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Tis study examines the discrete prey-predator model in the sense of Caputo fractional derivative by incorporating harvesting on
the predator population and immigration on the prey population. We establish the topological categories of the model’s fxed
points. We show analytically that a fractional order prey-predator model supports both a Neimark–Sacker (NS) bifurcation and
a period-doubling (PD) bifurcation under specifc parametric circumstances. Using the central manifold and bifurcation theory,
we provide evidence for NS and PD bifurcations. It has been discovered that the parameter values and the initial conditions have
a signifcant infuence on the dynamical behavior of the fractional order prey-predator model. Furthermore, two chaos man-
agement strategies are applied to eliminate the chaos that objectively exists in themodel. Finally, numerical simulations are used to
demonstrate complicated and chaotic behavior in order to support our theoretical and analytical discussions.

1. Introduction

In ecological science, the investigation of the predator-prey
relationship with various ecological phenomena has gained
a lot of popularity. An essential model in population dy-
namics, the dynamics of interacting populations [1] are
examined using the prey-predator paradigm. Continuous-
time population models, like the Lotka-Volterra model, have
been utilized in population dynamics to comprehend the
interaction between ecological species [2–8]. On the other
hand, discrete-time population models have also gained
attention recently [9–11] because these can create more
complicated and interesting dynamical behaviors than
continuous-time models and are better suited to model
populations with non-overlapping generations. For exam-
ple, a 1-dimensional discrete-time autonomous system can
display chaos, but a continuous-time setup requires chaos in
at least a 3-dimensional autonomous system [12, 13].

Te traditional predator-prey relationship always takes
the following shape:

_x � x􏽥Υ(x, k) − y 􏽥Θ(x),

_y � y(− δ + 􏽥Ω(x)),
(1)

with
x(0), y(0)> 0, (2)

where the time-dependent functions x(t) and y(t) stand in
for the prey and predator population densities, respectively.
Every constant is assumed to be positive. Te carrying ca-
pacity is indicated by parameter k. Te predator’s mortality
rate is represented by constant δ. 􏽥Θ(x) represents the
functional response, while 􏽥Ω(x) represents the uptake
functions.

Each population system in an ecological system employs
a diferent strategy, such as refuging and grouping, to look
for food sources and to defend itself. Terefore, a variety of
ecological criteria and elements are used in the creation of
mathematical models.Te functional response in population
dynamics, which refers to the amount of prey consumed by
a predator dependent on the density of the prey per unit of
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time, is a crucial element in every prey-predator encounter.
Te functional response of the Holling type II [14] is
commonly employed and well researched to those from the
Holling types I, III, and IV for the majority of arthropod
predators. To explore the dynamical interplay between prey
and predator species, Iviev [15] devised a novel functional
response, known as the Iviev functional response:

p(x) � η(1 − exp(− ax))y, (3)

where the positive constants η and a represent the highest
rate of predation and the decrease in the urge to hunt, re-
spectively. Numerous investigations of the predator-prey
relationship with Ivlev-type functional responses have
been conducted. Te results suggested that Iviev-type re-
lationships between the species have a number of models in
ecological applications, including dynamics in host-parasite
models [16], predator-prey models [17–25], animal coat
patterns [26], and phytoplankton-zooplankton model [27].
Te following predator-prey model with Iviev functional
[28] reaction will be taken into consideration.

_x � rx 1 −
x

k
􏼒 􏼓 − η(1 − exp(− ax))y,

_y � β(1 − exp(− ax))y − δy.

(4)

Te parameter r refers to the prey’s growth rate, while β
represents the rate at which prey is turned into a predator
after being digested.

Global dynamics, Neimark–Sacker bifurcation, and hybrid
control in a Leslie’s prey-predator model were all examined by
Khan et al. in [22]. Te discrete-time predator-prey model’s
stability, bifurcation, and chaos control are examined by the
authors in [21], along with the Allee impact on the predator.
Santra et al. systematically examined the bifurcation analysis
and chaos management of a discrete prey-predator model
using a unique prey-refuge idea in [24]. Evaluating the impact
of harvesting is realistic when studying the prey-predator
paradigm. Fisheries, forestry, and wildlife management all
regularly engage in population harvesting [29]. Everyone is
aware that one of the most signifcant systemic changes is
immigration. Immigration is a manifestation of an external
factor that afects an organism’s ability to create a specifc
habitat and afects the rate of population increase. Diferent
climatic change responses could disrupt interactions, partic-
ularly those between predators and their prey. Occasional
roving and nomadic lifestyles are adopted by living species as
a result of frequent and seasonal movement and immigration
[30, 31]. Additionally, immigration is a signifcant development
that helps to stabilize the environment. In order to better
understand this discrete-time predator-prey model with con-
tinuous prey population immigration with harvesting on
predators, let us look at it.

_x � rx 1 −
x

k
􏼒 􏼓 − η(1 − exp(− ax))y + s,

_y � β(1 − exp(− ax))y − δy − cy,

(5)

where the time-dependent functions x(t) and y(t) stand in
for the prey and predator population densities, respectively.

Te highest rate of predation and the declining desire to
hunt are represented by the positive constants η and a,
respectively. Te predator’s mortality rate is represented by
the constant δ. Te prey’s growth rate is indicated by the
parameter r, while the rate at which the prey becomes
a predator after being digested is indicated by the value β.
Also, s and c represent the immigration rate on prey
population and harvesting rate on predator population,
respectively.

Any degree of classical diferentiation and integration is
generalized in fractional calculus. It is used in a variety of
scientifc and engineering domains, including biology, fuid
mechanics, and medicine, which sparks a great deal of
curiosity among academics. Due to its use in numerous
domains [32–37] during the last two decades, fractional
order calculus has drawn the attention of researchers. Nu-
merous writers have recently studied biological models
[38–45] with fractional order. Te primary factor is that
fractional order models are inherently connected to
memory-based systems, which are present in the majority of
biological systems [46, 47]. A fractional-order prey-predator
model was presented by Javidi and Nyamoradi [48] and its
biological behaviors were discussed. Te dynamics in pa-
rameter spaces of two logistic population maps that are
linearly connected and have the same growth rate have
recently been studied by Layek and Pati [49].

We apply the Caputo fractional derivatives to the con-
tinuous system (5) in the current study and provide a the-
oretical explanation of the bifurcation occurrences. Tere
are various defnitions for fractional derivatives. Caputo’s
defnition of fractional derivatives, which is frequently used
in real-world settings, is one of the most well-known
defnitions.

Defnition 1. Consider

D
α
f(t) � J

l− α
f

(l)
(t), α> 0, (6)

where fl denotes the derivative of f(t) in the l-order, l � [α]

is the value of α rounded up to the nearest integer, and Jq is
the operator for the Riemann–Liouville integral of q-order.

J
q
h(t) �

􏽒
t

0 t − τe( 􏼁
q− 1

h τe( 􏼁dτe

Γ(q)
, q> 0, (7)

where Γ(.) is the gamma function of Euler. Te operator Dα

is also known as the α-order Caputo diferential operator.

Te following is the model (5)’s fractional order form

D
α
x(t) � rx(t) 1 −

x(t)

k
􏼠 􏼡 − η(1 − exp(− ax(t)))y(t) + s,

D
α
y(t) � β(1 − exp(− ax(t)))y(t) − δy(t) − cy(t).

(8)

Tere are a variety of techniques for discretizing the
model, like a model (8). Te piece-wise constant approxi-
mation (PCA) [50–52] is one of them. Using the PCA
technique, the model is discretized. Te steps are as follows:
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Assume that model (8) initial conditions are x(0) � x0,

y(0) � y0. Te discretized version of model (8) is given as
follows:

D
α
x(t) � rx

t

ρ
􏼢 􏼣􏼠 􏼡 1 −

x([t/ρ])

k
􏼠 􏼡 − η 1 − exp − ax

t

ρ
􏼢 􏼣􏼠 􏼡􏼠 􏼡􏼠 􏼡y

t

ρ
􏼢 􏼣􏼠 􏼡 + s,

D
α
y

t

ρ
􏼢 􏼣􏼠 􏼡 � β(1− exp − ax

t

ρ
􏼢 􏼣􏼠 􏼡􏼠 􏼡y

t

ρ
􏼢 􏼣􏼠 􏼡 − δy

t

ρ
􏼢 􏼣􏼠 􏼡 − cy

t

ρ
􏼢 􏼣􏼠 􏼡.

(9)

First, let t ∈ [0, ρ), so t/ρ ∈ [0, 1). Tus, we obtain

D
α
x(t) � rx0 1 −

x0

k
􏼒 􏼓 − η 1 − exp − ax0( 􏼁( 􏼁y0 + s,

D
α
y(t) � β 1 − exp − ax0( 􏼁( 􏼁y0 − δy0 − cy0.

(10)

Te answer to (10) is simplifed to

x1(t) � x0 + J
α rx0 1 −

x0

k
􏼒 􏼓 − η 1 − exp − ax0( 􏼁( 􏼁y0 + s􏼒 􏼓

� x0 +
t
α

αΓ(α)
rx0 1 −

x0

k
􏼒 􏼓 − η 1 − exp − ax0( 􏼁( 􏼁y0 + s􏼒 􏼓,

y1(t) � y0 + J
α β 1 − exp − ax0( 􏼁( 􏼁y0 − δy0 − cy0( 􏼁

� y0 +
t
α

αΓ(α)
β 1 − exp − ax0( 􏼁( 􏼁y0 − δy0 − cy0( 􏼁.

(11)

Second, let t ∈ [ρ, 2ρ), so t/ρ ∈ [1, 2). Ten,

D
α
x(t) � rx1 1 −

x1

k
􏼒 􏼓 − η 1 − exp − ax1( 􏼁( 􏼁y1 + s,

D
α
y(t) � β 1 − exp − ax1( 􏼁( 􏼁y1 − δy1 − cy1,

(12)

which have the following solution:

x2(t) � x1(ρ) + J
α
ρ rx1 1 −

x1

k
􏼒 􏼓 − η 1 − exp − ax1( 􏼁( 􏼁y1 + s􏼒 􏼓

� x1(ρ) +
(t − ρ)

α

αΓ(α)
rx1 1 −

x1

k
􏼒 􏼓 − η 1 − exp − ax1( 􏼁( 􏼁y1 + s􏼒 􏼓,

y2(t) � y1(ρ) + J
α
ρ β 1 − exp − ax1( 􏼁( 􏼁y1 − δy1 − cy1( 􏼁

� y1(ρ) +
(t − ρ)

α

αΓ(α)
β 1 − exp − ax1( 􏼁( 􏼁y1 − δy1 − cy1( 􏼁,

(13)

where Jαρ ≡ 1/Γ(α) 􏽒
t

ρ (t − τe)
α− 1dτe, α> 0. After n times

repetition, we obtain
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xn+1(t) � xn(nρ) +
(t − nρ)

α

αΓ(α)
rxn(nρ) 1 −

xn(nρ)

k
􏼠 􏼡 − η 1 − exp − axn(nρ)( 􏼁( 􏼁yn(nρ) + s􏼠 􏼡,

yn+1(t) � yn(nρ) +
(t − nρ)

α

αΓ(α)
β 1 − exp − axn(nρ)( 􏼁( 􏼁yn(nρ) − δyn(nρ) − cyn(nρ)( 􏼁,

(14)

where t ∈ [nρ, (n + 1)ρ). For t⟶ (n + 1)ρ, model (14)
becomes

xn+1 � xn +
ρα

Γ(α + 1)
rxn 1 −

xn

k
􏼒 􏼓 − η 1 − exp − axn( 􏼁( 􏼁yn + s􏼒 􏼓,

yn+1 � yn +
ρα

Γ(α + 1)
β 1 − exp − axn( 􏼁( 􏼁yn − δyn − cyn( 􏼁.

(15)

Te following are a few contributions that this research
makes:

(1) Tere are two interdependent species in the planned
model, each of which is a source of sustenance for the
other. In this study, we looked at how immigration
afected the community of prey and harvesting af-
fected the community of predator in the model.

(2) Potential fxed points are looked for when evaluating
the stability of the model in question.

(3) It has been demonstrated that the proposed model
can undergo PD and NS bifurcations.

(4) Te model has become chaotic as a result of the
Neimark–Sacker bifurcation, so the OGY (Ott,
Grebogi, and Yorke) and state feedback control
approaches have been used to manage it.

(5) In order to verify the accuracy of our theoretical
fndings, some numerical examples for our fractional
order discrete-time predator-prey model with im-
migration and harvesting have been provided.

Te following sections of this paper are structured as
follows: Te fxed point topological classes are examined in
Sect. 2. In Sect. 3, we investigate analytically the chance of
a PD or NS bifurcation of the model (15) under a given
parametric condition. In Sect. 4, we numerically show model
dynamics with bifurcation diagrams and phase portraits to
support our analytic results. In Sect. 5, we apply the OGY and
state feedback management techniques to stabilize the chaos
of the chaotic model. A short discussion is provided in Sect. 6.

2. Stability of Fixed Point

Te three fxed points of model (15) are

􏽥O1,2(x, y) �
k

2
±

���������
k(kr + 4s)

􏽰

2
�
r

√ , 0􏼠 􏼡 � x1,2, 0􏼐 􏼑, (16)

and 􏽥O3(x∗, y∗), where x∗ � − 1/a ln[β − c− δ/β], y∗ � (ks+
krx∗ − rx∗2)β/kη(δ + c), which, for any valid parameter

value except few parameters must satisfy c + δ < β(1 − exp
(− ax1)), always exist. Te fxed points 􏽥O1(x1, 0) and
􏽥O3(x∗, y∗) are nonnegative.

Model (15)’s fxed point 􏽥O(x, y)’s variational matrix is
provided by

Va(x, y) �
􏽥v11 􏽥v12

􏽥v21 􏽥v22
􏼠 􏼡, (17)

where

􏽥v11 � 1 +
r(k − 2x)

k
− ae− ax

yη􏼠 􏼡
ρα

Γ(α + 1)
,

􏽥v12 � − 1 + e
− ax

( 􏼁η
ρα

Γ(α + 1)
,

􏽥v21 � aβye− ax ρα

Γ(α + 1)
,

􏽥v22 � 1 + − δ + β − c − e
− axβ( 􏼁

ρα

Γ(α + 1)
.

(18)

At 􏽥O1(x1, 0), the characteristic equation becomes

F11(λ) ≔ λ2 − 2 + 􏽥Δ1􏽥μa􏼐 􏼑λ + 1 + 􏽥Δ1􏽥μa + 􏽥Ω1􏽥μ2a􏼐 􏼑 � 0,

(19)

where

􏽥μa �
ρα

Γ(α + 1)
,

􏽥Δ1 � r 1 −
2x1

k
􏼒 􏼓 + 1 − e

− ax1( 􏼁β − (c + δ),

􏽥Ω1 �
e

− 2ax1

k
e
ax1r − k + 2x1( 􏼁 δe

ax1 + 1 − e
ax1( 􏼁β + e

ax1c( 􏼁􏼂 􏼃.

(20)
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So, F11(1) � 􏽥Ω1􏽥μ2a > 0 and F11(− 1) � 4 + 2 􏽥Δ1􏽥μa + 􏽥Ω1􏽥μ2a.
Te eigenvalues of the characteristic equation (19) are λ1 �

1 + r(k − 2x1)􏽥μa/k, λ2 � 1 − (c + δ)􏽥μa + β(1 − e− ax1) 􏽥μa,
which are real with 􏽥Δ21 − 4 􏽥Ω1 > 0.Te following lemma is one
we make in relation to the stability criterion of 􏽥O1.

Lemma 2. For the axial fxed point 􏽥O1(x1, 0), the topological
classifcation listed below is appropriate:

(i) Source if 􏽥μa > − 􏽥Δ1 +

��������
􏽥Δ2
1 − 4􏽥Ω1

􏽱

/ 􏽥Ω1

(ii) Sink if 􏽥μa < − 􏽥Δ1 −

��������
􏽥Δ2
1 − 4􏽥Ω1

􏽱

/ 􏽥Ω1

(iii) Non-hyperbolic if 􏽥μa � − 􏽥Δ1 ±
��������
􏽥Δ2
1 − 4􏽥Ω1

􏽱

/ 􏽥Ω1;

􏽥μa ≠ − 2/􏽥Δ1, − 4/􏽥Δ1

(iv) Saddle if otherwise

At 􏽥O3(x∗, y∗), the characteristic equation becomes

Faa(λ) ≔ λ2 − 2 + 􏽥Δa􏽥μa􏼐 􏼑λ + 1 + 􏽥Δa􏽥μa + 􏽥Ωa􏽥μ2a􏼐 􏼑 � 0,

(21)

where

􏽥Δa � r 1 −
2x
∗

k
􏼠 􏼡 − aηe

− ax∗
y
∗

+ 1 − e
− ax∗

􏼐 􏼑β − (c + δ),

􏽥Ωa �
e

− 2ax∗

k
ka − 1 + e

ax∗
􏼐 􏼑y

∗ηβ + e
ax∗

r − k + 2x
∗

( 􏼁 + akηy
∗

􏼐 􏼑 δe
ax∗

+ 1 − e
ax∗

􏼐 􏼑β + e
ax∗

c􏼐 􏼑􏽨 􏽩.

(22)

So, Faa(1) � 􏽥Ωa􏽥μ2a > 0 and Faa(− 1) � 4 + 2􏽥Δa􏽥μa + 􏽥Ωa􏽥μ2a.
Te following lemma is one we make in relation to the
stability criterion of 􏽥O3.

Lemma 3. For the coexistence fxed point 􏽥O3(x∗, y∗), the
topological classifcation listed below is appropriate:

(i) Source if

(i.i) 􏽥Δ2
a − 4􏽥Ωa ≥ 0 and 􏽥μa > − 􏽥Δa +

��������
􏽥Δ2

a − 4􏽥Ωa

􏽱

/ 􏽥Ωa

(i.ii) 􏽥Δ2
a − 4􏽥Ωa < 0 and 􏽥μa > − 􏽥Δa/ 􏽥Ωa

(ii) Sink if

(ii.i) 􏽥Δ2
a − 4􏽥Ωa ≥ 0 and 􏽥μa < − 􏽥Δa −

��������
􏽥Δ2

a − 4􏽥Ωa

􏽱

/ 􏽥Ωa

(ii.ii) 􏽥Δ2
a − 4􏽥Ωa < 0 and 􏽥μa < − 􏽥Δa/ 􏽥Ωa

(iii) Nonhyperbolic if

(iii.i) 􏽥Δ2
a − 4􏽥Ωa ≥ 0 and 􏽥μa � − 􏽥Δa ±

��������
􏽥Δ2

a − 4􏽥Ωa

􏽱

/
􏽥Ωa; 􏽥μa ≠ − 2/􏽥Δa, − 4/􏽥Δa

(iii.ii) 􏽥Δ2
a − 4􏽥Ωa < 0 and 􏽥μa � − 4/􏽥Δa.

(iv) Saddle if otherwise

Let

􏽤PDB
1,2
􏽥O3

� (r, a, k, δ, η, β, c, s, ρ, α) : ρ �
− 􏽥Δa ±

��������
􏽥Δ2a − 4 􏽥Ωa

􏽱

􏽥Ωa

Γ(1 + α)⎛⎜⎜⎝ ⎞⎟⎟⎠

1/α

� ρ±,
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (23)

with 􏽥Δ2a − 4 􏽥Ωa ≥ 0, 􏽥μa ≠ − 2/􏽥Δa, − 4/􏽥Δa Also, let

􏽤NSB􏽥O3
� (r, a, k, d, η, β, c, s, ρ, α): ρ � Γ(1 + α)

− 􏽥Δa

􏽥Ωa

􏼠 􏼡

1/α

� ρNS, 􏽥Δ2a − 4 􏽥Ωa < 0
⎧⎨

⎩

⎫⎬

⎭. (24)

Te model (15)’s positive fxed point’s topological cat-
egorization for r � 4.25, k � 3.5, η � 0.6, a � 0.35, β � 2.0,

δ � 0.1, α � 0.75, ρ � 0.846944 with s ∈ [0, 6] and c ∈

[0, 1.2] is depicted in Figure 1. Te eigenvalues of the as-
sociated Jacobianmatrix at the fxed point are complex in the
left side of the curve in the green color-shaded section. On
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the opposite side, the eigenvalues are real. Figure 2 shows
the maximum Lyapunov exponents and the bifurcation
diagram.

3. Analysis of Bifurcation

Tis section introduces a study that will look at the NS and
PD bifurcations at the fxed point 􏽥O3(x∗, y∗) of the model
using parameter ρ as a bifurcation parameter.

3.1. Neimark–Sacker Bifurcation. For the analysis of NS
bifurcation for the positive coexistence equilibrium point
􏽥O3(x∗, y∗), we consider the following study.

Assume ρ∗ is the small perturbation of ρ where |ρ∗|⋘ 1.
Terefore, the model becomes using perturbation

xn+1 � xn +
ρ + ρ∗( 􏼁

α

Γ(α + 1)
rxn 1 −

xn

k
􏼒 􏼓 − η 1 − e

− axn( 􏼁yn + s􏼒 􏼓 ≡ f xn, yn, ρ∗( 􏼁,

yn+1 � yn +
ρ + ρ∗( 􏼁

α

Γ(α + 1)
β 1 − e

− axn( 􏼁yn − δyn − cyn( 􏼁 ≡ g xn, yn, ρ∗( 􏼁.

(25)

If un � xn − x∗, vn � yn − y∗, then the fxed point
􏽥O3(x∗, y∗) becomes the origin, and by using Taylor series at
(un, vn) � (0, 0) expanding f and g to the third order,
model (25) becomes

1.2

1.0

0.8

0.6

0.4

0.2

0.0

s
0 1 2 3 4 5 6

γ

Source
Sink
Saddle

Figure 1: Stability region of the positive fxed point of model (7).
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un+1 � αx1un + αx2vn + αx11u
2
n + αx12unvn + αx22v

2
n + αx111u

3
n + αx112u

2
nvn

+αx122unv
2
n + αx222v

3
n + O un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐

4
􏼓,

vn+1 � βy1un + βy2vn + βy11u
2
n + βy12unvn + βy22v

2
n + βy111u

3
n + βy112u

2
nvn

+βy122unv
2
n + βy222v

3
n + O un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐

4
􏼓,

(26)

where

3

2

1

0
0.6 0.5

0.4 0.3 0.2
0.1

0.14

0.28

0.42

s

x

γ

(a)

0

-0.5m
ax
Lc
e

-1

s
γ

0.6

0.4

0.2
0.1

0.2
0.3

0.4

(b)

0.6

0.5

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

0.4

0.3

s

0.2

0.1
0.14 0.28

γ
0.42

(c)

Figure 2: (a) 3D bifurcation diagram in (c, s, x) space. (b) 3Dmaximum Lyapunov exponents. (c) 2D projection of 3Dmaximum Lyapunov
exponents projected in two dimensions onto the (c, s) plane.
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αx1 �
e

− ax∗ a rx∗2 − k s+rx∗( )( )β ρα/Γ(α+1)( )+eax
∗

(c+δ) k+kr ρα/Γ(α+1)( )− 2rx∗ ρα/Γ(α+1)( )( )( )

k(c + δ)
,

αx2 � − 1 + e
− ax∗

􏼐 􏼑η
ρα

Γ(α + 1)
,

αx11 �
− 2r + a

2
e

− ax∗
− rx∗2 + k s + rx∗( 􏼁􏼐 􏼑/c + δ􏼐 􏼑ρα/Γ(α + 1)

k
,

αx12 � − ae− ax∗η
ρα

Γ(α + 1)
,

αx22 � 0,

αx111 �
a
3
e

− ax∗ rx∗2 − k s + rx∗( 􏼁􏼐 􏼑βρα/Γ(α + 1)

k(c + δ)
,

αx112 � a
2
e

− ax∗η
ρα

Γ(α + 1)
,

αx122 � 0,

αx222 � 0,

βy1 �
ae− ax∗ rx∗2 − k s + rx∗( 􏼁􏼐 􏼑β2ρα/Γ(α + 1)

k(c + δ)η
,

βy2 � 1 + β − e
− ax∗β − c − δ􏼐 􏼑

ρα

Γ(α + 1)
,

βy11 �
a
2
e

− ax∗
rx
∗2

− k s + rx
∗

( 􏼁􏼐 􏼑β2ρα/Γ(α + 1)

k(c + δ)η
,

βy12 � ae
− ax∗β

ρα

Γ(α + 1)
,

βy22 � 0,

βy111 �
a
3
e

− ax∗
− rx
∗2

+ k s + rx
∗

( 􏼁􏼐 􏼑β2ρα/Γ(α + 1)

k(c + δ)η
,

βy112 � − a
2
e

− ax∗β
ρα

Γ(α + 1)
,

βy122 � 0,

βy222 � 0.

(27)

Te characteristic equation of the model (26) is
λ2 + p(ρ∗)λ + q(ρ∗) � 0, where p(ρ∗) � (2 + 􏽥Δa􏽥μa) and
q(ρ∗) � (1 + 􏽥Δa􏽥μa + 􏽥Ωa􏽥μ2a), with 􏽥μa � (ρ + ρ∗)α/Γ(α + 1).
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Te characteristic equation’s roots are λ1,2(ρ∗) � − p

(ρ∗) ± i

���������������

4q(ρ∗) − (p(ρ∗))2
􏽱

/2.
From |λ1,2(ρ∗)| � 1, and ρ∗ � 0, we have

|λ1,2(ρ∗)| � [q(ρ∗)]1/2 and l � [d|λ1,2(ρ∗)|/dρ∗]ρ∗�0≠ 0.
Furthermore, it is imperative that when ρ∗ � 0, λi

1,2 ≠ 1,
i � 1, 2, 3, 4, which is equivalent to p(0)≠ ±2, 0,1.

To study the normal form, let ϕ � Im(λ1,2) and

φ � Re(λ1,2). We ascertain T �
0 1
ϕ φ􏼢 􏼣, and serving the

transformation un

vn

􏼢 􏼣 � T
�xn

�yn

􏼢 􏼣, the model (26) becomes

�xn+1 � φ�xn − ϕ�yn + fx11 �xn, �yn􏼐 􏼑,

�yn+1 � ϕ�xn + φ�yn + gy11 �xn, �yn􏼐 􏼑,
(28)

where the functions fx11 and gy11, respectively, denote the
terms in the model (28) for the variables (�xn, �yn) with the
order at least two.

To transit through NSB, the following discriminating
amount Ω must be nonzero:

Ω � − Re
(1 − 2�λ)�λ2

1 − λ
ξ11ξ20⎡⎣ ⎤⎦ −

1
2
ξ11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− ξ02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ Re λξ21),􏼐

(29)

where

ξ20 �
φ
8

2βy22 − φαx22 − αx12 + 4ϕαx22 + i 4ϕαx22 − 2αx22 − 2φαx22( 􏼁􏼐 􏼑 +
ϕ
4
αx12

+ i
1
8

4ϕβy22 + 2ϕ2αx22 − 2αx11􏼐 􏼑 +
βy12

8
+
φαx11 − 2βy11 + φ3αx22 − φ2βy22 − φ2αx12 + φβy12

4ϕ
,

ξ11 �
ϕ
2

βy22 − φαx22􏼐 􏼑 + i
1
2

ϕ2αx22 + αy11 + φαx12 + φ2αx22􏼐 􏼑

+
βy11 − φαx11 + φβy12 − φ2αx12 − 2φ2βy22 + 2φ3αx22

2ϕ
,

ξ02 �
1
4
ϕ 2φαx22 + αy12 + βy22􏼐 􏼑 + i

1
4

βy12 + 2φβy22 − 2φαx12 − αx11􏼐 􏼑

−
βy11 − φαx11 + φβy12 − φ2αx12 + φ2βy22 − φ3αx22

4ϕ
+
1
4
αx22i ϕ2 − 3φ2

􏼐 􏼑,

ξ21 �
3
8
βy222 ϕ2 + φ2

􏼐 􏼑 +
βy112

8
+
φ
4
αx112 +

φ
4
βy122 + αx122

ϕ2

8
+
3φ2

8
−
φ
4

􏼠 􏼡

+
3
8
αx111 + i

3
8
αx222 ϕ2 + 2φ2

􏼐 􏼑 + i
3ϕφ
8

αx122 −
1
8
βy122ϕi − i

3ϕφ
8

βy222 − i
3βy111 − 3φαx111

8ϕ

− i
3φβy112 − 3φ2αx112

8ϕ
− i

3φ2βy122 − 3φ3αx122

8ϕ
− i

3φ3βy222 − 3φ4αx222

8ϕ
.

(30)

We came to the following conclusion as a result of the
analysis indicated above.

Complexity 9



Theorem 4. “If Ω≠ 0, the model proceeds through NS bi-
furcation at 􏽥O3(x∗, y∗) for the parameter ρ to vary in the
vicinity of 􏽤NSB􏽥O3

. If Ω< 0 (Ω> 0), a smooth closed invariant

curve with a positive fxed point 􏽥O3 can bifurcate and the
bifurcation is subcritical (resp. supercritical).”

3.2. Period-Doubling Bifurcation. Te positive fxed point
􏽥O3(x∗, y∗)’s one eigenvalue is λ1 � − 1, and the other one is
λ2 neither 1 nor − 1, if the the model’s parameters vary

around the set 􏽤PDB
1,2
􏽥O3
.

Te PD bifurcation is examined using parameter ρ.
Furthermore, ρ∗ (|ρ∗|⋘ 1,) is this model perturbation
caused by the fuctuations of ρ.

xn+1 � xn +
ρ + ρ∗( 􏼁

α

Γ(α + 1)
rxn 1 −

xn

k
􏼒 􏼓 − η 1 − e

− axn( 􏼁yn + s􏼒 􏼓 ≡ f xn, yn, ρ∗( 􏼁,

yn+1 � yn +
ρ + ρ∗( 􏼁

α

Γ(α + 1)
η 1 − e

− axn( 􏼁yn − δyn − cyn( 􏼁 ≡ g xn, yn, ρ∗( 􏼁.

(31)

If un � xn − x∗, vn � yn − y∗, then equilibrium
􏽥O3(x∗, y∗) becomes the origin, and by using Taylor series
about (un, vn) � (0,0) expanding to the third order of f and
g, model (31) becomes

un+1 � αx1un + αx2vn + αx11u
2
n + αx12unvn + αx13unρ

∗
+ αx23vnρ

∗
+ αx111u

3
n

+ αx112u
2
nvn + αx113u

2
nρ
∗

+ αx123unvnρ
∗

+ O un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓,

vn+1 � βy1un + βy2vn + βy11u
2
n + βy12unvn + βy22v

2
n + βy13unρ

∗
+ βy23vnρ

∗
+ βy111u

3
n

+ βy112u
2
nvn + βy113u

2
nρ
∗

+ βy123unvnρ
∗

+ βy223v
2
nρ
∗

+ O un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓,

(32)

where

αx13 �
e

− ax∗
a rx∗2 − k s + rx∗( 􏼁􏼐 􏼑β − e

ax∗
r − k + 2x

∗
( 􏼁(c + δ)􏼐 􏼑

k(c + δ)

αρα− 1

Γ(α + 1)
,

αx23 � − 1 + e
− ax∗

􏼐 􏼑
αρα− 1

Γ(α + 1)
,

αx113 �
− 2r + a

2
e

− ax∗
− rx∗2 + k s + rx∗( 􏼁􏼐 􏼑/c + δ

k
,

αx123 � − ae− ax∗ αρα− 1

Γ(α + 1)
,

βy13 �
ae− ax∗

− rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β2

k(c + δ)η
αρα− 1

Γ(α + 1)
,

βy23 � β 1 − e
− ax∗

􏼐 􏼑 − c − δ􏼐 􏼑
αρα− 1

Γ(α + 1)
,

βy113 �
a
2
e

− ax∗
− rx∗2 − k s + rx∗( 􏼁􏼐 􏼑β2

k(c + δ)η
αρα− 1

Γ(α + 1)
,

βy123 � ae− ax∗β
αρα− 1

Γ(α + 1)
,

βy223 � 0.

(33)
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We assume T �
αx2 αx2

− 1 − αx1 λ2 − αx1
􏼢 􏼣, which is in-

vertible. Now, using the transformation un

vn

􏼢 􏼣 � T
�xn

�yn

􏼢 􏼣,
model (32) becomes

�xn+1 � − �xn + fx11 un, vn, ρ∗( 􏼁,

�yn+1 � λ2�yn + gy11 un, vn, ρ∗( 􏼁,
(34)

where the functions fx11 and gy11, respectively, denote the
terms in model (34) for the variables (�xn, �yn) with the order
at least two.

System (34) has a center manifold Wc(0,0,0) at (0, 0) in
a highly closed neighborhood of ρ∗ � 0, which can be de-
duced using the center manifold theorem and is essentially
expressed as follows.

W
c
(0, 0, 0) � �xn, �yn, ρ∗􏼐 􏼑 ϵR3

: �yn+1 � �αx1�x
2
n + �αx2�xnρ

∗
+ O �xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐

3
􏼓􏼚 􏼛, (35)

where

�αx1 �
αx2 1 + αx1( 􏼁αx11 + αx2βy11􏽨 􏽩

1 − λ22
+
βy22 1 + αx1( 􏼁

2

1 − λ22
−

1 + αx1( 􏼁 αx12 1 + αx1( 􏼁 + αx2βy12􏽨 􏽩

1 − λ22
,

�αx2 �
1 + αx1( 􏼁 αx23 1 + αx1( 􏼁 + αx2βy23􏽨 􏽩

αx2 1 + λ2( 􏼁
2 −

1 + αx1( 􏼁αx13 + αx2βy13􏽩

1 + λ2( 􏼁
2 .

(36)

Te model (34)’s restrained center manifold, Wc(0,0,0),
has the following form:

�xn+1 � − �xn + h1�x
2
n + h2�xnρ

∗
+ h3�x

2
nρ
∗

+ h4�xnρ
∗2

+ h5�x
3
n + O �xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

3
􏼒 􏼓 ≡ F �xn, ρ∗􏼐 􏼑, (37)

where
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h1 �
�αx2 λ2 − �αx1􏼐 􏼑αx11 − �αx2βy11􏽨 􏽩

1 + λ2
−
βx22 1 + �αx1􏼐 􏼑

2

1 + λ2
−

1 + �αx1􏼐 􏼑 λ2 − �αx1􏼐 􏼑αx12 − �αx2βy12􏽨 􏽩

1 + λ2
,

h2 �
λ2 − �αx1􏼐 􏼑αx13 − �αx2βy13

1 + λ2
−

1 + �αx1􏼐 􏼑 λ2 − �αx1􏼐 􏼑αx23 − �αx2βy23􏽨 􏽩

�αx2 1 + λ2( 􏼁
,

h3 �
λ2 − αx1( 􏼁�αx1αx13 − αx2βy13

1 + λ2
+

λ2 − αx1( 􏼁αx23 − αx2βy23􏽨 􏽩 λ2 − αx1( 􏼁�αx1

αx2 1 + λ2( 􏼁

−
1 + αx1( 􏼁 λ2 − αx1( 􏼁αx123 − αx2βy123􏽨 􏽩

1 + λ2
+
αx2 λ2 − αx1( 􏼁αx113 − αx2βy113􏽨 􏽩

1 + λ2

−
βy223 1 + αx1( 􏼁

2

1 + λ2
+
2αx2�αx2 λ2 − αx1( 􏼁αx11 − αx2βy11􏽨 􏽩

1 + λ2

−
2βy22�αx2 1 + αx1( 􏼁 λ2 − αx1( 􏼁

1 + λ2
+

�αx2 λ2 − αx1( 􏼁αx12 − αx2βy12􏽨 􏽩 λ2 − 1 − 2αx1( 􏼁

1 + λ2
,

h4 �
�αx2 λ2 − αx1( 􏼁αx13 − αx2βy13􏽨 􏽩

1 + λ2
+

λ2 − αx1( 􏼁αx23 − α2βx23􏼂 􏼃 λ2 − αx1( 􏼁�αx2

αx2 1 + λ2( 􏼁

+
2αx2�αx2 λ2 − αx1( 􏼁αx11 − αx2βy11􏽨 􏽩

1 + λ2

+
2βy22�αx2 1 + αx1( 􏼁 λ2 − αx1( 􏼁

1 + λ2
+

�αx2 λ2 − αx1( 􏼁αx12 − αx2βy12􏽨 􏽩 λ2 − 1 − 2αx1( 􏼁

1 + λ2
,

h5 �
2αx2�αx1 λ2 − αx1( 􏼁αx11 − αx2βy11􏽨 􏽩

1 + λ2
+

λ2 − αx1( 􏼁αx11 − αx2βy11􏽨 􏽩 λ2 − 1 − 2αx1( 􏼁�αx1

1 + λ2

+
2βy22�αx1 λ2 − αx1( 􏼁 1 + αx1( 􏼁

1 + λ2
+

�α2x2 λ2 − αx1( 􏼁αx111 − αx2βy111􏽨 􏽩

1 + λ2

−
�αx2 1 + αx1( 􏼁 λ2 − αx1( 􏼁αx112 − αx2βy112􏽨 􏽩

1 + λ2
.

(38)

In order for PD bifurcation to occur, the two diferen-
tiating quantities ξ1 and ξ2 must both be nonzero,

ξ1 �
z
2
F

z�xzρ∗
+
1
2

zF

zρ∗
z
2
F

z�x
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(0,0)

,

ξ2 �
1
6

z
3
F

z�x
3 +

1
2

z2F

z�x2􏼠 􏼡

2
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(0,0)

.

(39)

Finally, the outcome of the analysis above is as follows.

Theorem 5. Te model experiences PD bifurcation at
􏽥O3(x∗, y∗) for varying amounts of ρ in a limited neighbor-

hood of 􏽤PDB
1,2
􏽥O3

if ξ1 ≠ 0 and ξ2 ≠ 0. Furthermore, for

ξ2 > 0 (ξ2 < 0), the period-two orbits that bifurcate from
􏽥O3(x∗, y∗) is stable (unstable).”

4. Numerical Simulations

Tis section uses the bifurcation diagram, phase portrait,
Lyapunov exponent, and fractal dimension to demonstrate
the qualitative dynamical properties of the discrete
fractional-order model for various parameter values. Nu-
merical simulations will be performed to support the the-
oretical fndings we reached for the model (15). Te
following parameter values were chosen: r � 1.1, k � 0.5, η �

0.9, a � 0.5, β � 1.2, δ � 0.1, s � 2.0, c � 0.3, α � 0.75 and ρ
varies between 0.2≤ ρ≤ 0.5. We observe a positive fxed
point 􏽥O3(x∗, y∗) � (0.81093,4.81762) and the bifurcation
point for the model (15) is calculated at ρ− � 0.385162.
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Figure 3 depicts the model trajectory as evolving from
a fxed point to a PD bifurcation and then to a chaotic
attractor. Figures 3(c)–3(d) display the computed MLEs and
FDs related to Figures 3(a) and 3(b). Te phase portraits are
shown in Figure 4 with reference to the bifurcation Figure 3,
which essentially depicts the bifurcation of a smooth, in-
variant closed curve into a chaotic attractor from a stable
fxed point.

Te orbit diagram of the prey and predator populations
is given in Figure 5, along with other fxed parameter values
are r � 4.25, k � 3.5, η � 0.6, a � 0.35, β � 2.0, δ � 0.1, s �

0.5, c � 0.2, α � 0.7 and ρ varies between 0.8≤ ρ≤ 1.045. We
observe a positive fxed point 􏽥O3(x∗, y∗) � (0.46434,

24.5737) and the bifurcation point for the model 7 is cal-
culated at ρNS � 0.846944. Figure 5 illustrates the trajectory’s
progression from a fxed point to an NSB and then to
a chaotic attractor. Figures 5(a), 5(b), and 6 illustrate the
phase portrait, MLEs, and FD of Figures 5(a) and 5(b),
respectively. Tere are three separate periodic windows for
each of the bifurcation processes for both prey and predator.
We have also studied NS bifurcation, and the associated NS
bifurcation diagram, MLEs, and FDs are shown in Figure 7.
Tis was done by altering the fractional order α in the range
0≤ α≤ 1 and fxing all other parameters indicated above for
Figure 5 with ρ � 0.846944.

Te prey-predator model in the NS bifurcation diagram
may behave more dynamically if other parameter values vary
(for example, parameter (c, s). A fresh Neimark–Sacker
bifurcation diagram is produced when the parameter values
are set to r � 4.25, k � 3.5, η � 0.6, a � 0.35, β � 2.0, δ � 0.1,

s � 0.5, α � 0.7, ρ � 0.846944 and c varies between 0.1≤ c≤
0.427, as illustrated in Figures 8(a) and 8(b). Te model
experiences a Neimark–Sacker bifurcation at c � cNS �

0.21554. Also, another NS bifurcation diagram is produced
when the parameters values are set as r � 4.25, k � 3.5, η �

0.6, a � 0.35, β � 2.0, δ � 0.1, c � 0.2, α � 0.7, ρ � 0.846944
and s varies between 0.1≤ s≤ 1.45, as illustrated in
Figures 9(a) and 9(b). Te co-dimension-2 bifurcation di-
agrams in (c, s, x)-space are shown in Figure 2(a).
Figure 2(b) displays the plot of the maximal Lyapunov
exponents for two control parameters through a 2D pro-
jection onto the (c, s) plane.

4.1. Fractal Dimension. Te fractal dimensions (FD) mea-
surement, which is used to determine a model’s chaotic
attractors defned by [53]

􏽢Dfd � k +
􏽐

k
j�1ttj

ttk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (40)

where the biggest integer number is k such that 􏽐
k
j�1ttj ≥ 0

and 􏽐
k+1
j�1ttj < 0 and tj’s are Lyapunov exponents.

Now, the structure of the fractal dimensions of model
(15) is as follows:

􏽢Dfd � 2 +
tt1

tt2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
. (41)

Given that the chaotic dynamics of the model (15) (ref.
Figure 6) are quantifed with the sign of FD (ref. Figure 5(d)),
it is guaranteed that the dynamics of the fractional order
prey-predator model become unstable as the value of the
parameter ρ rises.

4.2. 0-1 Chaos Test Algorithm. Assume that 􏽢θb(n) is a mea-
sured discrete set of data for the 0 − 1 chaos test technique
[54–56], where n � 1, 2, 3, . . . , N, and the total amount of
the data is N.

We generate new coordinates ( 􏽢q􏽢b
(n), 􏽢r􏽢b

(n)) by choosing
a random number b̂∈ (π/5, 4π/5) and doing the following:

􏽢q􏽢b(n)(n) � 􏽘
n

j�1

􏽢θb(j) cos 􏽢ϕb(j)􏼐 􏼑,

􏽢r􏽢b(n) � 􏽘
n

j�1

􏽢θb(j) sin 􏽢ϕb(j)􏼐 􏼑,

(42)

where 􏽢ϕb(j) � jc + 􏽐
j

i�1
􏽢θb(j), j � 1, 2, 3, . . . , n.

Te following defnition applies to mean square dis-
placement C􏽢b(n) as of this moment:

C􏽢b(n) � lim
N⟶∞

1
N

􏽘

N

j�1
􏽢q􏽢b(j + n) − 􏽢q􏽢b(j)􏼐 􏼑

2

+ 􏽢r􏽢b(j + n) − 􏽢r􏽢b(j)􏼐 􏼑
2
, n ∈ 1,

N

10
􏼔 􏼕.

(43)

We also defne C̆􏽢b(n) as the modifed mean square
displacement as follows:

C̆􏽢b(n) � C̆􏽢b(n) − lim
N⟶∞

1
N

􏽘

N

j�1

􏽢θb(j)⎛⎝ ⎞⎠

2
1 − cos n􏽢b

1 − cos 􏽢b
. (44)

Te following description follows for the median cor-
relation coefcient 􏽢K value:

􏽢K � median 􏽢K
b̂
),􏼐 (45)

where

􏽢K
b̂

�
cov ξ1, ξ2( 􏼁
�����������
var(ξ)var(Δ)

􏽰 ∈ [− 1, 1], (46)

in which ξ1 � (1, 2, 3, . . . , ncut), ξ2 � C̆􏽢b(1), C̆􏽢b(2), . . . ,

C̆􏽢b(ncut)), ncut � round(N/10), and covariance and variance
of vectors of length n are defned as follows:

cov(x, y) �
1
n

􏽘

n

j�1
(x(j) − x)(y(j) − y),

x �
1
n

􏽘

n

j�1
x(j),

var(x) � cov(x, x).

(47)
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Figure 3: PD bifurcation diagram, MLEs, and FDs for varying parameter ρ.
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Figure 4: Phase picture for varying ρ.
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Te output can now be demonstrated as follows.

(i) Te dynamics remain stable (i.e., periodic or quasi
periodic) when 􏽢K ≈ 0, whereas 􏽢K ≈ 1 suggests that
the dynamics are chaotic.

(ii) As opposed to Brownian-like (unbounded) trajec-
tories, which show chaotic dynamics, bounded
trajectories on the (􏽢q, 􏽢r) plane show regular dy-
namics (i.e., periodic or quasi-periodic dynamics).

Example 1. Select the parameter values so that r � 4.25,

k � 3.5, η � 0.6, a � 0.35, β � 2.0, δ � 0.1, s � 0.5, c � 0.2,

α � 0.7, ρ � 0.846944 with K � 0.88816, the Brownian-like
(unbounded) trajectories in new coordinates (􏽢q, 􏽢w)-plane
displaying in Figure 10(a) are compatible with a chaotic
system dynamics. Te curve 􏽢K verses ρ plotted in
Figure 10(b) represent the correlation coefcient value.

4.3. Co-Dimension-2 Bifurcation. For the parameter values
η � 0.1; K � 0.5; r � 0.3; a � 0.5; α � 5.75; β � 5.75; d �

0.65; ρ � 0.15, the parametric space presented in Figure 11(a),
we detected the following bifurcations:

(i) Te fxed point 􏽥O3(x∗, y∗) of model (15) tolerates
a 1 : 2 resonance bifurcation for s � 2.33115 ad
c � 0.572894

(ii) Te fxed point 􏽥O3(x∗, y∗) of model (15) tolerates
a 1 : 3 resonance bifurcation for s � 1.76401 ad
c � 0.606281

(iii) Te fxed point 􏽥O3(x∗, y∗) of model (15) tolerates
a 1 : 4 resonance bifurcation for s � 1.21453 ad
c � 0.701785

4.4. Biological Implications. Bifurcations in discrete prey-
predator models can have important ecological efects.Tese
models describe the connections between a set of creatures
that are preyed upon and another set of species that engage
in predation. In these scenarios, the animals that are preyed
upon are consumed by the creatures that engage in hunting.

Period-doubling bifurcations and Neimark–Sacker bi-
furcations are observed in dynamical systems, including
ecological models. Tese divides have important biological
efects and can provide insight into the stability and com-
plexity of ecological systems. Period-doubling bifurcations
occur when the oscillation period in population dynamics
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Figure 5: Visual representation of NS bifurcation, MLEs, and FDs of species for varying parameter ρ.
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doubles, leading to important ecological efects. Period-
doubling bifurcations often signal the transition from reg-
ular, repeating patterns to random behaviour in a system. In

the context of ecological models, this change could indicate
a reduction in the capacity to generate precise forecasts and
the emergence of complex, unpredictable fuctuations in

0

-0.05

m
ax

Lc
e

-0.1

0 0.11 0.22 0.33 0.44 0.55 0.66
α

0.77 0.990.88

(c)

1.75

1.5

0.75

1

1.25

Fr
ac

ta
l d

im
en

sio
n

0.25

0.5

0
0 0.11 0.22 0.33 0.44 0.55 0.66

α
0.77 0.990.88

(d)

Figure 7: Visual representation of NS bifurcation, MLEs, and FDs of species for varying parameter α.
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Figure 8: Visual representation of NS bifurcation, MLEs, and FDs of species for varying parameter c.
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population levels. Period-doubling bifurcations are associ-
ated with the creation of periodic orbits, which consist of
stable cycles of diferent durations. From an ecological

standpoint, this can be viewed as the variation between
diferent population cycles, such as the periodic changes in
prey and predator populations that have variable lengths. By
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Figure 9: Visual representation of NS bifurcation, MLEs, and FDs of species for varying parameter s.
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studying these models, we can gain knowledge about the
basic mechanisms that impact population cycles and other
ecological processes and develop more efective methods to
improve ecosystem stability and resilience.

Neimark–Sacker bifurcations are associated with the
transition from periodic to quasi-periodic behaviour in
dynamical systems. In ecological models, this may sug-
gest a shift from simple, regular population cycles to more
intricate, nonrepetitive patterns. Te occurrence of
Neimark–Sacker bifurcations results in quasi-periodic
oscillations in the ecological system. Te oscillations
do not recur exactly, which adds complexity to the
temporal dynamics of interacting species. Generally, the
Neimark–Sacker bifurcation in discrete prey-predator
models highlights the importance of understanding the
dynamics of populations and their interactions in eco-
logical systems. By examining these models, we can ac-
quire an understanding of the basic mechanisms that
infuence population cycles and other ecological

processes and create better methods to enhance ecosys-
tem stability and resilience.

Terefore, we may interpret that period-doubling and
Neimark–Sacker bifurcations in ecological models as sig-
nifying transitions in system behaviour from simple and
predictable to complex and potentially chaotic dynamics.
Tese categorizations ofer insight into the stability,
strength, and fexibility of ecological systems, emphasizing
the importance of considering complex dynamics and bi-
furcation theory when studying population interactions.

Strong resonance bifurcation is a form of bifurcation that
can happen in discrete prey-predator models. It is marked by
the occurrence of regular or unpredictable changes in
population dynamics, which can have signifcant ecological
consequences.

In ecological terms, the strong resonance bifurcation can
cause the development of population cycles with high am-
plitudes, which can lead to more intense boom-and-bust cycles
in the ecosystem. Tis can have signifcant impacts on the
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Figure 11: (a) Parametric space in (s, c) plane. (b) bifurcation diagram in (s, c, x) space. (c) 3D maximum Lyapunov exponents.
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stability of the ecosystem, as the bigger fuctuations in pop-
ulation size can lead to increased competition for resources,
predation pressure, and other ecological interactions. Strong
resonance Bifurcation can also result in the development of
chaotic patterns in population cycles. Unpredictable changes in
the ecosystem can arise from chaotic dynamics, making it
challenging to establish efective conservation and manage-
ment methods. In general, the strong resonance bifurcation in
discrete prey-predator models emphasizes the need to com-
prehend the dynamics of populations and their interactions in
ecological systems. By examining these models, we can acquire
an understanding of the fundamental mechanisms that in-
fuence population cycles and other ecological processes, and
create more efcient approaches to enhance ecosystem stability
and resilience.

5. Chaos Control

According to a performance criterion, dynamical systems
are regarded to be the best since they prevent chaos. Chaotic
behavior is studied in many disciplines, including physics,

biology, ecology, and telecommunications. Additionally,
a variety of industries, including communication systems,
physics laboratories, biochemistry, turbulence, and cardi-
ology, can beneft from the application of efective chaos
management techniques. Recently, the difculty of con-
trolling chaos dynamics in discrete-time systems has caught
the attention of many scholars.

When addressing the issue of managing chaos, the four
approaches for investigating chaos control in discrete-time
models that are most frequently addressed are the state
feedback method, pole-placement methodology, OGY
technique, and hybrid control approach. In the model of
prey-predator with fractional order, we introduce OGY [57]
and state feedback [58] for controlling chaos. Te OGY
approach does not allow us to employ the control parameter
ρ. Using c as a control parameter, the OGY technique is put
into practice.

We can change the model (15) as illustrated below in
order to apply the OGY method.

xn+1 � xn +
ρα

Γ(α + 1)
rxn 1 −

xn

k
􏼒 􏼓 − η 1 − exp − axn( 􏼁( 􏼁yn + s􏼒 􏼓 � 􏽥fb1(x, y, c),

yn+1 � yn +
ρα

Γ(α + 1)
β 1 − exp − axn( 􏼁( 􏼁yn − δyn − cyn( 􏼁 � 􏽥fb2(x, y, c),

(48)

where c is the chaotic control parameter. Assume that the
chaotic region is defned as |c − c0|< 􏽥], where 􏽥]> 0 and c0
symbolize the nominal parameter. Te system (48) in the
vicinity of the unstable fxed point at (x∗, y∗) can be
represented by the following linear map if the model (15)
has a chaotic zone created by the expansion of an NS

bifurcation at (x∗, y∗) that contains an unstable fxed
point.

xn+1 − x
∗

yn+1 − y
∗􏼢 􏼣 ≈ 􏽥Abb

xn − x
∗

yn − y
∗􏼢 􏼣 + 􏽥Bbb c − c0􏼂 􏼃, (49)

where

􏽥Abb �

z􏽥fb1(x, y, c)

zx

z􏽥fb1(x, y, c)

zy

z􏽥fb2(x, y, c)

zx

z􏽥fb2(x, y, c)

zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

exp − ax∗( 􏼁 a rx∗2 − k s + rx∗( 􏼁􏼐 􏼑β􏽥μb􏼐 􏼑 + exp ax∗( 􏼁(c + δ) k + kr  􏽥μb − 2rx∗􏽥μb( 􏼁

k(c + δ)
− 1 + exp − ax∗( 􏼁( 􏼁η􏽥μb

a exp − ax∗( 􏼁 − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β2􏽥μb

k(c + δ)η
􏽥τb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(50)

where 􏽥τb � 1 + (β − exp(− ax∗)β − c − δ)􏽥μb and
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􏽥Bbb �

z􏽥fb1(x, y, c)

zc

z􏽥fb2(x, y, c)

zc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0

rx∗2 − k s + rx∗( 􏼁􏼐 􏼑β􏽥μb

k(c + δ)η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (51)

Te controllability matrix of the system (48) is conse-
quently defned as follows:

􏽥Cbb � 􏽥Bbb : 􏽥Abb
􏽥Bbb􏽨 􏽩 �

0
1 − exp − ax∗( 􏼁( 􏼁 − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μ2b

k(c + δ)

rx∗2 − k s + rx∗( 􏼁􏼐 􏼑β􏽥μb

k(c + δ)η
−

− rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μb 1 + β − exp − ax∗( 􏼁β − c − δ( 􏼁􏽥μb( 􏼁

k(c + δ)η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

Consequently, it is easy to deduce that the rank of 􏽥Cbb is

2. We consider that [c − c0] � − 􏽥Kbb
xn − x

∗

yn − y
∗􏼢 􏼣 where

􏽥Kbb � [􏽥σb1   􏽥σb2], then system (48) becomes

xn+1 − x
∗

yn+1 − y
∗􏼢 􏼣 ≈ 􏽥Abb − 􏽥Bbb

􏽥Kbb􏽨 􏽩
xn − x

∗

yn − y
∗
.

􏼢 􏼣. (53)

Additionally, the suitable controlled system is provided
by (15).

xn+1 � xn + 􏽥μb rxn 1 −
xn

k
􏼒 􏼓 − η 1 − exp − axn( 􏼁( 􏼁yn + s􏼒 􏼓,

yn+1 � yn + 􏽥μb η 1 − exp − axn( 􏼁( 􏼁yn − δyn − c0 − 􏽥σb1 xn − x
∗

( 􏼁 − 􏽥σb2 yn − y
∗

( 􏼁( 􏼁yn( 􏼁.

(54)

If both of the eigenvalues of the matrix’s eigenvalues
(􏽥Abb − 􏽥Bbb

􏽥Kbb) are situated inside an open unit disk, the
fxed point (x∗, y∗) is also locally asymptotically stable.

Also,

􏽥Abb − 􏽥Bbb
􏽥Kbb �

1 + −
rx∗

k
+ r 1 −

x
∗

k
􏼠 􏼡 −

a exp − ax∗( 􏼁 − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β
k(c + δ)

⎛⎝ ⎞⎠􏽥μb − 1 + exp − ax∗( 􏼁( 􏼁η􏽥μb

− rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μb βa exp − ax
∗

( 􏼁 + 􏽥σb1( 􏼁

k(c + δ)η
􏽥τc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where 􏽥τc � 1 + (β − exp(− ax∗)β − c − δ)􏽥μb + (− rx∗2 +

k(s + rx∗))β􏽥μb􏽥σb2/k(c + δ)η.
Furthermore,

λb
2

− 􏽥Λbbλb + 􏽥5bb � 0, (56)
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where

􏽥Λbb � 2 + β − exp − ax∗( 􏼁β − c − δ( 􏼁􏽥μb + −
rx
∗

k
+ r 1 −

x
∗

k
􏼠 􏼡 −

a exp − ax∗( 􏼁 − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β
k(c + δ)

⎛⎝ ⎞⎠􏽥μb

+
− rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μb􏽥σb2

k(c + δ)η
,

􏽥5bb �
1

k
2
(c + δ)

2η
exp − ax∗( 􏼁 − k(c + δ)η exp ax∗( 􏼁(c + δ) k + r􏽥μb k − 2x

∗
( 􏼁( 􏼁 − 1 − (β − c − δ)􏽥μb( 􏼁( 􏼁( 􏼁

+
1

k
2
(c + δ)

2η
exp − ax∗( 􏼁 − k(c + δ) β􏽥μb(c + δ) k + r􏽥μb k − 2x

∗
( 􏼁( 􏼁( 􏼁( 􏼁

+
1

k
2
(c + δ)

2η
exp − ax∗( 􏼁 − k(c + δ) a rx∗2 − k s + rx∗( 􏼁􏼐 􏼑 − 1 +(c + δ)􏽥μb( 􏼁􏼐 􏼑􏼐 􏼑

+
1

k
2
(c + δ)

2η
exp − ax∗( 􏼁 − 1 + exp ax∗( 􏼁( 􏼁k − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β(c + δ)η􏽥μ2b􏽥σb1􏼐 􏼑

+
1

k
2
(c + δ)

2η
exp − ax∗( 􏼁 − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μb a − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μb􏼐 􏼑􏽥σb2􏼐 􏼑

+
1

k
2
(c + δ)

2η
exp − ax∗( 􏼁 − rx∗2 + k s + rx∗( 􏼁􏼐 􏼑β􏽥μb exp ax∗( 􏼁(c + δ) k + r􏽥μb k − 2x

∗
( 􏼁( 􏼁( 􏼁􏽥σb2􏼐 􏼑.

(57)

Te equations λb1 � ± 1 and λb1λb2 � 1 can then be
solved to yield the lines of marginal stability. Tese limi-
tations also guarantee that the open unit disc has both ei-
genvalues. Taking into account the case λb1λb2 � 1, λb1 � − 1,
and λb1 � 1 consecutively, we obtain the following equa-
tions, respectively, from (56):

Lb1 � 􏽥5bb − 1,

Lb2 � 􏽥Λbb − 􏽥5bb − 1,

Lb3 � 1 + 􏽥Λbb + 􏽥5bb.

(58)

Te triangular region in the 􏽥σb1, 􏽥σb2 plane circumscribed
by the straight lines Lb1, Lb2 and Lb3 then has stable ei-
genvalues for a given parametric value.

State feedback control, a method, is used to stabilize
chaos at the moment where the system’s (15) unstable paths
begin. Te system (15) can be made to take on a controlled
form by introducing a feedback control law as the control
force ubb and using the following formula.

xn+1 � xn +
ρα

Γ(α + 1)
rxn 1 −

xn

k
􏼒 􏼓 − η 1 − exp − axn( 􏼁( 􏼁yn + s􏼒 􏼓 + ubb,

yn+1 � yn +
ρα

Γ(α + 1)
η 1 − exp − axn( 􏼁( 􏼁yn − δyn − cyn( 􏼁,

ubb � − k1 xn − x
∗

( 􏼁 − k2 yn − y
∗

( 􏼁,

(59)

where (x∗, y∗) represents the nonnegative fxed point of the
system (15).Te values k1 and k2 indicate the feedback gains.

Example 2. To talk about the system (15)’s OGY feedback
control mechanism, we set (r, k, a, η, β, δ, s, c0, α, ρ)

� (4.25, 3.5, 0.35, 0.6, 2.0, 0.1, 0.5, 0.425, 0.7, 0.84694). In
this situation, the unstable system (15) has a single non-
negative fxed point (x∗, y∗) � (0.869969, 20.8149). Ten,
we present the controlled system below based on these
parametric parameters.
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xn+1 � xn + 0.9797 4.25xn 1 −
xn

3.5
􏼒 􏼓 − 0.6 1 − exp − 0.35xn( 􏼁( 􏼁yn + 0.5􏼒 􏼓,

yn+1 � yn + 0.9797 0.6 1 − exp − 0.35xn( 􏼁( 􏼁yn − 0.1yn − 0.425 − 􏽥σb1 xn − x
∗

( 􏼁 − 􏽥σb2 yn − y
∗

( 􏼁( 􏼁yn( 􏼁,

(60)

where 􏽥K � [􏽥σb1  􏽥σb2]. We also obtain
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Figure 12: (a, b) OGY method and state feedback method’s stable region. (c, d) Trajectories of a stable system.
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􏽥Abb �
− 0.0644286 − 0.154303

10.5275 1
⎡⎣ ⎤⎦,

􏽥Bbb �
0

− 20.3925
⎡⎣ ⎤⎦,

􏽥Cbb �
0 3.14659

− 20.3925 − 20.3925
⎡⎣ ⎤⎦.

(61)

Ten, it is easy to confrm that the 􏽥Cbb matrix’s rank is 2.
As a result, the system (60) can be controlled and provides
the managed system’s Jacobian matrix.

􏽥Abb − 􏽥Bbb
􏽥Kbb �

− 0.0644286 − 0.154303

10.5275 + 20.3923􏽥σb1 1 + 20.3923􏽥σb2
􏼢 􏼣.

(62)

For marginal stability, it ofers the lines Lb1, Lb2 and Lb3.

Lb1 � 0.559999 + 3.14659􏽥σb1 − 1.31385􏽥σb2 � 0,

Lb2 � 1.62443 + 3.14659􏽥σb1 − 21.7062􏽥σb2 � 0,

Lb3 � − 3.49557 − 3.14659􏽥σb1 − 19.0785􏽥σb2 � 0.

(63)

We conducted numerical simulations (see Figures
12–14) to study how the state feedback control infuence
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functions as a chaos controller in an unstable environment.
Te parameters will be set to the same values as the OGY
method that we choose except ρ � 1.045. Te selected
feedback gains are k1 � 0.5 and k2 � − 0.1.

6. Conclusions

In the current study, the dynamics of a fractional-order prey-
predator model are investigated, and three fxed points are
found under particular parametric conditions. Our fndings
ofer a thorough analysis of the stability of these fxed points,
which is given in the article in great detail. Additionally, we
both analytically and quantitatively show that themodel system
can experience period-doubling and Neimark–Sacker bi-
furcations under specifc circumstances. We have numerically
computed strong resonance 1: 2, 1: 3, and 1: 4 bifurcations
respectively. Notably, our results show that the system becomes
unstable as the parameters ρ, s, and c increase, leading to
a bifurcation from a stable state to chaotic behaviour.We see in
the simulations the ensuing chaotic behaviour. Furthermore,
we notice the efects of harvesting and immigration of the
behaviour of themodel. For example, low immigration on prey
and higher harvesting on predators cause unstable model
dynamics while high immigration on prey and lower har-
vesting on predators stabilize the model dynamics. We also
show, numerically and analytically, that the OGY method can
be used to regulate chaotic behaviour.

Our major discovery is that the behaviour of the system is
strongly infuenced by the amount of memory represented by
the parameter α. Our fndings specifcally show that weak
memory, which corresponds to α nearing one, causes chaotic
behaviour while strong memory, which corresponds to α
approaching zero, stabilizes the system.Tese results underline
how crucial memory is to the model system’s behaviour.

In summary, this study provides a thorough analysis of the
dynamics of a model system and demonstrates the occurrence
of bifurcations and chaos under specifc parametric conditions.
We also emphasize the infuence of memory on the behaviour
of the system and demonstrate the efciency of the OGY
method in controlling chaotic behaviour. Our research ad-
vances knowledge of the model system’s dynamics and sheds
light on the function of memory in the system’s behaviour.
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Careta, “On the qualitative study of a discrete-time
phytoplankton-zooplankton model under the efects of ex-
ternal toxicity in phytoplankton population,” Heliyon, vol. 8,
no. 12, Article ID e12415, 2022.

[28] H. Baek, “Complex dynamics of a discrete-time predator-prey
system with ivlev functional response,” Mathematical Prob-
lems in Engineering, vol. 2018, Article ID 8635937, 15 pages,
2018.

[29] J. Lee and H. Baek, “Dynamics of a beddington-deangelis type
predator-prey system with constant rate harvesting,” Elec-
tronic Journal of Qualitative Teory of Diferential Equations,
vol. 2017, no. 1, pp. 1–20, 2017.

[30] M. A. Stephano and I. H. Jung, “Efects of refuge prey on
stability of the prey-predator model subject to immigrants:
a mathematical modelling approach,” Tanzania Journal of
Science, vol. 47, no. 4, pp. 1376–1391, 2021.
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