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Tis study consolidates input-output data from 42 sectors across 31 provinces and regions in China into a unifed dataset for 42
industrial sectors within eight major economic zones. Leveraging the maximum entropy method, we identify signifcant
interindustrial relationships, subsequently forming a directed, weighted, complex network of these ties. Building upon this
intricate network, we analyze its foundational statistical attributes. Te stability of the network’s structure is further assessed
through simulations of varied network attacks. Our fndings demonstrate that themaximum entropymethod is adept at extracting
notable relationships between industrial sectors, facilitating the creation of a cogent complex interindustrial network. Although
this established network exhibits high stability, it calls for targeted policy interventions and risk management, especially for
industries with pronounced degree centrality and betweenness centrality. Tese pivotal industry nodes play a decisive role in the
overall stability of the network. Te insights derived from our examination of complex interindustrial networks illuminate the
structure and function of industrial networks, bearing profound implications for policymaking and propelling sustainable,
balanced economic progress.

1. Introduction

With the advent of globalization and the digital age, the
interplay between industries has evolved into unprecedented
complexity. Tis intricate nature challenges conventional
analytical methods, rendering them inadequate for in-depth
analyses of complex industrial networks within the economic
domain. By the close of the 20th century, the rise of complex
network theory not only garnered extensive academic at-
tention but also paved the way for a series of groundbreaking
research endeavors. Seminal theories such as Watts and
Strogatz’s small-world theory [1], as well as the scale-free
network theory posited by Barabási et al. [2], continue to exert
profound infuence in contemporary discourse [3, 4].

Te growing body of literature on network disruption
and resilience, such as Iyer et al.’s work on attack robustness
and centrality [5], Casali and Heinimann’s study on the road
network robustness [6], and Ficara et al.’s investigation into
strategies for disrupting criminal networks [7, 8], further
enriches our understanding of the complex interplays and

resilience mechanisms inherent within various network
systems.

Industrial interactions have transcended mere singular
linkages, gradually morphing into a sophisticated network
system. Tis structure elucidates the realities of industries
under the twin forces of globalization and technological
advancement, ofering a renewed analytical lens for both
theoretical exploration and practical application. Notably,
within the realm of economics, the introduction of complex
network theory has rejuvenated input-output analysis.
Leontief’s input-output table stands as a pivotal tool to
unveil resource fows and dependencies between varying
industries [9]. Methods grounded in this paradigm have
been employed by scholars like Serrano et al. [10], ofering
insights into the collaborative actions, competitive relations,
and stability inherent within industries, particularly in their
analyses of world trade networks and China’s energy fow
networks.

Yet, the evolution of network science marches on. Many
scholars are shifting their focus toward the dynamic
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behaviors within networks, especially concerning stability
issues. Tis concern spans from natural ecosystems to man-
made realms such as transportation and supply chain net-
works, addressing challenges of holistic stability and po-
tential collapses triggered by localized node failures or
attacks. As a result, network resilience and defense against
attacks have gradually ascended to the forefront of complex
network research. Te stability and resilience of vital in-
frastructures, like fnance and energy, have garnered
widespread attention [11, 12]. Recent studies, through
simulations and experiments, have unveiled the latent
ramifcations of network attacks while probing novel
strategies to bolster network stability [13–15].

In summary, despite signifcant advancements in the
study of complex industrial networks, numerous areas re-
main untouched and present challenges. It is especially
salient to highlight that the stability analysis of input-output
correlation within these networks has been somewhat
overshadowed. Predominant studies tend to zoom in on
specifc industries or regions, often neglecting a holistic
global viewpoint and missing out on interdisciplinary
syntheses. Given the escalating intricacy and diversifcation
of industrial interactions, there is a pressing need for more
in-depth exploration and research in this domain.

Te primary objective of this study is to delve deeply into
the interactions between industries and their network
structures using complex network theory, aiming to eluci-
date the network’s stability and resistance to attacks. Te
research unfolds in distinct phases. Initially, leveraging the
input-output table data, we employ the maximum entropy
method to shape a complex network. Subsequently, we
probe into the foundational statistical attributes—degree,
node weight, clustering coefcient, shortest path, and net-
work efciency—of the crafted interindustrial complex
network to discern the network’s architecture. In the con-
cluding phase, we assess the network’s four centralities and
gauge the stability and resilience of the overarching network
through simulations of various attack paradigms.

2. Literature Review

2.1. Network Construction and Analysis Methods. Te con-
struction and analysis of networks from empirical data have
become pivotal in understanding complex systems across
various disciplines. Te work of Donner et al. [16] highlights
the quantitative assessment of structural properties in sys-
tems composed of interacting entities. Tis is particularly
relevant for our study as it underscores the importance of
understanding dynamic higher-order structures in complex
networks, which can be applied to analyzing interindustrial
relationships. Christensen et al. [17] provide insights into the
universal nature of complex networks. Teir research into
the topological similarities among diferent systems can
inform our understanding of the interconnected nature of
industrial sectors, further enriching our network analysis.
Furthermore, Cheng and Scherpen [18] discuss the chal-
lenges and solutions to dealing with high-dimensional dy-
namics and complex interconnections in network systems.
Tis perspective is crucial for simplifying and efectively

analyzing the intricate network of industrial sectors in our
study. Emmert-Streib et al. [19] emphasize the in-
terconnectedness of economic and fnancial entities. Teir
approach to network science in economics and fnance ofers
valuable parallels to our method of extracting network
structures from real-world data, particularly in the context of
economic networks. Lastly, Polishchuk’s [20] analysis in-
troduces concepts like fow adjacency matrices and dynamic
characteristics of system elements. Tese concepts are in-
strumental in understanding the behavior of complex net-
work systems and can be applied to our study to explore the
fow core and dynamic interactions within the industrial
network. Similar to our method, these studies often extract
network structures from real-world data, underscoring the
importance of leveraging empirical data to form directed,
weighted complex networks. Te process of forming these
networks from input-output tables is akin to the approach
taken by economic and ecological network analyses, which
extract relational data to understand systemic dependencies
and dynamics. Te insights from these papers not only
reinforce our methodology but also provide a broader
context for understanding the complexities and in-
terdependencies in industrial networks.

2.2. Simulation and Attack Modeling in Network Stability
Analysis. Simulation methods, including those for targeted
network attacks, are extensively utilized to evaluate network
stability and robustness. Researchers simulate the removal of
key nodes to determine a network’s vulnerability to specifc
disruptions. For example, Iyer et al. analyzed complex net-
work centrality to assess network attack robustness, bridging
theoretical models with practical applications. Furthering this
feld, Dshalalow and White [21] employ stochastic processes
to model network attacks, enabling predictions about the
timing and scale of network failures. Tis method introduces
a probabilistic aspect to network robustness assessment,
shedding light on the unpredictability and impact of network
attacks. Fabris and Zelazo [22] investigate the resilience of
multi-agent consensus networks against attacks that ma-
nipulate edge weights. Teir research broadens the scope of
network robustness understanding by examining the efects of
such attacks on network convergence performance, under-
scoring the need for structured defense strategies. Sarraute
et al. [23] present a prototype for simulating large-scale
network attacks, focusing on realism from the attacker’s
perspective. Tis study highlights the importance of com-
prehensive simulation environments that accurately refect
the complexities of real-world networks. P. Y. Chen and S. M.
Chen [24] explore the efectiveness of sequential defense
strategies against both random and intentional attacks, em-
phasizing the importance of adaptive defense mechanisms for
maintaining network integrity. Bel et al. [25] introduce
a cosimulation framework for generating and monitoring
network attacks, especially in power grids with integrated
distributed energy resources. Tis study points out the
changing nature of network attack surfaces and the necessity
for advanced simulation tools for evaluating and improving
network resilience.
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Collectively, these studies enhance the understanding of
network stability and robustness, highlighting the critical
role of advanced simulation methods in assessing network
vulnerabilities and devising defense strategies against vari-
ous potential attacks.

2.3. Assessment of Network Stability. Evaluating the stability
of network structures is crucial for understanding the
resilience of complex systems to various perturbations. Our
study extends the literature by simulating varied network
attacks to assess the stability of the interindustrial network.
Tis methodology aligns with the approaches seen in Casali
and Heinimann, who evaluated the robustness of the Zurich
road network under diferent disruption processes. By
employing simulations of targeted attacks, we can identify
critical nodes within the network, akin to the analysis of
network centrality in determining the pivotal roles certain
nodes play in maintaining network integrity and stability.
Building upon this foundation, Platig et al. [26] further
enhance our understanding of network stability. Teir ex-
ploration of the robustness of network measures, including
centrality, in the presence of link inaccuracies is particularly
relevant. It underscores the importance of considering the
reliability of network connections in assessing overall net-
work stability. Ufmtsev et al. [27] reveal that the impact of
structural noise on centrality ranks is examined. Tis study
complements our approach by highlighting how minor
structural changes can signifcantly infuence the stability
and centrality of nodes, thereby afecting the network’s
resilience to disruptions. Saxena et al. [28] argue for the
importance of stability in centrality measures under in-
formation loss or noise. Tis perspective is crucial for our
study as it emphasizes the need for robust centrality mea-
sures that can withstand variations in network data, ensuring
accurate identifcation of critical nodes. Oldham et al. [29]
provide insights into the roles of diferent nodes through
various centrality analyses. Understanding the consistency
and uniqueness of these measures across diferent network
types aids in accurately assessing the roles of nodes in
maintaining network stability. Gupta et al. [30] discuss the
signifcance of centrality measures in large networks with
community structures. Tis research is pertinent to our
study as it ofers methods to identify infuential nodes in
complex networks, which is key to understanding and en-
hancing the resilience of the interindustrial network. To-
gether, these studies enrich our methodology by providing
a comprehensive view of how centrality measures and
network robustness assessments can be efectively utilized to
understand and improve the stability of complex networks,
such as the interindustrial network in our study.

3. Establishment of the Complex Input-
Output Network

3.1. Data Sources and Processing. Tis study utilizes data
derived from the work of Zheng et al. [31], specifcally the
CEADS 2017 interregional input-output table (Te China
City-level MRIO Table data used to support the fndings of

this study may be released upon application to the Carbon
Emission Accounts & Datasets, who can be contacted at
shanyuli@outlook.com or guandabo@hotmail.com or zhu-
liu@tsinghua.edu.cn.) for 31 provinces, autonomous re-
gions, and municipalities in mainland China covering 42
industries. Constructing a complex network based on this
table would generate 1,302 nodes, considering the 31 areas
and 42 industries, resulting in a substantial number of node
interconnections. For research clarity, the 31 regions were
consolidated based on recommendations from the “Strate-
gies and Policies for Coordinated Regional Development”
report published by the Development Research Center of the
State Council. Tis report delineated mainland China into
four primary sectors during the “Eleventh Five-Year Plan”
period: eastern, central, western, and northeastern areas.
Tese were further subdivided into eight comprehensive
economic regions, with divisions primarily informed by each
region’s economic traits and geographical position. Table 1
provides a detailed breakdown of these divisions. Such
categorization ofers a more macroscopic perspective on
China’s economic framework and interindustrial dynamics.

In the course of data processing, input-output data from
the 42 industries across each province, region, and city were
aggregated.Tis aggregation was undertaken to compute the
consolidated input-output fgures for the 42 industries
within the eight principal economic regions, yielding
a comprehensive input-output table. For analytical clarity,
the eight key economic regions are denoted by letters A
through H, while the 42 industries are numerically repre-
sented from 1 to 42. Refer to Tables 1 and 2 for a detailed
breakdown.

3.2. Modeling Method. In this study, the construction of the
complex network pivots on the 0-1 adjacencymatrix. Within
this matrix, an element denoted as “1” signifes that the
nodes corresponding to that particular row and column are
interconnected, whereas an element marked “0” suggests the
absence of such a connection. To achieve this confguration,
the matrix undergoes a binarization process to manifest as
a 0-1 adjacency matrix. Tis study employs the maximum
entropy method for binarization, a statistical approach
grounded in information theory tailored to estimate prob-
ability distributions contingent on certain predefned con-
straints. Tis approach is in line with Loaiza-Ganem et al.
[32], who highlight the adaptability and efcacy of maxi-
mum entropy in statistical models, especially for optimizing
network density. In addition, Metzig and Colijn [33]
demonstrate the use of Gibbs-Shannon entropy in network
size and degree distributions, providing a theoretical
foundation for predictive analysis, and Zenil et al. [34] ofer
insights into employing maximum entropy for prior
probability distributions, essential for understanding the
probabilistic aspects of industrial networks.

In information theory, entropy quantifes the un-
certainty inherent in random variables and simultaneously
refects the informational richness of the data. Te in-
formation entropy of an event is, essentially, the expected
value of the logarithm of the event’s probability. When
entropy peaks, it signals the extraction of optimal
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Table 1: Division and codes of the eight major economic regions.

Code Economic region
A Northeast comprehensive economic region (Liaoning, Jilin, Heilongjiang)

B Northern coastal comprehensive economic region (Beijing, Tianjin, Hebei,
Shandong)

C Eastern coastal comprehensive economic region (Shanghai, Jiangsu, Zhejiang)
D Southern coastal economic region (Fujian, Guangdong, Hainan)

E Middle yellow river comprehensive economic region (Shaanxi, Shanxi, Henan,
Inner Mongolia)

F Comprehensive economic region in the middle reaches of the Yangtze River (Hubei,
Hunan, Jiangxi, Anhui)

G Southwest comprehensive economic region (Yunnan, Guizhou, Sichuan,
Chongqing, Guangxi)

H Northwest comprehensive economic region (Gansu, Qinghai, Ningxia, Tibet,
Xinjiang)

Table 2: 42 industries and corresponding codes.

Code Industry
1 Agriculture, forestry, animal husbandry, and fshery products and services
2 Coal mining and processing products
3 Oil and gas extraction products
4 Metal ore mining and processing products
5 Nonmetallic minerals and other mineral processing products
6 Food and Tobacco
7 Textiles
8 Textiles, clothing, shoes, hats, leather, down, and their products
9 Wood processed products and furniture
10 Papermaking, printing and cultural, educational, and sporting goods
11 Petroleum, coking products, and nuclear fuel processed products
12 Chemical products
13 Nonmetallic mineral products
14 Metal smelting and rolling products
15 Metal products
16 General equipment
17 Special equipment
18 Transportation equipment
19 Electrical machinery and equipment
20 Communication equipment, computers, and other electronic equipment
21 Instrumentation
22 Other manufactured products
23 Scrap
24 Metal products, machinery and equipment repair services
25 Production and supply of electricity and heat
26 Gas production and supply
27 Water production and supply
28 Architecture
29 Wholesale and retail
30 Transportation, warehousing, and postal services
31 Accommodation and meals
32 Information transmission, software and information technology services
33 Finance
34 Real estate
35 Leasing and business services
36 Scientifc research and technical services
37 Water conservancy, environment and public facilities management
38 Residential services, repairs, and other services
39 Education
40 Health and social work
41 Culture, Sports, and Entertainment
42 Public administration, social security, and social organizations
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information from the event. Te quantitative representation
of an event’s information is expressed as follows:

I � − logp(x), (1)

where p(x) represents the probability of the event’s oc-
currence. Given a set with n events, the information entropy
for this event set is defned as follows:

H � − 􏽘
n

i�1
p xi( 􏼁logp xi( 􏼁, (2)

where p(xi) denotes the probability of the ith event oc-
curring.Te crux of the maximum entropy method lies in its
principle: Among all probability distributions that align with
given constraints, the distribution with the maximum en-
tropy is the one capturing the optimal amount of
information.

In the construction of a complex network, the maximum
entropy method plays a pivotal role in determining the
network’s adjacency matrix. Specifcally, an appropriate
threshold is chosen to classify the connections between
nodes into two categories: present or absent. When the sum
of the average entropies for these two categories is maxi-
mized, we attain the greatest amount of information.Tis, in
turn, helps ascertain the optimal threshold, which dictates
whether a connection between nodes exists. Te primary
steps for the maximum entropy algorithm in identifying the
best threshold are as follows:

(1) Initially, acquire the original matrix indicating the
correlation strength between nodes and derive the
probability distribution of the correlation strengths.
If the total count of distinct correlation strengths is
N, the probability of the ith correlation strength
appearing is represented as pi.

(2) Set an initial threshold T, which equates to the jth

correlation strength, 1≤ j<N. Partition the corre-
lation strength matrix into two categories: those less
than or equal to T, and those greater than T.

(3) Calculate the average relative entropy for both
categories:

E1 � − 􏽘

j

i�1

pi

pj

􏼠 􏼡 ln
pi

pj

􏼠 􏼡, pj � 􏽘

j

i�1
pi,

E2 � − 􏽘
N

i�j+1

pi

1 − pj􏼐 􏼑
⎛⎝ ⎞⎠ ln

pi

1 − pj􏼐 􏼑
⎛⎝ ⎞⎠.

(3)

(4) When the value of E1 + E2 peaks, the corresponding
T is identifed as the optimal threshold. By binar-
izing the correlation strength matrix using this op-
timal threshold, we obtain the adjacency matrix.

3.3. Building Complex Networks. To construct an adjacency
matrix based on the input-output tables from 42 sectors
(industries) within the eight major economic zones, it is frst
essential to establish a matrix denoting the linkage intensity
between these industries. In this study, the directly

calculated consumption coefcient matrix is employed as
this linkage intensity matrix. Tis direct consumption co-
efcient matrix illustrates the coefcient of direct inputs
from various sectors into a specifc output, shedding light on
the direct dependencies between industries. Let’s denote this
coefcient matrix as A, where Aij represents the direct input
required from industry i to produce 1 unit of the product
from industry j. Applying the maximum entropy method
described in the previous section, we determined the optimal
threshold for the direct consumption coefcient matrix.Tis
threshold serves to extract signifcant interindustry re-
lationships from the original direct consumption coefcient
matrix. Specifcally, elements in matrix A that are less than
or equal to this threshold are assigned a value of 0, while
those exceeding the threshold are designated a value of 1.
Consequently, we obtain the adjacency matrix M, which
delineates the salient relationships between industries. Tis
procedure is referred to as the binarization process.

Based on the adjacency matrix M, we construct a com-
plex network. If Mij � 1 , an oriented edge is drawn from
industry i to industry j. Conversely, if Mij � 0 , there is no
edge from industry i to industry j . Given the inherent
asymmetry in inputs (or consumption) between two in-
dustries, typically Mij ≠Mji. Moreover, some industries have
inputs (or consumption) relating to themselves, Mii ≠ 0,
indicating the presence of loops within the network. Keeping
in mind the practical signifcance of the input-output as-
sociation in complex networks, it is essential to account for
the diferences in the magnitude of inputs (or consumption)
between industries. As such, edges within the network carry
weights, denoted as Wij, with the set of all weights repre-
sented as W. Here, Wij corresponds to the direct con-
sumption coefcient Aij of industry i to industry j. Te
resulting complex network is illustrated in Figure 1. In the
fgure, blue dots represent network nodes, red labels denote
node codes, black lines signify edges, and arrows indicate the
direction of the edges. Nodes within the network symbolize
industry sectors, with the eight major economic zones
contributing 336 nodes in total. Within each economic zone,
the 42 industry nodes are distributed in a rectangular
uniform layout, while the grouping of these nodes refects
the rough geographical placement of the respective eco-
nomic zones. Edges in the network represent relationships
between industries, amounting to 30,864 directed and
weighted edges in total.

In summary, starting from the direct consumption co-
efcient matrix, and using the maximum entropy method to
go through a series of calculations and processing, a directed
weighted complex network with self-loop is fnally estab-
lished. Tis network provides the basis for subsequent
network statistical properties and stability analysis.

4. Analysis of Complex Network
Statistical Properties

4.1. Degrees and Node Weight. Within the realm of graph
theory, complex networks ofer a robust representation of
systems with interconnected entities, known as nodes,
connected by links, termed edges. Tis perspective is
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foundational in understanding the organization and dy-
namics of diverse complex systems, from biological net-
works to social structures and technological infrastructures.
Te application and signifcance of graph theory in analyzing
such systems are extensively supported by a body of re-
search. Christensen and Albert [17] underscore the universal
applicability of graph concepts across various felds, high-
lighting the shared topological features of diferent complex
systems. Jalving et al. [35] propose graph-based modeling
abstractions that articulate the dependencies and in-
teractions within complex systems.Teir work is particularly
pertinent to studies focused on interconnected entities, such
as industrial networks, demonstrating the utility of graph-
based models in capturing the intricate relationships that
defne complex systems. Torres et al. [36] delve into the
intricacies of representing complex systems, emphasizing
the necessity for efective representation strategies across
various domains. Teir discussion on the why, how, and
when of complex system representations sheds light on the
methodological challenges and considerations in employing
graph theory to model complex interactions, providing
a critical lens through which to view our research endeavors.

Te number of connections or edges linked to a node, or
its degree, provides insights into its role and signifcance
within the network. In complex networks, the degree of
a node is indicative of its connectivity. In directed networks,
the concept further bifurcates into in-degree (incoming
connections) and out-degree (outgoing connections). From
an economic perspective, a higher degree, whether it be in-
degree or out-degree, generally signifes an industry’s in-
fuential role and interconnectedness in the marketplace. A
node’s degree in economic networks can be seen as a mea-
sure of its interdependence with other industries or sectors.

In economic networks, the in-degree can be thought of
as the diversity of resources or inputs an industry requires,
whereas the out-degree can indicate the variety of outputs or
services it provides to other sectors. An industry with a high

in-degree, for instance, might be crucial for multiple sectors
due to its essential products or services. Conversely, a high
out-degree may suggest the industry relies on diverse inputs
from various sectors, denoting its intricate integration into
the overall economic fabric.

For the established directed weighted network, we
computed the degree, in-degree, and out-degree and derived
a degree distribution histogram as shown in Figure 2. Sta-
tistical analysis reveals that the degree distribution does not
follow a power-law distribution, with 85% of industry
sectors having a degree ranging between 70 and 220. Tis
indicates a tight topological linkage among industries. Te
industry with the lowest degree is Petroleum and Natural
Gas Extraction Products (East coast) with an in-degree of 35
and an out-degree of 4, suggesting that the East Coast
economic zone’s petroleum and natural gas extraction
heavily relies on input from other industries. Te industries
with the highest degrees include Wholesale and Retail (East
Coast), Transportation, Warehousing, and Postal Services
(East Coast), Nonmetallic Minerals and Other Mining
Products (Mid-Yellow River), and Transportation, Ware-
housing, and Postal Services (North coast) with degrees
ranging from 328 to 325. Tese industries maintain con-
nections with almost all other sectors, denoting their sig-
nifcant role in the economic network.

Figure 2 also reveals that the in-degree distribution
roughly follows a bell-shaped curve, indicative of a Poisson
distribution, with 91% of industries having an in-degree
ranging between 50 and 130.Te highest in-degree is 163 for
construction (Mid-Yellow River), followed by metal prod-
ucts machinery and equipment repair services (Mid-Yellow
River) with an in-degree of 156, and then various industries
from the Mid-Yellow River and the Northwest. Notably,
construction, public facilities, and the service sector are
high-consumption industries, particularly those in the Mid-
Yellow River and Northwest economic zones, as they require
resources and products from nearly half of the industries.

Te out-degree distribution in Figure 2 shows a higher
proportion of industries with lower out-degrees. Te in-
dustry with the highest out-degree of 326 is Transportation,
Warehousing, and Postal Services (Mid-Yellow River),
followed closely by Wholesale and Retail (East Coast) with
325. It is evident that transportation, warehousing, and
postal services, as well as wholesale and retail, play a central
role, as nearly all industries rely on consuming their
products and resources, underscoring their critical position
in the national economy.

Analyzing our directed weighted network, we found
nuances in the connectivity and centrality of various sectors,
refected in their degree distributions. A signifcant obser-
vation from Figure 2 is that the degree distribution does not
align with the typical power-law seen in many real-world
networks, implying that our economic network deviates
from scale-free characteristics. Instead, the observed Poisson
distribution suggests a more homogenous network structure
where most nodes have a degree close to the average.

Some sectors, as evident from our analysis, act as central
hubs. Teir high connectivity, both in terms of inputs and
outputs, indicates their pivotal role in the economic

Figure 1: Te complex network of 42 industries across the eight
major economic regions.
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network. Te East Coast’s Petroleum and Natural Gas Ex-
traction Products sector, for example, showcases how re-
gional specializations and dependencies can emerge,
underlining the nuances of economic geography.

Further, the central roles of sectors like wholesale and
retail, and transportation, warehousing, and postal services,
indicate their foundational importance in facilitating and
sustaining the operations of other industries. In the context
of network theory, these can be seen as hub nodes, exerting
disproportionate infuence on the network’s overall con-
nectivity and fow.

Given the directed, weighted nature of our established
complex network, our initial degree distribution analysis did
not account for the signifcance of edge weights. Conse-
quently, we extended our investigation to ascertain the node
strength, in-strength, and out-strength for each industry
node within the network.

In weighted network analyses, the node strength rep-
resents the sum of the weights of all edges connected to
a specifc node. In the context of a directed weighted net-
work, the in-strength embodies the cumulative weight of all
incoming edges (edges directed towards the node), while the
out-strength conveys the sum of the weights of all outgoing
edges (edges originating from the node).

From an economic perspective, these network metrics
take on heightened signifcance. Te in-strength can be
interpreted as the total volume of inputs an industry receives
from other sectors, indicating its dependency or reliance on
external factors for operation. Conversely, the out-strength
ofers insights into the volume of inputs or resources an
industry provides to others, refecting its contribution and
potential infuence over other sectors in the economic
landscape.

By examining these weighted network measures, we can
derive a more nuanced understanding of each industry’s role
and importance within the broader economic network,
leading to deeper insights into intersectoral dependencies
and infuences.

Te direct consumption coefcient between industries
serves as an edge weight in this analysis. Te higher its value,
the more signifcant the input or consumption volume
between two industries, indicating a closer interrelation.
Terefore, this edge weight operates as a similarity weight.
Table 3 presents industries with the highest and lowest node
weight, in-weight, and out-weight.

A striking observation is that the industries ranking in
the top four for node weight also dominate the top four for
out-weight. Tese industries, in sequence, are as follows:
chemical products (Eastern Coastal), chemical products
(Northern Coastal), leasing and business services (Eastern
Coastal), and chemical products (Middle Yangtze River).
Predominantly, the node weight of these sectors is dictated
by their out-weight. Chemical products, as an export-driven
sector, provide a signifcant volume of resources or products
to other industries.

Regionally, the Jiangsu-Zhejiang-Shanghai area is
underscored by the robust standing of its wholesale and
retail sector, which ranks ffth in out-weight, reinforcing the
prosperous nature of this sector and its substantial contri-
butions to other industries.

On the fip side, the industries ranking high in in-weight
include textiles (Northern Coastal), other manufacturing
products (Northwest), other manufacturing products
(Northeast), textile, clothing, footwear, leather, down and its
products (Middle Yellow River), and textile, clothing,
footwear, leather, down and its products (Northern Coastal).
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Figure 2: Degree distribution histogram.
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Tis suggests some regional dynamics at play: other
manufacturing product industries in the Northeast and
Northwest regions appear to be underdeveloped, demanding
signifcant inputs from other sectors.Te textile sector in the
Northern Coastal area stands out in its reliance on other
industries for resources.

From a regional economic perspective, the spatial dis-
tribution and development of industries often refect a re-
gion’s historical, geographical, and socio-economic
conditions. Te thriving chemical and leasing businesses
along the coastlines indicate the coastal regions’ advantages
in trade, port logistics, and market accessibility, leading to
economies of scale and agglomeration benefts.

Comparing the industries ranking in the bottom fve for
both node weight and out-weight, there’s a discernible
pattern: sectors such as oil and natural gas extraction
products and metallic mineral mining products from the
eastern coastal region have relatively low in-weights, sig-
naling minimal direct consumption from other industries.
Furthermore, waste material sectors in economic zones A, B,
C, D, and H are similarly characterized by their low con-
sumption from other sectors. Tis could hint at either the
self-sufcient nature of these industries or perhaps a need for
more integration and collaboration for sustainable regional
economic development.

4.2. Clustering Coefcient. Te clustering characteristic is
a critical feature in complex networks, typically used to
describe the aggregation tendency among nodes within the
network. Te clustering coefcient is a commonly used
metric to quantify this characteristic. Although its com-
putation varies slightly across diferent network types (like
undirected and directed networks), its core idea revolves
around describing the interconnection situation amongst
the neighbors of a node. For a given node i in an undirected
network, the local clustering coefcient is defned as follows:

Ci �
2Ei

Ki Ki − 1( 􏼁
, (4)

where

(1) Ci represents the local clustering coefcient of node i.
(2) Ei denotes the number of links between the neigh-

bors of node.

(3) Ki signifes the degree of node i, i.e., the number of
links connected to node i.

Te local clustering coefcient describes the ratio be-
tween the number of actual connections formed among
a node’s neighbors and the maximum possible number of
such connections. Ci � 1 indicates that all neighbors of node
i are interconnected, while Ci � 0 signifes that there are no
connections among the neighbors of node i. Te formula
essentially captures the ratio of the number of actual links
between the neighbors of a node to the maximum possible
number of such links. A higher clustering coefcient for
a node indicates that its neighbors are more densely
interconnected. Te global clustering coefcient C is the
average of the local clustering coefcients for all nodes in the
network. Mathematically, it can be expressed as follows:

C �
1
n

􏽘

n

i�1
Ci, (5)

where n is the total number of nodes in the network. Te
global clustering coefcient is also commonly referred to as
the average clustering coefcient of the network.

In the realm of directed networks, computing the
clustering coefcient presents intricate challenges, largely
due to the inherent directionality of the edges. A key
complication arises from the fact that one triangle formation
in an undirected network can manifest in seven possible
confgurations in a directed network context. To circumvent
this complexity, it is standard practice to consider directed
edges in the network as bidirectional, undirected edges, thus
allowing the application of clustering coefcient calculation
methods originally developed for undirected networks. In
weighted networks, the calculus extends beyond mere node-
to-node connection states to incorporate the strength of
these connections as well. As a result, this study adopts
a specifc defnition of the clustering coefcient that is tai-
lored for weighted networks:

Ci �
1

Ki Ki − 1( 􏼁
􏽘
j,k

W
∧
ijW
∧
ikW
∧
jk􏼒 􏼓

1/3
, W
∧

ij �
Wij

max
k,l

Wkl
, (6)

where W
∧

ij ∈ [0, 1] is the normalized weight.
In this section, our study lays the groundwork by

constructing an undirected weighted network, a subset of the
complex network discussed earlier. In a regional economic
context, this exercise serves as a crucial step in un-
derstanding spatial interdependencies and resource alloca-
tions among various industrial nodes.Te weight of the edge
between two nodes is determined as the sum of the weights
of any existing directed edges between them, which is
particularly relevant for capturing the fow of goods, ser-
vices, or information between industries. Tese weights are
calculated using the previously defned direct cost co-
efcients, which function as similarity weights.

Following this, we apply (4) to compute the clustering
coefcient for the unweighted, undirected network and (6)
for the weighted clustering coefcient of the undirected
weighted network. Table 4 presents the top ten industries

Table 3: Te top fve and bottom fve industrial nodes in terms of
power, entry, and exit.

Node weight Node In-weight Node Out-weight Node
3.67007402 C12 0.86712420 B7 3.03943861 C12
3.38395668 B12 0.84029975 H22 2.62444130 B12
2.89679630 C35 0.84007252 A22 2.24181543 C35
2.89500907 F12 0.83725058 E8 2.15906770 F12
2.79223454 B14 0.83029668 B8 2.12924387 C29
0.25412811 B23 0.14281446 B23 0.01646612 B40
0.23549762 H23 0.13928177 C4 0.01474259 A37
0.18969335 A23 0.13047039 C23 0.01018285 G24
0.15067719 C3 0.13043612 C3 0.00602547 H40
0.14479969 C4 0.12417176 D23 0.00551791 C4
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ranked by both their clustering and weighted clustering
coefcients. In the realm of regional economics, a higher
clustering coefcient signifes strong local synergies and
interindustrial cooperation. Tis can often be seen in re-
gional clusters where industries beneft from shared re-
sources, expertise, and markets. Similarly, industries with
elevated weighted clustering coefcients are indicative of
substantial capital fows, both in terms of investments and
consumption, among the industries constituting the vertex-
associated triangles. Te weighted measures give a nuanced
understanding of the economic robustness and the depth of
interindustry relationships. According to (5), the network’s
average clustering coefcient is ascertained to be 0.63737820,
while the average weighted clustering coefcient is
0.00252026. Tese metrics can serve as valuable indicators
for policymakers and stakeholders in identifying regional
economic strengths and potential areas for fostering in-
dustrial collaboration.

4.3. Shortest Path and Network Efciency. Te shortest path
in a graph or network refers to the path connecting two
nodes that minimizes the sum of lengths or weights along
that path. In an unweighted network, the length of the
shortest path is typically the number of edges it contains. In
a weighted network; however, the length is determined by
the sum of the edge weights along the path. When the edge
weight is used to represent the distance between nodes,
a longer path between two nodes implies a greater distance
and thus a more distant or weaker relationship. Conse-
quently, in this context, edge weights should serve as dis-
similarity measures.

In this section, the study recalibrates the edge weights in
the directed weighted network by taking their reciprocal
values, which are then used as dissimilarity measures. Tis is
consistent with using the direct cost coefcient as an inverse
measure. Specifcally, the greater the direct cost coefcient
between two industries, the closer and more tightly-knit
their relationship is expected to be. Te concept of the
shortest path takes on a critical role. It acts as a proxy for
transaction costs between industries, and a shorter average
path length could indicate a more efcient, agile, and well-
integrated regional economy. Furthermore, understanding
the network efciency and the average shortest path length
provides actionable insights for policymakers aiming to
optimize resource allocation and improve the economic
interconnectivity of industrial clusters. After determining
the shortest path and its length between every pair of nodes,
the network’s overall efciency can be evaluated by com-
puting the average shortest path length among all pairs of
nodes using the following equation:

L �
1

n(n − 1)
􏽘
i≠j

dij, (7)

where n represents the total number of nodes in the network,
while dij denotes the shortest path length between node i and
node j. By taking the reciprocal of the shortest path lengths,
one can obtain a measure of efciency between nodes. Te

average of these reciprocal values across all pairs of nodes in
the network is termed the global network efciency.

In this section, we employ the Dijkstra algorithm to cal-
culate the shortest paths and their corresponding lengths
within the directed weighted network under investigation. Te
fundamental idea behind the algorithm is to start with a source
node and incrementally expand the set of nodes for which the
shortest paths are known. Tis expansion occurs by exploring
nodes that are adjacent to the current set but have not yet been
visited. More specifcally, the algorithmmaintains two sets: one
consisting of nodes with already-known shortest paths and
another set comprising candidate nodes. Te algorithm iter-
atively selects the next node with the shortest path from the
candidate set until the shortest paths to all nodes have been
identifed. After calculating the shortest path lengths between
all node pairs, the paths corresponding to the minimum and
maximum values of these lengths are highlighted in the net-
work, as shown in Figure 3.Te shortest path length from node
A1 to A6 is the smallest, at 2.286. Tis suggests that the input
from the Agriculture, Forestry, Fishing, and Hunting sector in
the Northeast to the Food and Tobacco sector in the same
region is exceptionally direct, bypassing intermediary in-
dustries, and is also signifcant in volume. Te shortest path
length in Figure 3 H8⟶ H7⟶ H30⟶ H5⟶
H3⟶ C11⟶ C35⟶ A33⟶ A23. In the network
diagram, the longest shortest path length is 1525.267, extending
from the Textile, Clothing, Footwear, and Leather Goods sector
in the Greater Northwest region to the Waste and Scrap sector
in the Northeast. Tis path sequentially traverses seven dif-
ferent industrial sectors: textiles (Greater Northwest), trans-
portation, warehousing, and postal services (Greater
Northwest), nonmetallic minerals and other mining products
(Greater Northwest), crude petroleum and natural gas (Greater
Northwest), petroleum, coking products, and nuclear fuel
processing goods (Eastern Coast), leasing and business services
(Eastern Coast), and fnance (Northeast). Importantly, this
path crosses three major economic zones. Te pivotal point is
the input from crude petroleum and natural gas (Greater
Northwest) to petroleum, coking products, and nuclear fuel
processing goods (Eastern Coast), highlighting the transfer of
abundant petroleum and natural gas resources from the
Greater Northwest to the Eastern Coastal economic zone. Tis
path sequentially traverses seven diferent industrial sectors,

Table 4: Te top ten industrial nodes in clustering coefcient and
weighted clustering coefcient.

Clustering coefcient Node Weighted
clustering coefcient Node

0.83686275 C4 0.00554410 H29
0.82589984 H40 0.00544787 C34
0.80869821 G11 0.00507715 G11
0.79953244 B40 0.00463909 D40
0.78962844 B21 0.00459691 B1
0.77793361 H4 0.00453500 F25
0.77466106 G40 0.00444192 D33
0.77345018 H8 0.00437377 F1_
0.77191358 B9 0.00431369 D38
0.77124888 H18 0.00414265 H30
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each of which could be a manifestation of regional economic
specialization. For example, the Greater Northwest’s focus on
Crude Petroleum and Natural Gas might be a function of its
resource endowments. Importantly, this path crosses three
major economic zones, illustrating how regional capabilities
contribute to forming complex interindustrial relationships.
Te pivotal point is the input from crude petroleum and
natural gas (GreaterNorthwest) to petroleum, coking products,
and nuclear fuel processing goods (Eastern Coast). Tis could
signify a vital input-output linkage in the supply chain, rein-
forcing the structural interconnectedness of these industries
across regions. Such relationships might be indicative of high
transaction costs, as evidenced by the involvement of sectors
like Transportation, Warehousing, and Postal Services in the
longest shortest path.

Te calculated average shortest path length for the entire
network is 219.7, indicating that, on average, the shortest
path lengths between industries are relatively long. Tis
relatively long average path length suggests that there may be
inefciencies or bottlenecks in the system, either due to
regulatory hurdles or inherent complexities in production
processes. Te global efciency of the weighted network is
0.00728, signifying that the efciency of resource or product
propagation among the industries is low. Tis could refect
a high degree of market power or anticompetitive behavior
among some sectors, impeding the efcient fow of goods
and services.

5. Network Structure Stability Analysis

Tis section explores the stability of the network structure,
a critical aspect related to the network’s resilience and
antidisturbance capabilities. By simulating attacks on the
complex network, we analyze its fault tolerance and re-
sistance to targeted disruptions, thereby shedding light on
the overall network stability.

5.1. Centrality Measures. A primary focus is the analysis of
network centrality, an essential facet of network stability
research. Centrality reveals key nodes and vulnerabilities
within the network, contributing to our understanding of
the structural characteristics and relative importance of
individual nodes. Tis section evaluates four types of cen-
trality in the directed, weighted network: degree centrality,
closeness centrality, betweenness centrality, and eigenvector
centrality. Tis is echoed in the work of Ufmtsev et al. [27],
who emphasize the impact of centrality measures on un-
derstanding the stability of networks, especially under
conditions of noise and disturbance. Tis section evaluates
four types of centrality in the directed, weighted network:
degree centrality, closeness centrality, betweenness cen-
trality, and eigenvector centrality. Te relevance of these
measures in diferent network contexts, as discussed by
Grando et al. [37], underscores their utility in identifying
infuential nodes and assessing network resilience. Fur-
thermore, the study by Rajeh et al. [38] highlights the im-
portance of considering community structures in centrality
analysis, which can be particularly pertinent in complex

industrial networks. Te correlation analysis of centrality
measures by Ficara et al. [39] provides a comprehensive
understanding of how these diferent centrality types in-
teract and infuence each other, enriching the analysis of
network stability in this research.

5.1.1. Degree Centrality. Tis measure refects the number of
connections a node has, thereby identifying the most
popular and active nodes in the network.Te failure of these
nodes could severely impact network stability.

5.1.2. Closeness Centrality. Calculated as the average
shortest path length from one node to all other nodes, this
centrality measure gauges the node’s importance. A higher
closeness centrality implies better accessibility and faster
information dissemination, indicating that the node may
play a critical role in the network.

5.1.3. Betweenness Centrality. Tis measure is based on the
frequency with which a node appears in all shortest paths
across the network. It uncovers nodes that act as “bridges” in
the network. Tese nodes appear in the shortest paths be-
tween many pairs of nodes; thus, their failure could sub-
stantially alter the network structure.

5.1.4. Eigenvector Centrality. Tis form of centrality is
a function of the importance of the neighbors to which
a node is connected. It refects a node’s social infuence
within the network. Nodes connected to infuential nodes
often have high eigenvector centrality, helping to identify
nodes that may be crucial within the network.

Tis multi-dimensional approach to centrality provides
a nuanced understanding of the elements that contribute to
or jeopardize network stability. By identifying these critical
nodes and potential vulnerabilities, we gain insights that can

Figure 3: Schematic diagram of the shortest and longest paths in
the shortest path.
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inform strategies for enhancing network resilience and
efciency.

In Table 5, the top ten industrial nodes are ranked
according to the four diferent types of centrality measures.
Industries leading in degree centrality are mainly those in
the sectors of transportation, warehousing, and postal ser-
vices, specifcally located in the middle reaches of the Yellow
River, the Eastern Coast, and the Northeast of China. Tis
highlights the pivotal role these sectors in China’s central-
eastern and northeastern regions play in the overall national
economy.

For closeness centrality, the values are generally low, and
the industries that rank the highest are predominantly in the
Greater Northwest, specifcally in sectors such as trans-
portation equipment, metal product machinery, electrical
machinery, and timber processing and furniture. Despite
their peripheral geographical locations, these sectors may
have a strategic position that allows for efcient information
dissemination.

High betweenness centrality is mainly observed in
industries located in the Eastern Coastal economic zone,
specifcally in sectors such as petroleum coking products
and nuclear fuel processing, leasing and business services.
In addition, the petroleum and natural gas extraction
industries in the Greater Northwest and Northeast, along
with the production and supply of electric and thermal
Power in the Northeast and Eastern Coast, play key
“bridge” roles in the network. Industries involved in coal
mining in the middle reaches of the Yellow River and
chemical products on the Eastern coast also exhibit high
betweenness centrality.

Lastly, the top ten industries in terms of eigenvector
centrality are all concentrated in the Northern Coastal
economic zone, predominantly in light industry,
manufacturing, and chemical products sectors. Particularly
noteworthy are the textile and apparel sectors in this region,
whose eigenvector centrality is far higher than all other
industries, indicating the critical importance of their
neighboring industries.

Analysis of centrality measures can unveil the most
infuential nodes, the best nodes for dissemination, and the
key “bridge” nodes within the network. Protecting and
closely monitoring these nodes can signifcantly enhance the
network’s stability and resilience to disturbances. Tis an-
alytical approach is particularly important for policymakers
and stakeholders who aim to safeguard critical infrastructure
and optimize resource allocation. In the realm of regional
economics and industrial organization theory, identifying
these central nodes can also guide regional development
policies, investment decisions, and crisis management
strategies. Terefore, understanding centrality measures is
not just a theoretical exercise but also an essential practice
for ensuring efective economic management and sustain-
able development.

5.2. Network Connectivity Metrics. Te resilience of a net-
work to attacks refers to its ability to maintain structural and
functional integrity in the face of adversarial actions, such as
the failure or removal of nodes or edges. In this study,

changes in network connectivity serve as a measure for
assessing the network’s robustness against attacks. Specif-
cally, two key metrics are employed: network efciency and
the size of the largest connected subgraph.

Network efciency, as elaborated in Section 3.3, is an
important gauge of global connectivity within the network.
Te mathematical expression for network efciency is
provided in the following equation:

E �
1

n(n − 1)
􏽘
i≠j

1
dij

, (8)

where is dij the shortest path length between node i and node
j. When there is no edge between node dij � +∞ i and node
j, the local efciency between the pair of nodes is 0. After the
previous calculation, the global efciency of the initial di-
rected weighted network before the attack started was
0.00728.

Te largest connected subgraph refers to the connected
portion of the network containing the maximum number of
nodes. In directed networks, one can further distinguish
between weakly and strongly connected subgraphs. In
a weakly connected subgraph, any pair of nodes is mutually
reachable through a sequence of directed edges (ignoring
edge direction), whereas in a strongly connected subgraph,
directionality must be considered. Te size and character-
istics of the largest connected subgraph serve as important
indicators of network connectivity and stability. In this
study, the strongly connected subgraphs of the directed
network are computed using Kosaraju’s algorithm.Te ratio
of the number of nodes in the largest connected subgraph is
defned in (9):

Z �
m′
m

, (9)

where m′ is the number of nodes in the largest connected
subgraph postattack and m is the number of nodes in the
largest connected subgraph of the initial network. Te ratio
Z is used to refect changes in network connectivity sub-
sequent to an attack. After computational analysis, it was
established that the initial directed weighted network con-
stitutes a strongly connected subgraph. Terefore, in this
specifc case, m � n � 336.

5.3. Random vs. Targeted Attacks on Network Resilience.
Network attacks can broadly be classifed into two cate-
gories: random attacks and targeted (or deliberate) attacks.
Random attacks refer to nonspecifc assaults on nodes or
edges in the network. In such scenarios, the elements
attacked are randomly chosen without taking into account
their unique roles or signifcance within the network
structure. Contrastingly, targeted attacks are orchestrated to
impact key nodes or edges within the network selectively.
Tese attacks can be executed based on various criteria. In
the present study, we employ four types of centrality metrics,
previously discussed, as the criteria for simulating targeted
attacks.
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Tis section outlines fve distinct attack strategies:
random attacks, attacks targeting nodes with the highest
degree centrality, the highest closeness centrality, the highest
betweenness centrality, and the highest eigenvector cen-
trality. For instance, under the highest degree centrality
attack, the node with the maximum degree centrality is
removed along with its associated edges. Subsequently, the
connectivity indices and degree centrality are recalculated
for the newly formed network. Tis process is iteratively
repeated until the network’s overall connectivity is reduced
to zero.Te remaining three targeted attacks follow a similar
methodology.

Figure 4 illustrates the changes in network efciency and
the ratio of the number of nodes in the largest connected
subgraph under the fve attack strategies. From the efciency
change curve, it is evident that attacks based on the highest
closeness centrality are markedly less efective than random
attacks. Intriguingly, after 300 instances of these two attack
types, there is a noticeable uptick in global efciency.
Specifcally, at 326 instances of highest closeness centrality
attacks, the network efciency peaks at 0.0081, surpassing
the initial network’s efciency, followed by a linear decrease
as attacks continue.

Furthermore, the efectiveness of the attack strategies, as
observed from the graph, is sequentially best to worst as
follows: highest betweenness centrality, highest degree
centrality, and highest eigenvector centrality; all three being
more efective than random attacks. Te ratio of the number
of nodes in the largest connected subgraph reveals a con-
sistent trend across all fve strategies when the number of
attacks is below 200. Beyond this point, the performance of
targeted attacks based on the highest closeness centrality and
random attacks remains similar, but the other targeted at-
tacks exhibit superior performance. Among them, attacks
based on the highest betweenness centrality are the most
efective, followed by those based on the highest degree
centrality and the highest eigenvector centrality.

Te analysis quantifed the resilience of the network by
computing the number of attacks needed to completely
disrupt its connectivity. Specifcally, for each of the fve
strategies—random attacks, highest degree centrality at-
tacks, highest closeness centrality attacks, highest be-
tweenness centrality attacks, and highest eigenvector
centrality attacks—the required number of attacks was 332,
305, 331, 312, and 324, respectively.

Tis data suggests that the network in question possesses
a commendable level of resilience and structural stability.
Among the examined attack strategies, the highest be-
tweenness centrality, and the highest degree centrality at-
tacks warrant special attention. Industries characterized by
high values of these centrality metrics emerge as critical
nodes in the network and substantially infuence its overall
stability. Tus, they are pivotal in safeguarding the economic
system. Targeted policy interventions and risk management
strategies aimed at these high-centrality industries can
further fortify the stability of the intricate input-output
network under study.

5.4. Further Interpretations and Suggestions. In China, the
central, eastern, and northeastern regions serve as pivotal
hubs for the transportation, warehousing, and postal sectors,
which wield considerable infuence over the national
economy and logistics network. Te elevated centrality of
these industries is accentuated by their extensive in-
terconnections with other industrial sectors. Concurrently,
peripheral industries such as transportation equipment,
metal product machinery, electrical machinery, wood pro-
cessing, and furniture, primarily situated in the remote Great
Northwest, manifest notable metrics of network co-
hesiveness. Tis suggests their capacity to act as early in-
dicators for network perturbations, efciently disseminating
information and adaptations across the network.

It is noteworthy that certain sectors, including petroleum
coking products and nuclear fuel processing, exhibit pro-
nounced intermediary centrality, thereby serving as critical
nodes or “bridges” in the economic network. Tese in-
dustries facilitate essential conduits for the transit of re-
sources and information. Furthermore, industries such as
light manufacturing and chemical production, concentrated
in the northern coastal economic zone, not only maintain
high eigenvector centrality but also indicate analogous levels
of centrality in their proximate regions, underlining the
network resilience within this geographical area.

In light of these fndings, policy implications emerge.
Targeted infrastructure investments should be allocated
preferentially to regions characterized by both high in-
dustrial density and intermediary centrality, thereby cata-
lyzing more expansive economic activities. Concurrently,
risk mitigation strategies should be proactively formulated

Table 5: Centrality of complex networks.

Degree centrality Node Closeness centrality Node Betweenness centrality Node Eigenvector centrality Node
1.26865672 E30 0.00589318 H18 0.13004737 C11 0.57392775 B7
1.23582090 C12 0.00570312 H24 0.12980606 C35 0.41973487 B8_
1.20895522 A30 0.00561065 H19 0.10832067 H3_ 0.19114992 B10_
1.20895522 B30 0.00556078 H9_ 0.10095630 A25 0.18414660 B9_
1.19104478 C30 0.00551666 A24 0.09131290 A3_ 0.13041251 B17_
1.18208955 C35 0.00547256 H10_ 0.08829207 E2_ 0.12438422 B12
1.16119403 E12 0.00539353 F11 0.08822951 C12 0.12312023 B15
1.13731343 C29 0.00531417 D24 0.06560014 D35 0.10514796 B22
1.11940299 D10 0.00530257 A10 0.06124765 C25 0.10499113 B19
1.11044776 D12 0.00529745 H16 0.06085441 E30 0.10390616 B21
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for highly network-centric industries, even those located in
economically peripheral areas, to preempt potential cas-
cading efects stemming from local network disruptions.
Given the indispensable “bridging” role of industries with
high intermediary centrality, supply chain risk management
warrants particular focus to assure the uninterrupted and
stable fow of goods and services. To bolster the vigor of
regions with elevated eigenvector centrality, the cultivation
of innovation clusters is advised to generate industrial
synergies. In addition, strategic tax incentives and subsidies
can be deployed to sustain competitiveness and stimulate
growth in pivotal industries. Lastly, a real-time monitoring
mechanism is recommended for tracking critical perfor-
mance metrics in these key sectors, enabling timely in-
terventions should severe fuctuations in centrality
indicators arise.

Tis analysis, rooted in empirical data, ofers actionable
insights for policy-making, aiming to enhance network
resilience through data-driven strategies.

6. Conclusion

6.1. Further Interpretations and Suggestions. Tis study
employs the Maximum Entropy Method to construct a di-
rected, weighted complex network comprising 42 industrial

sectors across China’s eight major economic regions. Te
research ofers an in-depth statistical analysis of the net-
work’s attributes and stability. Key fndings include

(1) Te maximum entropy method efectively uncovers
signifcant intersectoral relationships, maximizing
the extraction of information from input-output
tables.

(2) Degree analysis reveals that 85% of industrial sectors
have degrees ranging between 70 and 220, indicating
tight topological connections between industries.
Notably, sectors such as transportation, ware-
housing, and postal services, along with wholesale
and retail, play pivotal roles in the economic net-
work. Te distribution of in-degrees and out-degrees
refects distinct regional industrial structures and
interdependencies. For instance, construction,
public utilities, and service sectors are highly con-
sumed in the Yellow River Basin and the Northwest
regions.

(3) In the weighted network, point, in-strength, and out-
strength metrics further highlight interindustry
connections and dependencies. Coastal Eastern re-
gions display strong export-oriented characteristics
in chemical product industries, while the Northern
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Figure 4: Changes in network efciency and maximum connected subgraph node ratio under diferent attack strategies.
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coastal regions excel in textiles. In contrast, the
Northeast and Northwest regions exhibit import-
dependent traits in various manufacturing sectors.
Tese patterns are indicative of regional industrial
specialization and varying levels of economic
development.

Te observed topological structure and industry roles
can be situated within broader industrial and regional
theories. For example, the concept of agglomeration econ-
omies may explain why certain industries like transportation
and warehousing are centrally positioned. Tey potentially
serve as clusters that generate additional economic advan-
tages for nearby sectors.

Simulated network attacks reveal that the most efective
targeted strategies are highest-betweenness centrality at-
tacks, followed by highest-degree centrality and highest-
eigenvector centrality attacks. Tese deliberate attack
methods outperform random attacks. While the industrial
network demonstrates high resilience, targeted policy in-
terventions are warranted for industries with high degree
and betweenness centrality. Tese sectors emerge as critical
nodes, infuencing the stability of the network structure.

In summary, the network exhibits strong resilience but
requires nuanced policy and risk management strategies
aimed at industries with high centrality metrics, as these
sectors are pivotal in maintaining the network’s structural
stability.

6.2. Limitations and Future Directions. Our investigation
into the intricate relationships among industrial sectors
within China’s economic zones contributes to the un-
derstanding of complex networks in an economic context.
Despite the insights gained, our study acknowledges several
limitations that pave the way for future research directions.
Firstly, the reliance on static data for network modeling in
existing literature does not adequately refect the dynamic
nature of economic activities, resulting in diminished pre-
dictive capabilities. Tis highlights the necessity of in-
corporating dynamic data and models that can more
accurately mirror the fuctuations and trends within eco-
nomic networks.

Second, the simulation of network disruptions often fails
to account for real-world economic shocks, such as fnancial
crises or sudden market changes, which limits the practical
relevance of these models. Future studies should aim to
integrate real economic shock scenarios to enhance the
applicability and resilience of network models.

Tird, there is a notable gap in cross-disciplinary re-
search regarding the examination of network analysis
methods tailored to specifc economic situations. Tis
oversight may overlook the complex realities of economic
environments, suggesting a need for more nuanced studies
that evaluate the efectiveness of network methodologies
within economic frameworks.

Fourth, strategies developed to enhance network ro-
bustness often do not take into account the unique char-
acteristics and interdependencies of economic networks,
particularly those defned by industry-specifc interactions.

Tis oversight underscores the importance of devising ro-
bustness strategies that are not only theoretically sound but
also practically applicable, taking into consideration the
distinct nature of economic networks.

To address these limitations, future research should
focus on developing dynamic modeling approaches that
accurately refect economic network operations and their
responses to various shocks. Additionally, there is
a critical need for studies that assess the suitability of
network analysis methods for economic contexts, en-
suring that these tools can capture the complexity of
economic scenarios. Tailoring strategies for robustness to
address the unique characteristics of economic networks
will enhance our comprehension and management of
these systems efciently. By tackling these areas, sub-
sequent research can signifcantly advance the application
of complex network theory in economic studies, leading
to more robust and applicable insights for policy-making
and strategic planning [40–47].

Data Availability

Te China City-level MRIO Table data used to support
the fndings of this study may be released upon
application to the Carbon Emission Accounts
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼amp; Datasets, who can
be contacted at shanyuli@outlook.com or guandabo@
hotmail.com or zhuliu@tsinghua.edu.cn.
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