l.3‘P/3y112 =3¢ a1 3 1.3‘P ﬁy122 =3¢ _ 1.390 ﬁy222 =3¢

8¢ 8¢

We came to the following conclusion as a result of the
analysis indicated above.

8¢
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Theorem 4. “If Q+0, the model proceeds through NS bi-
furcation at O, (x*, y*) for the parameter p to vary in the

vicinity OfNSB@' If2<0(Q2>0), a smooth closed invariant

curve with a positive fixed point O; can bifurcate and the
bifurcation is subcritical (resp. supercritical).”

Complexity

3.2. Period-Doubling Bifurcation. The positive fixed point
63 (x*, ¥*)’s one eigenvalue is A, = -1, and the other one is
A, neither 1 nor -1, if the the model’s parameters vary

12
around the set PDBG .
The PD bifurcation is examined using parameter p.

Furthermore, p* (|p*| <« 1,) is this model perturbation
caused by the fluctuations of p.

+ )" Xn — ax, *
= T (o () ) )

I'(x+1)

(o+p)" o
ptp - ax *
= ————(n(1-e ")y, -8y, - = Y P )-
Yurt = In*t T ey N0 =€) =0y =vyn) = 9 (% yop")
If w,=x,-x*v,=y,—-y", then equilibrium
O, (x*, y*) becomes the origin, and by using Taylor series
about (u,,v,) = (0,0) expanding to the third order of f and
g> model (31) becomes
Upi) = By Uy T 00V, + (xxllufl T XUV “x13unp* + 0‘9{231}71:0”< + chlllufl
% * +1\4
+ “xllzuftvn + axll3ufnp + “x123unvnp + O<(|un| +|Vn| +|P |) )’ ( )
. . 32
Vil = ﬁylun + ﬁyZvn + ﬁyllurzfz + ﬁylZunVn + ﬂyZZVfl + ﬁylSunP + ﬁyZSVnp + ﬁyllluft
* * * #1\4
+ ﬁyllZuf;Vn + ﬁym“iP + ﬁy123”n"nP + ﬁy223"flP + O<(|unl +|Vn| +|P |) >’
where
e ™ (a(rx*2 —k(s+ rx*))ﬂ ™ r(-k+2x")(y + 8)) ap™!
®Xp13 = >
k(y+9) I(a+1)
a—1
—ax* ap
By = (1 +e )I‘(oc+ ")
2r +a’e™™ (—I‘X*Z +k(s+ rx*))/y +6
Cx113 = k >
N (Xpa—l
Op; = —ae s D
ae” ax*(—rx*2 +k(s+1x"))B ap*! (33)
Pys = k(y+dn T(a+1)
a-1
_ —ax”* ap
ﬁy23_(ﬁ(1_e )_V_a)r(“Jrl)’
ale ™ (-rx? k(s +1x"))B* qp*!
Pyus = k(y+dn [(a+1)
a—1

Caxt, 0P
ﬁy123=ae “p

F(a+1)
ﬁyzza =0.
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o o L
We assume T = x2 x2 ], which is in-
x1

-l1-a4 A —«a

vertible. Now, using the transformation [:"] = T[ Xn ],
Yn

model (32) becomes n

Q_Cn+l = _"_Cn + fxll (uw Vi p*)>

_ _ ) (34)
Ynt1 = )‘2}’" + gyll (un’ Vs P )’

11

where the functions f;; and g,,,, respectively, denote the
terms in model (34) for the variables (x,,, ¥,,) with the order
at least two.

System (34) has a center manifold W¢ (0,0,0) at (0, 0) in
a highly closed neighborhood of p* = 0, which can be de-
duced using the center manifold theorem and is essentially
expressed as follows.

W€ (0, 0, 0) = {(icn,)_/n,p*)eR3 Py = G X+ B X pt + O((|.| +|p*|)3>}, (35)

where

) [(1 + o )y + ‘szﬁyu] N By (1+ "‘xl)2 B (1+ay) [“xlz (1+ay)+ axZﬁylZ]

x1

1-A2 1-12 1-12 '
(36)
5 = (1+ “x1)[“x23 (L+ay)+ axZﬂyB] B (1+ e )otgs + axZﬁyB]
* a (1 +/\2)2 (1 +A2)2 .
The model (34)’s restrained center manifold, W* (0,0,0),
has the following form:
— —_ _2 —_ % _2 « — % _3 — *1\3 — %
Xpt1 = Xy + hlxn + h2xnp + h3xnp + h4xnp 2 + h5xn + O<(|xn| +lp |) ) = F(xn’P )’ (37)

where
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) [(/\2 - a‘xl)o‘xu - &xZﬁyll] B /3x22(1 + 5‘x1)2 B (1 + a‘xl) [(/\2 - &xl)axlz - &xzﬁyu]
=

Complexity

>

(38)

h
1+4, 1+4, 1+4,
h = (Az - axl)“xw - axZﬁyB 3 (1 + a‘xl) [(Az - a‘xl)"‘;czs - axzﬁyw]
? 1+1, A (1+1,) ’
he = (A = @y )y g3 = ‘szﬁyw + [()‘2 = 0y )O3 — ‘xeﬁyZ.’)] (A = o)y
3 1+4, a,(1+1)
x1 T Yx1)%%123 T Yx2Py Oy T Ax1)%%113 T Bx2Py113
_(1+“ )[()‘2 ) y103 — Ao 123]+ 2[()‘2 Oy )3 — Ao ]
1+, 1+1,
_ ﬁy223 (1+ “x1)2 + 20,50, [(Az =0y )0y — “xzﬁyu]
1+, 1+,
B 2ﬁy22ax2 (L) (A —ay) 4 O [(/\2 =0y )aypp — "‘xzﬁylz] (A —1-2ay)
1+, 1+, ’
ho= ®yr [(’12 - “xl)“xls - ‘xeﬁyB] + [(/\2 - “xl)“x23 - “2/5x23] (/\2 - “xl)axZ
4 1+A, an(1+1,)
N 20,70, [()LZ - “xl)axll - axZﬁyll]
1+4,
+ 2ﬁy22&x2 (T+ay) (A —ay) + 0o [(/\2 =0y )aypp ~ “xZﬂylZ] (A —1-2ay)
1+, 1+, ’
_ 20,0, [(Az =0y ) — “xzﬂyu] + [(/12 =0y )y — “xZﬁyll] (A = 1-2a,)ay,
> 1+1, 1+,

_ 2
N 2/3;/22%1 (A =) (1 +ayy) N ) [(/\2 -

)11y = “xzﬂym]

1+4,

1+4,

B ¥ (1+ayp) [()Lz =0y )app — axZﬁyllZ]

1+4,

In order for PD bifurcation to occur, the two differen-
tiating quantities &; and &, must both be nonzero,

: ( OF +18FaZF)
Po\oxop" 209" 5z o)
, (39)
g - 18_F<18_F)
P\6ax’ \20%°) Jlwo

Finally, the outcome of the analysis above is as follows.

Theorem 5. The model experiences PD bifurcation at
O, (x*, y*) for varying amounts of p in a limited neighbor-

1.2
hood of PDB:;3 if £, #0 and &,#0. Furthermore, for

£,>0 (&,<0), the period-two orbits that bifurcate from
0, (x*, y*) is stable (unstable).”

4. Numerical Simulations

This section uses the bifurcation diagram, phase portrait,
Lyapunov exponent, and fractal dimension to demonstrate
the qualitative dynamical properties of the discrete
fractional-order model for various parameter values. Nu-
merical simulations will be performed to support the the-
oretical findings we reached for the model (15). The
following parameter values were chosen: r = 1.1,k = 0.5, =
0.9,4a=05,=126=0.1,s=2.0,y=03,a=0.75 and p
varies between 0.2<p<0.5. We observe a positive fixed
point 63(x*,y*) = (0.81093,4.81762) and the bifurcation
point for the model (15) is calculated at p_ = 0.385162.
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Figure 3 depicts the model trajectory as evolving from
a fixed point to a PD bifurcation and then to a chaotic
attractor. Figures 3(c)-3(d) display the computed MLEs and
FDs related to Figures 3(a) and 3(b). The phase portraits are
shown in Figure 4 with reference to the bifurcation Figure 3,
which essentially depicts the bifurcation of a smooth, in-
variant closed curve into a chaotic attractor from a stable
fixed point.

The orbit diagram of the prey and predator populations
is given in Figure 5, along with other fixed parameter values
are r=425k=351=0.6,a=035=20,6=0.1,s=
0.5, = 0.2, = 0.7 and p varies between 0.8 <p < 1.045. We
observe a positive fixed point O;(x*, y*) = (0.46434,
24.5737) and the bifurcation point for the model 7 is cal-
culated at pyg = 0.846944. Figure 5 illustrates the trajectory’s
progression from a fixed point to an NSB and then to
a chaotic attractor. Figures 5(a), 5(b), and 6 illustrate the
phase portrait, MLEs, and FD of Figures 5(a) and 5(b),
respectively. There are three separate periodic windows for
each of the bifurcation processes for both prey and predator.
We have also studied NS bifurcation, and the associated NS
bifurcation diagram, MLEs, and FDs are shown in Figure 7.
This was done by altering the fractional order « in the range
0 <a <1 and fixing all other parameters indicated above for
Figure 5 with p = 0.846944.

The prey-predator model in the NS bifurcation diagram
may behave more dynamically if other parameter values vary
(for example, parameter (y,s). A fresh Neimark-Sacker
bifurcation diagram is produced when the parameter values
are setto r =4.25,k = 3.5, = 0.6,a = 0.35,=2.0,6§ = 0.1,
s=0.5,a0=0.7,p = 0.846944 and y varies between 0.1 <y <
0.427, as illustrated in Figures 8(a) and 8(b). The model
experiences a Neimark-Sacker bifurcation at y =g =
0.21554. Also, another NS bifurcation diagram is produced
when the parameters values are set as r = 4.25,k = 3.5, =
0.6,a=0.35f=20,8=0.1,p=0.2,a=0.7,p = 0.846944
and s varies between 0.1<s<1.45, as illustrated in
Figures 9(a) and 9(b). The co-dimension-2 bifurcation di-
agrams in (y,s,x)-space are shown in Figure 2(a).
Figure 2(b) displays the plot of the maximal Lyapunov
exponents for two control parameters through a 2D pro-
jection onto the (y,s) plane.

4.1. Fractal Dimension. The fractal dimensions (FD) mea-
surement, which is used to determine a model’s chaotic
attractors defined by [53]
- Yt
Dy =k+222 (40)
|ttk+1|

where the biggest 1nteger number is k such that Z ;=0
and Zk“tt <0 and t;’s are Lyapunov exponents.

Now, the structure of the fractal dimensions of model
(15) is as follows:

t 1
D=2+ (41)

13

Given that the chaotic dynamics of the model (15) (ref.
Figure 6) are quantified with the sign of FD (ref. Figure 5(d)),
it is guaranteed that the dynamics of the fractional order
prey-predator model become unstable as the value of the
parameter p rises.

4.2. 0-1 Chaos Test Algorithm. Assume that @b (n) is a mea-
sured discrete set of data for the 0 — 1 chaos test technique
[54-56], where n =1, 2, 3,...,N, and the total amount of
the data is N.

We generate new coordinates (q«~(n) rb (n)) by choosing

a random number be (7/5, 47/5) and doing the following:

5 () (n) = Z 0, () cos($y (1)),
™ (42)
75 (m) = Y 6, (j)sin(¢, (7)),
j=1

where ¢, (j) = jc+Z{:1§b(j),j =1,2,3,...,n
The following definition applies to mean square dis-
placement Cy(n) as of this moment:

N

1
im 5 2 (GG - d()’

j=1

Cy(n) =
(43)
HBG+m - (), ne [1%]

We also define C;(n) as the modified mean square
displacement as follows:

cos b

Cﬂn)zé;(n)—(hm Zeb(])> — Q7

The following description follows for the median cor-
relation coefhicient K value:

K = median(IA(B), (45)
where
> cov(§1,45) _
Ky = var (€)var (A) ¢ =L, (46)
in which & =(1,2,3,...,n4),& =C;(1),C4(2),...,

C3 (Mey))s Ny = round (N/10), and covariance and variance
of vectors of length # are defined as follows:

cov(x, y) = Z(x(;) %) (y () =),
] 1
7 (47)
ni3

var (x) = cov(x, x).
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FIGURE 5: Visual representation of NS bifurcation, MLEs, and FDs of species for varying parameter p.

The output can now be demonstrated as follows.

(i) The dynamics remain stable (i.e., periodic or quasi
periodic) when K = 0, whereas K = 1 suggests that
the dynamics are chaotic.

(ii) As opposed to Brownian-like (unbounded) trajec-
tories, which show chaotic dynamics, bounded
trajectories on the (g,r) plane show regular dy-
namics (i.e., periodic or quasi-periodic dynamics).

Example 1. Select the parameter values so that r = 4.25,
k=357,=06a=0358=20,6=01, s=057y=0.2,
a =0.7,p = 0.846944 with K = 0.88816, the Brownian-like
(unbounded) trajectories in new coordinates (g, w)-plane
displaying in Figure 10(a) are compatible with a chaotic
system dynamics. The curve K verses p plotted in
Figure 10(b) represent the correlation coefficient value.

4.3. Co-Dimension-2 Bifurcation. For the parameter values
n=0.1;K=05r=03;a=0.5;a =575 =575 d=
0.65; p = 0.15, the parametric space presented in Figure 11(a),
we detected the following bifurcations:

(i) The fixed point 63 (x*, y*) of model (15) tolerates
a 1:2 resonance bifurcation for s=2.33115 ad
y = 0.572894

(ii) The fixed point (~)3 (x*, y*) of model (15) tolerates
a 1:3 resonance bifurcation for s =1.76401 ad
y = 0.606281

(iii) The fixed point O, (x*, y*) of model (15) tolerates
a 1:4 resonance bifurcation for s=1.21453 ad
y = 0.701785

4.4. Biological Implications. Bifurcations in discrete prey-
predator models can have important ecological effects. These
models describe the connections between a set of creatures
that are preyed upon and another set of species that engage
in predation. In these scenarios, the animals that are preyed
upon are consumed by the creatures that engage in hunting.

Period-doubling bifurcations and Neimark-Sacker bi-
furcations are observed in dynamical systems, including
ecological models. These divides have important biological
effects and can provide insight into the stability and com-
plexity of ecological systems. Period-doubling bifurcations
occur when the oscillation period in population dynamics
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doubles, leading to important ecological effects. Period-  the context of ecological models, this change could indicate
doubling bifurcations often signal the transition from reg-  a reduction in the capacity to generate precise forecasts and
ular, repeating patterns to random behaviour in a system. In ~ the emergence of complex, unpredictable fluctuations in
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FIGURE 10: 0-1 Chaos test for model (7). (a) g versus w. (b) Plot in new coordinates (p, K) plane.

population levels. Period-doubling bifurcations are associ-
ated with the creation of periodic orbits, which consist of
stable cycles of different durations. From an ecological

standpoint, this can be viewed as the variation between
different population cycles, such as the periodic changes in
prey and predator populations that have variable lengths. By
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FIGURE 11: (a) Parametric space in (s,y) plane. (b) bifurcation diagram in (s,y, x) space. (¢) 3D maximum Lyapunov exponents.

studying these models, we can gain knowledge about the
basic mechanisms that impact population cycles and other
ecological processes and develop more effective methods to
improve ecosystem stability and resilience.
Neimark-Sacker bifurcations are associated with the
transition from periodic to quasi-periodic behaviour in
dynamical systems. In ecological models, this may sug-
gest a shift from simple, regular population cycles to more
intricate, nonrepetitive patterns. The occurrence of
Neimark-Sacker bifurcations results in quasi-periodic
oscillations in the ecological system. The oscillations
do not recur exactly, which adds complexity to the
temporal dynamics of interacting species. Generally, the
Neimark-Sacker bifurcation in discrete prey-predator
models highlights the importance of understanding the
dynamics of populations and their interactions in eco-
logical systems. By examining these models, we can ac-
quire an understanding of the basic mechanisms that
influence population cycles and other ecological

processes and create better methods to enhance ecosys-
tem stability and resilience.

Therefore, we may interpret that period-doubling and
Neimark-Sacker bifurcations in ecological models as sig-
nifying transitions in system behaviour from simple and
predictable to complex and potentially chaotic dynamics.
These categorizations offer insight into the stability,
strength, and flexibility of ecological systems, emphasizing
the importance of considering complex dynamics and bi-
furcation theory when studying population interactions.

Strong resonance bifurcation is a form of bifurcation that
can happen in discrete prey-predator models. It is marked by
the occurrence of regular or unpredictable changes in
population dynamics, which can have significant ecological
consequences.

In ecological terms, the strong resonance bifurcation can
cause the development of population cycles with high am-
plitudes, which can lead to more intense boom-and-bust cycles
in the ecosystem. This can have significant impacts on the
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stability of the ecosystem, as the bigger fluctuations in pop-
ulation size can lead to increased competition for resources,
predation pressure, and other ecological interactions. Strong
resonance Bifurcation can also result in the development of
chaotic patterns in population cycles. Unpredictable changes in
the ecosystem can arise from chaotic dynamics, making it
challenging to establish effective conservation and manage-
ment methods. In general, the strong resonance bifurcation in
discrete prey-predator models emphasizes the need to com-
prehend the dynamics of populations and their interactions in
ecological systems. By examining these models, we can acquire
an understanding of the fundamental mechanisms that in-
fluence population cycles and other ecological processes, and
create more efficient approaches to enhance ecosystem stability
and resilience.

5. Chaos Control

According to a performance criterion, dynamical systems
are regarded to be the best since they prevent chaos. Chaotic
behavior is studied in many disciplines, including physics,

o
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biology, ecology, and telecommunications. Additionally,
a variety of industries, including communication systems,
physics laboratories, biochemistry, turbulence, and cardi-
ology, can benefit from the application of effective chaos
management techniques. Recently, the difficulty of con-
trolling chaos dynamics in discrete-time systems has caught
the attention of many scholars.

When addressing the issue of managing chaos, the four
approaches for investigating chaos control in discrete-time
models that are most frequently addressed are the state
feedback method, pole-placement methodology, OGY
technique, and hybrid control approach. In the model of
prey-predator with fractional order, we introduce OGY [57]
and state feedback [58] for controlling chaos. The OGY
approach does not allow us to employ the control parameter
p. Using y as a control parameter, the OGY technique is put
into practice.

We can change the model (15) as illustrated below in
order to apply the OGY method.

X, ~
Xpt1 = Xy +p—<1’Xn<l _?> - 17(1 - €xXp (_axn))yn + S) = fbl (x’ y’y)’

I'(a+1)
poc

Yue1 = Vn +m

where y is the chaotic control parameter. Assume that the
chaotic region is defined as |y — y,| <%, where ¥> 0 and y,
symbolize the nominal parameter. The system (48) in the
vicinity of the unstable fixed point at (x*, y*) can be
represented by the following linear map if the model (15)
has a chaotic zone created by the expansion of an NS

[0f 4 (%, ,7) 0fpy (%, ,7)
Oox oy

0f 10 (% 3,7) 0f 4 (%, ,7)
L ox oy

[ exp (—ax*)(a(rx*2 —k(s+ rx*))ﬁﬁb) +exp(ax”) (y + 8) (k + kr @i, — 2rx" i,

(48)

(B(1 - exp(-ax,)) ¥, = 0¥, = Y¥n) = for (x: 359,

bifurcation at (x*,y*) that contains an unstable fixed
point.

Xy — X - [x,-x"] -
. | = Awb | By =0l (49)
Y1 =Y Yn=)

where

k(y+96)

aexp(-ax")(-rx" + k(s +rx") )R,

(=1 + exp (-ax") )nfi,

L k(y +d)n

where 7, = 1 + (B - exp(-ax*)B -y — §)fi;, and
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3fp (%, 3,7) The controllability matrix of the system (48) is conse-
3y 0 quently defined as follows:
Byy = B - (rx"‘2 —k(s+ rx*))ﬂﬁb - 51
0f o (%, 3, 7) k(y+d)n
oy

(1- exp (—aX*))(—rx*2 +k(s+ rx*))ﬁﬂi

0 k(y+9)
Cyp = [Bbb: AbbBbb] = ) (52)
(rx”=2 —k(s+ rx*))ﬁﬁb (—rx*2 +k(s+ rx*))/}ﬁh (1+(B— exp(-ax™)B-y-0),)
k(y+d)n k(y+d)n
_ Xy — X" - - - x,—x"
Consequently, it is easy to deduce that the rank of Cy, is .= [Abb - Bbbeb] .| (53)
K Yue1 =Y Yn—=Y -
2. We consider that [y-—y,]=-Ky, =X | where . . . .
VY=Y Additionally, the suitable controlled system is provided
Ky, = [G; 04,], then system (48) becomes by (15).

Xpy1 = Xp T ﬁb(rxn<1 _%> - ’7(1 - &xp (_axn))yn + 5>’

(54)
Ynel = Vn t ﬁb (77(1 - €xp (_axn))yn - 6yn - (YO - abl (xn - x*) - 5b2 (yn - y*))yn)
If both of the eigenvalues of the matrix’s eigenvalues Also,
(A, — BypKyy) are situated inside an open unit disk, the
fixed point (x*, y*) is also locally asymptotically stable.
. x* . x*\ aexp (—ax*)(—rx*2 +k(s+ rx*))[a’ — o
+ —7'{'1’ _? - k(y+5) ‘Mh(— +exp(—ax ))’Wb
Ay, — By Ky, = , (55)
(—rx*2 +k(s+ rx*))ﬁﬁb (Baexp(—ax") +37,,)_
T
k(y+ 9y ¢
where T.=1+ (f- exp(—ax*)B—y—Op, + (—rx** + Furthermore,

k(s + rx*)) B,y /k (y + O)1. A® = Aghy + Fip = O, (56)
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where

Ay, =2+(B~ exp(—ax*)/j’—y—é)ﬁb+<—r;i+r<1—k

(—rx*2 +k(s+ rx*))ﬁﬁbabz

Complexity

x* aexp(—ax*)(—rx*2 +k(s+rx*))/j’ N
) - k(y+9) Ho

" k(y+ )7 :
1 * * —~ * —~
Fob = 5 exp(-ax") (=k(y + 8)n (exp (ax”) (y + 8) (k + rfi, (k = 2x7)) (-1 = (B -y = O)ii)))
k*(y+08)n
b exp(cax”) (<K (y + 8) (B, (y + 8) (k + 17, (k — 25°))
kK (y+8)n (57)
+ mexp (—ax*)(—k(y + 8)(a(rx*2 —k(s+ rx*)) (-1+(y+ 8);717)))
+ kz(yi(S)zneXp (—ax*)((—l + exp (ax*))k(—rx*2 +k(s+ rx*))/)’(y + 6)17ﬁ§5b1)
+ kz(y-lk(?)zr] exp (—ax*)((—rx*2 +k(s+ rx*))ﬁﬁb(a(—rx*2 +k(s+ rx*))ﬁﬁb)ﬁbz)
+ m exp (—ax*)((—rx*2 +k(s+ rx*))ﬁﬁh (exp(ax”) (y + &) (k + rHi, (k — 2x*)))5b2).

The equations Ay, = £ 1 and A4, =1 can then be
solved to yield the lines of marginal stability. These limi-
tations also guarantee that the open unit disc has both ei-
genvalues. Taking into account the case A4, = 1,4, = -1,
and A, =1 consecutively, we obtain the following equa-
tions, respectively, from (56):

Ly =Fop— L
Ly, = Ay, —Fop — 1, (58)

Ly = 1+ Ay + Fipe
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_Xn

gl
Mnet = X T\ T %

4

p
I'(a+1)

Yus1 = Vn +

Upp = _kl (xn_x*) _kZ(yn_y*)’

where (x*, y*) represents the nonnegative fixed point of the
system (15). The values k, and k, indicate the feedback gains.

Example 2. To talk about the system (15)’s OGY feedback
control mechanism, we set (r,k,a,%,$,6,s, 7y o p)

(17(1 - &Xp (_axn))yn - (Syn - yyn)’

The triangular region in the ,,;, 5}, plane circumscribed
by the straight lines L,,,L,, and L,; then has stable ei-
genvalues for a given parametric value.

State feedback control, a method, is used to stabilize
chaos at the moment where the system’s (15) unstable paths
begin. The system (15) can be made to take on a controlled
form by introducing a feedback control law as the control
force uy;, and using the following formula.

) - (1 - exp(-ax,))y, + S> + Uy

(59)

= (4.25, 3.5, 0.35, 0.6, 2.0, 0.1, 0.5, 0.425, 0.7, 0.84694). In
this situation, the unstable system (15) has a single non-
negative fixed point (x*, y*) = (0.869969, 20.8149). Then,
we present the controlled system below based on these
parametric parameters.
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FIGURE 12: (a, b) OGY method and state feedback method’s stable region. (c, d) Trajectories of a stable system.
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FIGURE 13: Phase picture for changing input of y.

xn
Xppp = X, + 0.9797(4.25xn(1 - E) -0.6(1 - exp(-0.35x,))y, + 0.5),
' (60)

Yur1 = Vn T 0'9797(0'6(1 - exp(_0'35xn))yn - O'Iyn - (0'425 - 6171 (xn - x*) - a'bZ (yn - y*))yn)’

where K = [G,, G,,]. We also obtain
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_ [ -0.0644286 —0.154303 - - - —-0.0644286 —-0.154303
Ay, = , App — Bpp Ky, = _ e
10.5275 1 10.5275 + 20.39230;,; 1+ 20.39230,,
o0 (62)
By, = 2203925 (61) For marginal stability, it offers the lines L;,, L,, and Ly;.
B _ 0 314659 L, =0.559999 + 3.146590;,; — 1.313856,, = 0,
Cpp = Ly, = 1.62443 + 3.146590,, — 21.70620,, = 0, (63)
| —20.3925 -20.3925 _ N
L,; = —3.49557 - 3.146590;,;, — 19.07856;, = 0.

Then, it is easy to confirm that the C,,, matrix’s rank is 2.
As a result, the system (60) can be controlled and provides
the managed system’s Jacobian matrix.

We conducted numerical simulations (see Figures
12-14) to study how the state feedback control influence
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functions as a chaos controller in an unstable environment.
The parameters will be set to the same values as the OGY
method that we choose except p = 1.045. The selected
feedback gains are k; = 0.5 and k, = -0.1.

6. Conclusions

In the current study, the dynamics of a fractional-order prey-
predator model are investigated, and three fixed points are
found under particular parametric conditions. Our findings
offer a thorough analysis of the stability of these fixed points,
which is given in the article in great detail. Additionally, we
both analytically and quantitatively show that the model system
can experience period-doubling and Neimark-Sacker bi-
furcations under specific circumstances. We have numerically
computed strong resonance 1: 2, 1: 3, and 1: 4 bifurcations
respectively. Notably, our results show that the system becomes
unstable as the parameters p,s, and y increase, leading to
a bifurcation from a stable state to chaotic behaviour. We see in
the simulations the ensuing chaotic behaviour. Furthermore,
we notice the effects of harvesting and immigration of the
behaviour of the model. For example, low immigration on prey
and higher harvesting on predators cause unstable model
dynamics while high immigration on prey and lower har-
vesting on predators stabilize the model dynamics. We also
show, numerically and analytically, that the OGY method can
be used to regulate chaotic behaviour.

Our major discovery is that the behaviour of the system is
strongly influenced by the amount of memory represented by
the parameter a. Our findings specifically show that weak
memory, which corresponds to « nearing one, causes chaotic
behaviour while strong memory, which corresponds to «
approaching zero, stabilizes the system. These results underline
how crucial memory is to the model system’s behaviour.

In summary, this study provides a thorough analysis of the
dynamics of a model system and demonstrates the occurrence
of bifurcations and chaos under specific parametric conditions.
We also emphasize the influence of memory on the behaviour
of the system and demonstrate the efficiency of the OGY
method in controlling chaotic behaviour. Our research ad-
vances knowledge of the model system’s dynamics and sheds
light on the function of memory in the system’s behaviour.
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