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Copyright © 2024 Jun Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te item and pod storage assignment problems, two critical issues at the strategic level in robotic mobile fulfllment systems,
have a strong correlation and should be studied together. Moreover, the workload balance in each picking aisle needs to be
considered in the storage assignment problems to avoid robots’ congestion within picking aisles. Motivated by these, the
joint optimization of item and pod storage assignment problems (J-IPSAP) with picking aisles’ workload balance is studied.
Te mixed integer programming model of the J-IPSAP with the workload balance constraint is formulated to minimize the
robots’ movement distance.Te improved genetic algorithm (IGA) with the decentralized pod storage assignment strategy is
designed to solve the J-IPSAP model. Te experimental results show that the IGA can obtain high-quality solutions when
compared with Gurobi and the two-stage heuristic algorithms. Te robots’ movement distance is smallest when the width-
to-length ratio of the storage area is close to 1, and the robots’ movement distance will increase with more stringent
workload balance constraints.

1. Introduction

In recent years, intelligent order picking systems have
emerged and greatly increased picking efciency. Te ro-
botic mobile fulfllment system (RMFS), one of the in-
telligent order picking systems, has been successfully applied
to many companies, such as Swisslog, GreyOrange, JD
Logistics, and Cainiao Logistics [1, 2]. As shown in Figure 1,
RMFS mainly consists of pickers, robots, picking stations,
pods, and items stored on the pods [3]. Te main picking
process of RMFS includes the following steps: (1) the robot
moves to the location of the pod containing the specifed
items; (2) the robot carries the pod to the pod bufer area of
the designated picking station; (3) the pod queues at the
station until its turn; (4) the picker stands at the picking
station and waits to pick items from the pod and put items
into the specifed tote areas; and (5) the robot carries the pod
to the warehouse.

Before the picking process, decisions are frst made about
where the item should be placed on the pod and where the pod
should be allocated in the warehouse (storage assignment
problem). After that, when orders come in, decisions are made
about which picking station should the orders be assigned to
(order assignment problem) andwhich pods should be selected
to fulfll the orders (pod selection problem).Te robots are then
assigned to deliver the pods to the picking stations (robot task
assignment and path planning problems) [4], and the pods are
returned to the storage area after the picking is completed (pod
reassignment problem). Te replenishment operation is
needed with the inventory level of items below the safety stock
level. As we know, the storage assignment problem belongs to
the strategic level in the RMFS decision framework [5, 6]. Other
problems, such as order assignment, pod selection, robot task
assignment and path planning, pod reassignment, and re-
plenishment operation, belong to the operational level in the
decision framework [5, 6].
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In this paper, we consider the storage assignment
problem (SAP), which is the key decision issue at the
strategic level [5]. SAP can be divided into the item storage
assignment problem (ISAP) and the pod storage assignment
problem (PSAP).Te ISAP determines which pods the items
should be allocated to [7]. Te PSAP determines which
locations in the warehouse the pods need to be allocated to.
Tere is a strong correlation between ISAP and PSAP, and
ISAP and PSAP should be studied together. In the current
study, the ISAP and PSAP are solved following the idea of
sequential decision-making, i.e., the PSAP is solved after the
solutions of the ISAP are obtained [8, 9]. However, se-
quential decision-making cannot get a global optimization
solution of SAP. Tus, it is necessary to further study the
joint optimization of ISAP and PSAP to reduce the system
operation cost. Moreover, the SAP solution with no con-
sideration of the workload balance in each picking aisle will
increase the robots’ congestion within the picking aisles and
decrease the picking efciency [8–10]. Motivated by this, this
article studies the joint optimization of item and pod storage
allocation problems (J-IPSAP) with picking aisles’ workload
balance.

Te J-IPSAP determines the items’ allocation on the
pods and the pods’ allocation in the warehouse simulta-
neously. Te picking aisles’ workload balance is also con-
sidered to avoid congestion. Te mathematical model of the
J-IPSAP is formulated to reduce the robot’s movement
distance. Te constraint of workload balance within the
picking aisles is added to the model. To solve the J-IPSAP
model, the improved genetic algorithm (IGA) with the elite
preservation mechanism is designed. To verify the efec-
tiveness of the J-IPSAP model and IGA, the computational
experiments are conducted by comparing with the Gurobi
optimization solver and the related literature [9] under
diferent warehouse scales. Te sensitivity analysis is also
performed to further explore the efect of the layout of the
storage area and the workload balance constraint on the
picking efciency. Although the joint optimization would
increase the complexity of the model, the storage assignment
decision has a relatively low requirement on CPU times, and
the assignment operation is usually performed during

nonworking hours. Te improved genetic algorithm pro-
vided is very efcient in solving the joint optimization in
a limited time, and the robots’ movement distance of the
joint optimization model is about 30% less than the sequent
optimization models.

Tis article has the following main contributions: (1) the
previous SAP only considered sequential decision-making,
i.e., the PSAP is solved after the solutions of the ISAP are
obtained. Tis article extends the SAP study by jointly
optimizing the ISAP and PSAP to increase the RMFS’s
picking efciency; (2) the picking aisles’ workload balance is
considered to avoid aisle congestion. Te new decentralized
pod storage assignment strategy is proposed to solve the
picking aisles’ workload balance problem; and (3) the IGA is
designed to solve the J-IPSAP model, and the IGA is proven
to outperform other algorithms in the related literature.

Te structure of the rest of the study is as follows. In
Section 2, the relevant literature is described. In Section 3,
the J-IPSAP optimization model is formulated. In Section 4,
the IGA is designed to solve the J-IPSAPmodel. In Section 5,
the computational experiments are presented. In Section 6,
the conclusions and future works are given.

2. Literature Review

Merschformann et al. [5] and Xie et al. [6] classifed the
RMFS decision problems into three levels: strategic level,
tactical level, and operational level. SAP belongs to the
strategic level. Other decision problems, such as order as-
signment [11–13], robot scheduling [14–16], pod reposi-
tioning, and path planning [17–19], belong to the
operational level. Tis section aims to provide a compre-
hensive overview of previous work related to SAP in RMFS.
More optimization studies on other decision levels can be
seen in the recent literature reviews [20–22].

2.1. Te Study of ISAP in RMFS. Te ISAP determines which
pods the items should be allocated to [7]. In the research on
ISAP, Xiang et al. [7] used historical orders to establish an
objective function to maximize the relevance of items on the
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Figure 1: Picking process of the robotic mobile fulfllment system.
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pods to solve ISAP, reducing the number of pod visits efec-
tively. Kim et al. [23] addressed the ISAP to maximize the
relevance of items on the pods, and the movement distance of
the pods is reduced by the re-optimization algorithm. Guan
and Li [24] studied the problem of decentralized storage al-
location of items based on association rules in RMFS, aiming to
determine the pods on which each item is placed to minimize
the number of pods that need to be moved when picking
a batch of orders. Tey proposed an integer programming
model and developed a genetic algorithm to solve the problem.
Mirzaei et al. [25] proposed an integrated cluster allocation
(ICA) policy to minimize the retrieval time of parts-to-picker
systems based on both product turnover and afnity. Tey
formulated a mathematical model that can solve small in-
stances and developed a greedy construction heuristic for
solving large instances. Zhang et al. [3] addressed the ISAP by
incorporating the energy consumption of pickers. By estab-
lishing amultiobjectivemixed integer programmingmodel, the
objective is to maximize the items’ similarities in the pods and
minimize the pickers’ energy expenditure.

2.2.Te Study of PSAP in RMFS. Te PSAP exists at both the
strategic and operational levels in RMFS. At the strategic
level, the PSAP is to determine which locations in the storage
area the pods should be assigned to. At the operational level,
the PSAP is called the pod storage reposition problem
(PSRP), which is to determine which locations the pods
should return to after visiting the picking stations.

Tis article focuses on the PSAP at the strategic level. As the
PSAP is usually solved with the ISAP, fewer scholars studied
the PSAP alone.Wang et al. [10] studied the PSAP in the single-
deep layout of fshbone robotic mobile fulfllment systems
(FRMFS). Tey proposed the pod allocation optimization
model to maximize the picking efciency and balance the
workload of each picking aisle. Keung et al. [26] studied the
zone clustering and data-driven order classifcationmethods to
solve the PSAP in both single-deep and multideep layouts.

In some studies of PSRP, it is assumed that the pods will
return to their original storage locations [9, 10]. Other
scholars studied the pods’ optimal return locations in the
PSRP. Weidinger et al. [27] transformed the PSRP into
a special interval scheduling problem. After that, they
constructed the optimization model and designed the
adaptive large metaheuristic search. Merschformann et al.
[5] proposed diferent strategies for the PSRP, such as
random storage and nearest storage. Ji et al. [28] used the
three-class-based method and the Kuhn–Munkres algo-
rithm to solve the PSRP. Cai et al. [29] proposed a pod
repositioning strategy of item clustering and pod turnover to
reduce the robots’ total movement time. Zhuang et al. [16]
solved the PSRP and the pods’ task allocation problem si-
multaneously tominimize themaximum completion time or
the robots’ movement distance.

2.3. Te Study of ISAP and PSAP in RMFS. To the authors’
best knowledge, only two articles studied the ISAP and PSAP
in RMFS simultaneously, and the two-stage optimization
approach is used to solve the ISAP and PSAP [9, 30].

Li et al. [30] solved the ISAP by clustering the items into
several types through an association rule algorithm. Te
model was constructed to reduce the distance between two
item types. After that, they proposed the PSAPmathematical
model to maximize the distance between two high-turnover
pods. Te objective function is to avoid the congestion of
robots. Yuan et al. [9] established the ISAP mathematical
model that maximizes items’ relevance on pods. Te model
was solved by designing a heuristic algorithm. After that,
they developed the PSAP model, intending to reduce the
robots’ movement distance by considering pod association,
pod turnover, and workload between picking aisles.

2.4. Summary of Research Status. Table 1 summarizes the
literature related to SAP at the strategic level of RMFS. It can
be seen that the objective functions include the items’ rel-
evances and the robots’ movement distances. Zhang et al. [3]
also considered minimizing pickers’ energy expenditure
from the human aspect. Li et al. [30] and Yuan et al. [9]
solved the ISAP and PSAP by using a two-stage optimization
approach. Wang et al. [10], Li et al. [30], and Yuan et al. [9]
also considered picking aisles’ workload balance in the PSAP
mathematical model.

From the literature review presented above, it can be
inferred that the current literature does not consider the
joint optimization approach to solve the ISAP and PSAP
simultaneously. Moreover, the picking aisles’ workload
balance is the key issue that needs to be considered in the
PSAP.Terefore, this article studies the joint optimization
of ISAP and PSAP (J-IPSAP) with picking aisles’ workload
balance. Te optimization model is formulated to reduce
the robots’ movement distance. Te constraint of the
picking aisles’ workload balance is added to the model.
Te IGA is designed to solve the J-IPSAP model. Te item
storage allocation strategy, pod selection strategy, and
pod-decentralized storage strategy are designed in the
algorithm.

3. Mathematical Model

3.1. Problem Description. Assume that there are |T| picking
aisles and |L| locations in the RMFS. To satisfy customer
orders, it is proposed to assign |K| items on |R| pods and to
allocate |R| pods to |L| locations in the storage area. Since the
demand for items in customer orders will change over time,
the storage locations of the items and pods are also typically
updated periodically to accommodate order picking tasks in
further periods. Tis article assumes that the customer or-
ders in further periods can be predicted and the number of
storage locations of each item is known. Based on the in-
formation of the customer orders, the joint optimization of
ISAP and PSAP (J-IPSAP) needs to decide: (1) which pods
the items should allocate to and (2) which storage locations
the pods should allocate to.Te J-IPSAP optimization goal is
to reduce the robot’s movement distance. Meanwhile, to
balance the picking aisles’ workload, this article needs to
obtain pod selection solutions for customer orders (see
details in Section 4.3).
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An illustration of the J-IPSAP is shown in Figure 2.
Tere are fve SKUs and six pods, and the storage locations
for SKUs 1∼5 are 7, 6, 5, 3, and 3, respectively. Te so-
lutions of ISAP and PSAP can be seen in Figure 2. To pick
order 1, pod F is selected, and the robot’s movement
distance is 5. To pick order 2, pod E is selected, and the
distance is 3. To pick order 3, pods D and E are selected,
and the distance is 6. Te total movement distance is 14.
Meanwhile, the workloads of picking aisles 1 and 2 are 1
and 3, respectively, which is an unbalanced workload
distribution. Terefore, the suitable solutions of SAP and
pod selection are both important to minimize the
movement distance and balance the workloads within
picking aisles.

According to the complexity of the J-IPSAP, the fol-
lowing assumptions are made:

(i) Te system is a single-deep layout and has only one
picking station.

(ii) Te pod has 8 layers, each layer can store only one
type of item, and each item can be stored in
multiple pods.

(iii) No empty storage location is allowed on the pods.
(iv) Robots can only carry one pod at a time.
(v) Sufcient robots are available in the warehouse.
(vi) As shown in Figure 2, the distances between the

storage locations and the picking stations are
known. Tus, the path planning problem is not
considered.

(vii) Te selected pods will return to their original
storage positions, which is the same as other SAP
research [3, 7, 9, 23, 30].

(viii) Robot energy consumption and path confict
problems are not considered.

3.2. Mathematical Model of J-IPSAP. Te notations are
defned in Table 2.

Te decision variables are defned in Table 3.

Te J-IPSAP can be formulated as follows:

min 􏽘
i∈R

􏽘
j∈B

􏽘
l∈L

yij ∗ zil ∗Cl, (1)

s.t.

􏽘
i∈R

xijk � Djk ∀j ∈ B, k ∈ K, (2)

xijk ≤ qik ∀i ∈ R, j ∈ B, k ∈ K, (3)

M∗yij ≥ 􏽘
k∈K

xijk ∀i ∈ R, j ∈ B, (4)

􏽘
l∈L

zil � 1 ∀i ∈ R, (5)

􏽘
i∈R

zil ≤ 1 ∀l ∈ L, (6)

􏽘
k∈K

qik � Q ∀i ∈ R, (7)

􏽘
i∈R

qik � pk ∀k ∈ K, (8)
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Figure 2: Illustration of the J-IPSAP with workload balance.
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􏽘
q∈Q

Mikq � qik ∀i ∈ R, k ∈ K,
(9)

􏽘
i∈R

􏽘
j∈B

􏽘
l∈L

yij ∗ zil ∗Nlt ≤
􏽐i∈R􏽐j∈Byij

T∗ σ
∀t ∈ T, (10)

yij, zil, xijk, Mikq ∈ 0, 1{ } ∀i ∈ R, j ∈ B, l ∈ L, k ∈ K, q ∈ Q,

(11)

qik ∈ Z ∀i ∈ R, k ∈ K. (12)

Equation (1) is to minimize the robots’ total movement
distance to carry the selected pods from their assigned locations
to the picking station. Equation (2) means that customer
demand for item k in order j must be satisfed. Equation (3)
indicates the relationship between xijk and qik. In equation (4),
M is a large value to guarantee the relationship between xijk and
yij. Equation (5) indicates that the pod must be allocated to
only one storage location. Equation (6) indicates that no more
than one pod can be allocated to each location. Equation (7)
indicates that the items in each pod are Q. Equation (8) means
that the number of storage locations of item k is pk. Equation
(9) indicates that the total storage locations of item k on pod i

are equal to qik. Equation (10) is the workload balance con-
straint, which indicates that the pods’ carrying times in each
aisle are less than a threshold. Equations (11) and (12) are the
basic constraints.

Since the SAP is an NP-hard problem [31], this article
proposes the IGA to solve the mixed integer
programming model.

4. Algorithm Design

Section 4 designs the improved genetic algorithm (IGA) to
solve the J-IPSAP model. Te framework of the IGA is
introduced in Section 4.1, and then the initial solution, pod
selection mechanism, pod assignment strategy, and other
improvement mechanisms are introduced in Sections
4.2–4.7, respectively.

4.1. Framework Design. Te genetic algorithm (GA), pro-
posed by Holland [32], has strong robustness and can search
whole solutions in the solution space quickly. Aiming at the
characteristics of the J-IPSAP, this article proposes an IGA to
solve the J-IPSAP model. Te main algorithm framework of
the IGA is shown in Algorithm 1.

4.2. Initialization of Item Storage Location Solutions.
Mikq in the model is three-dimensional. To facilitate the
crossover and mutation operations, this article trans-
forms Mikq into a two-dimensional real variable Miq,
represents the relationship among pods, layers of the
pods, and items. As shown in Figure 3, the rows of the
individual indicate pods and the columns indicate layers

Table 2: Te notations used in the J-IPSAP.

Parameters Meaning Value
K Set of items k ∈ K

R Set of pods i ∈ R

Q Set of pod layers q ∈ Q

B Set of orders j ∈ B

L Set of pod locations l ∈ L

T Set of picking aisles t ∈ T (|T|≥ 3)
σ Te value of the threshold weight coefcient σ ≥ 0
Bk Te number of orders to purchase item k Bk ≥ 0
Okk′ Te number of orders to purchase both items k and k′ Okk′ ≥ 0
rk Te purchase frequency of item k rk � Bk/|B|

Djk If order j contains item k, it equals 1, otherwise, it equals 0 Djk ∈ 0, 1{ }

Nlt If location l is in aisle t, it equals 1, otherwise, it equals 0 Nlt ∈ 0, 1{ }

pk Te number of storage locations of item k pk � |R|∗ |Q|∗ rk/􏽐kϵKrk

Skk′
Te relevance coefcient of items k and k′, when k � k′, Skk′ � 0, otherwise

Skk′ � Okk′/B
Skk′ ∈ [0, 1]

Cl Te distance from location l to the picking station Cl > 0,∀l ∈ L

Table 3: Te decision variables used in the J-IPSAP.

Decision variables Meaning Value
Mikq If item k is on layer q of pod i, it equals 1; otherwise, it equals 0 Mikq ∈ 0, 1{ }

xijk If order j is fulflled by pod i, and item k is on pod i, it equals 1; otherwise, it equals 0 xijk ∈ 0, 1{ }

yij If order j is fulflled by pod i, it equals 1; otherwise, it equals 0 yij ∈ 0, 1{ }

zil If pod i is assigned to location l, it equals 1, otherwise, it equals 0 zil ∈ 0, 1{ }

qik Te number of layers of pod i with item k qik ∈ Z

Xijl
If the order j is fulflled by pod i, and pod i is allocated to location l, it equals 1;

otherwise, it equals 0 Xijl ∈ 0, 1{ }

6 Complexity



of the pods. Te value in the matrix indicates the item
stored in layer q of pod i. Te initial population is ob-
tained as follows:

Step 1: Te purchase frequency of item k can be cal-
culated by rk � Bk/|B|. pk � |R|∗ |Q|∗ rk/􏽐kϵKrk.
Step 2: Find a pair of items k and k′ with the largest S,
randomly assign them to the bits of the same pods, and
update the number of storage locations pk and pk′. If pk

and pk′ are equal to 0, fnd the next pair of items with
the largest S. If the remaining storage locations of one
of the items (for example k′) is zero, then the other item
k is assigned separately to the idle bit.
Step 3: Continue with the previous step until all the bits
have been allocated to the items.

4.3. Pod Selection Mechanism. Based on the ISAP solutions,
this article needs to fnd the pod selection solutions to satisfy
the set of orders B. To solve the pod selection problem, Xiang
et al. [7] frst used the greedy algorithm to obtain the initial
pod set and then used the local search algorithm to improve
the solution. Tis mechanism is shown in Algorithm 2. An
initial pod selection solution W is obtained by using the
greedy strategy (Greedy_strategy (P, N)), and the SwapPod
operator (SwapPod (W)) and the DeletePod operator
(DeletePod (W)) are executed if |W|≥ 3; otherwise, the
optimal solution W is obtained. Refer to Xiang et al. [7] for
the details.

4.4. Pod Assignment Strategy with Workload Balance
Constraint. Diferent from the related literature that con-
siders only the pod turnover rate in PSAP, the decentralized
pod storage assignment strategy (DPSAS), which considers
both the pod turnover rate and picking aisles’ workload
balance, is designed to solve the PSAP.

First, the number of pod visits α (i) is calculated
according to the pod selection solutions in Section 4.3. α (i)
is sorted in descending order. Second, pod i with the highest
turnover rate α (i) is allocated to position l with the minimal
Cl, and aisle t′ of location l is recorded. After that, the closest
locations in other aisles are allocated to the next pods in
sequence, until all the aisles are selected once. Finally, repeat
the above location selection mechanism until all the pods
have been assigned to the locations. Te pod storage as-
signment solution S is obtained. Te DPSAS can balance the
workload of the aisles and reduce the robots’ movement
distance efectively.

4.5. Fitness Function. Equation (10) is designed to balance
the workload of each aisle. If the solution satisfes equation
(10), the ftness function of IGA is the objective function in
the J-IPSAP model. Otherwise, a penalty cost will be added
to its ftness function [33]. Te penalty cost is identifed as
the range of the workload for the aisles multiplied by the
penalty coefcient δ, shown as follows:

􏽘
i∈R

􏽘
j∈B

􏽘
l∈L

yij ∗ zil ∗Nlt
⎛⎝ ⎞⎠

max

− 􏽘
i∈R

􏽘
j∈B

􏽘
l∈L

yij ∗ zil ∗Nlt
⎛⎝ ⎞⎠

min

⎡⎢⎢⎣ ⎤⎥⎥⎦∗ δ.

(13)

As denoted by Matl et al. [34], the range is usually been
used as the measurement of equity. Te penalty coefcient δ
is set to be 0.25, which is the same as Zhuang et al. [16].

4.6. Variation Function

4.6.1. Crossover Operator. Te crossover operator of the
algorithm adopts a two-point crossover to operate on the
two selected individuals. In Figure 4, Bit1 and Bit2 are
randomly selected in individual S1, and Bit1’ and Bit2’ are
randomly selected in individual S2. Te fragments between
two bits are then swapped to generate new individuals S1′ and
S2′.

Let pk be the total amount of storage that should be
allocated by item k, and then the number of bits of item k in
a feasible individual is equal to pk. Te new individuals
generated after the crossover may be infeasible. Tis article
refers to the method of Jiang et al. [8] to repair infeasible
individuals. Te infeasible individuals are repaired by
swapping the items’ storage locations of the redundant item
set and the items’ storage locations of the absent item set.
Refer to Jiang et al. [8] for the specifc steps.

Figure 4 shows the process of the crossover operator.Te
types of items and pk (k �1, . . ., 5) are given. Figure 5 shows
the correction of two infeasible solutions into feasible ones.
For example, individual S1′ is infeasible with the redundant
item set {1, 1, 4} and the absent item set {2, 3, 5}. Finally, the
correct individuals S1″ and S2″ are acquired.

4.6.2. Mutation Operator. Te mutation operator randomly
chooses two genes among individuals and swaps them. Te
number of storage locations per item is constant in this
operator and the generated new individual is feasible. In
Figure 6, two genes are randomly selected within individual
S1″ and swapped positions with a certain mutation proba-
bility. Finally, a new feasible individual S1‴ can be obtained.

4.7. Elite Preservation Strategy. Te elite preservation
strategy (Preserv_mechanism (P, P″, N)) is performed on the
parent population P and the ofspring population P″, aiming
to obtain the excellent new population. Te specifc method
of the elite preservation strategy is to select the top 20% of
the parent from the P and the top 80% of the updated
population of the P″ to form the new population, which can
be more efcient and easier to get the optimal solution.

5. Computational Experiments

Te details of the experiment setting are in Section 5.1. Te
efectiveness of the proposed IGA is analyzed with the
Gurobi, the two-stage optimization algorithm, and the re-
lated literature [9] in Section 5.2. Section 5.3 indicates the
sensitivity analysis by analyzing the efect of the layout of the
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storage area and the efect of the workload balance con-
straint. Some management insights are presented in
Section 5.4.

5.1. Experiment Description. Scholars have studied SAP
based on diferent warehouse layouts. Te order sizes B are
500, 1000, 1500, and 2000 in Yuan et al. [9]. Zhuang et al.
[16] set the number of pod locations to be {10, 20, 40, 80, 800,
1200}. Zhang et al. [3] set four diferent instances with the
combinations of the item (K), pod (R), and order (B):
K/R/B ∈ {10/10/1000}, {100/100/10000}, {200/200/100000},
and {500/500/1000000}. Tis article refers to order size in
Yuan et al. [9] and pod number in Zhang et al. [3] to set three
diferent classes of instances with the combination of
K/R/L/T, where K/R/L/T � {20/10/16/3} for the small-scale
instance, K/R/L/T � {250/200/240/7} for the medium-scale

instance, and K/R/L/T � {500/400/448/9} for the large-scale
instance. Te order sizes (B) are 20, 100, 500, 1000, and 1500
for diferent scale instances. Te storage capacity of pod Q is
8, the same as Yuan et al. [9].

Te order information is referred to the online re-
tailers’ dataset proposed by Guo et al. [35]. It is found that
the online retailers’ item requirements satisfy the ABC
rule, and the items’ number per order satisfes U [1, 3].
Based on these characteristics, randomly generate order
sets at diferent order sizes {20, 100, 500, 1000}. Based on
reality, every fve orders are combined into one batch and
sent to the picking station. σ is 0.7, and the efect of
diferent values of σ is discussed in Section 5.3.2. Te
hyperparameter settings of the IGA are discussed in
Section 5.2.1. Tis article codes with MATLAB R2022a,
running on a PC with a Core i7 CPU @ 3.20 GHz, 32.0 GB
RAM, and Windows 10.

Require: P (population), N (population size), B (set of orders)
(1) Step 1: Construct an initial pod combination W by the greedy strategy
(2) for (j �1; j≤ |B|; j++) do
(3) whileB(j) � ∅
(4) W←Greedy_strategy (P, N)
(5) end while
(6) Step 2: Improve the solution
(7) if (|W|≥ 3) then
(8) W← SwapPod (W)
(9) W←DeletePod (W)
(10) end if
(11) end for

ALGORITHM 2: Pod selection mechanism.

Require: P (population), N (population size), Pc (crossover probability), Pm (mutation probability), θ (iteration number)
(1) P← Initialize (N)
(2) for (i �1; i≤ θ; i++) do
(3) P, N, W←Pod_Selection (P, N)
(4) P, N, S←Pod_Assignment (P, N, W)
(5) P← Fitness (P, N, S)
(6) P′←Tournament_selection (P, N)/∗Ofspring individuals selected based on the binary tournament strategy∗/
(7) P″←Crossover (P′, Pc, N)
(8) P″←Mutation (P″, Pm, N)
(9) P←Preserve_mechanism (P, P″, N)
(10) end for
(11) return P

ALGORITHM 1: Improved genetic algorithm (IGA).

1 2 3 4 5 6
1 1 2 3 2 3 5
2 2 1 4 4 3 1
3 1 2 3 5 4 1
4 5 2 4 3 2 5

Pod

Layers
q

i

Figure 3: Te encoding of the solution Miq of the J-IPSAP.
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5.2. Results Analysis

5.2.1. Comparative Analysis with Gurobi Optimization So-
lutions in Small-Scale Problem. Before verifying the ef-
fectiveness of the IGA, we discuss the hyperparameter
settings of crossover probability (Pc) and mutation
probability (Pm) of the IGA. Four combinations of Pc and
Pm are conducted in small-scale instances. As far as we
know, if Pc is too large, the randomness of GA will in-
crease and lose the good individuals; if Pm is too small, the
diversity of the population will be less [32]. Terefore, we
set Pc/Pm � {0.2/0.05, 0.4/0.1, 0.6/0.15, 0.8/0.2}. According
to the problem scale, the value of the population size is 50.
From the results shown in Figure 7, we fnd that Pc/Pm �

{0.8/0.2} gets the minimum objective value and the fastest
convergence speed. Terefore, Pc/Pm � {0.8/0.2} is ap-
plicable in this paper. Te hyperparameter settings are
also the same with Guan and Li [24].

Te optimization solver Gurobi is used to verify the
correctness of the J-IPSAP model and the efectiveness of
IGA. Tomake Gurobi fnd the best solution in a limited time,
the J-IPSAP model is simplifed by deleting equation (10).

Since the objective function yijzil is nonlinear, let set
Xijl � yijzil, and replace it with the following equations:

Xijl ≤yij ∀i ∈ R, j ∈ B, l ∈ L, (14)

Xijl ≤ zil ∀i ∈ R, j ∈ B, l ∈ L, (15)

Xijl ≥yij + zil − 1 ∀i ∈ R, j ∈ B, l ∈ L, (16)

Xijl ∈ 0, 1{ } ∀i ∈ R, j ∈ B, l ∈ L. (17)

Table 4 lists the results of Gurobi and IGA in small-scale
instances, where the objective value (Obj) and CPU time (in
seconds) are reported. Te Obj is the robot’s movement dis-
tance. When order sizes B are 20 and 100, both Gurobi and
IGA can get the global optimal solution, and the running time
of IGA is slightly less than that of Gurobi. As the order size
increases, the Gap values of Obj between Gurobi and IGA
become larger, but the maximum value does not exceed 1.93%
(shown in the bold value in Table 4).TeCPU time ofGurobi is
much longer than that of IGA. When B is 1500, Gurobi is
unable to get the solution even after running for many days.

5.2.2. Comparative Analysis with Two-Stage Optimization
Algorithms under Diferent Scale Instances. Tis section
compares the results of IGA with those of the two-stage
optimization algorithms under diferent scale instances,
shown in Table 5. Two-stage-1 refers to solving the J-IPSAP
model in two stages. In the ISAP stage, the initial solution is
frst obtained using the greedy algorithm, and then an
optimal ISAP solution is obtained using the GA. Similar to
most ISAP literature, the objective considers the items’
relevance. In the PSAP stage, the pod storage solution is
obtained according to the pod selection mechanism and pod
assignment strategy of this article. Two-stage-2 refers to the
ISAP model and PSAP model established by Yuan et al. [9].
Te Obj is the movement distance plus the penalty cost.

In the three instances, the Obj of IGA is smaller than that of
Two-stage-1 and Two-stage-2. Te majority of results do not
violate the workload balancing constraint. As the order size
increases, the gaps between J-IPSAP and the other two algo-
rithms decrease.Te bold values in Table 5 show the minimum
Gap% in each instance. In the small-scale instances, Two-stage-
1 performs slightly better than Two-stage-2. Te highest Gap1
for Two-stage-1 is 81.82%, and the lowest is 13.13%. Tis is
because in small-scale instances, the number of pods is small,
and the search space of the solution is limited. However, as the

31 2 3 2 5 1 1 2 4 33

Individual S1 Individual S2

Bit 1 Bit 2 Bit 1' Bit 2'

Gene fragments of
Individual S1'

Gene fragments of
Individual S2'

k =1, 2, 3, 4, 5
yk: y1=5, y2=6, y3=5, y4=4, y5=4

2 1 4 4 1
1 2 3 5 1
5 2 4 3 5

1 2 3 2 53
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2

1 4 5 3 2
5 4 3 5 1
1 1 2 4 3

2 1 4 3 52
2
2
3

2 1 4 4 1
1 2 3 5 1
5 2 4 3 5
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2

1 1 1 2 34
1 4 5 3 2
5 4 3 5 1

2
2

2 3 2 3 35
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Figure 4: Te crossover processes.
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Figure 5: Correction of two infeasible individuals.
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Figure 6: Te mutation processes.
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problem scale increases, the global search capability of Two-
stage-2 gradually increases and Gap2 becomes smaller. It
reaches a minimum gap of 6.66% in large-scale instances.

5.3. Sensitivity Analysis

5.3.1. Efect of the Layout of the Storage Area. Tis section
analyzes the efect of the layout of the storage area. As the
number of pods in small-scale instances is too few, the exper-
iments are conducted on medium-scale and large-scale
instances.

Table 6 shows diferent layouts of the storage area in
medium- and large-scale instances. Diferent numbers of
picking aisles T represent diferent layouts of the storage
area. For example, when |L| is 240, T� 3 represents that there
are 60 pods in each row and 4 pods in each column, and the
number of picking aisles is 3. In Figures 8(a) and 8(b), with
the increase of T, the robots’ movement distance decreases
frst and then increases. Te optimal width-to-length ratios
in medium- and large-scale instances are 15 :16 and 24 : 20,
respectively.

It can be concluded that the optimal layout of the
storage area is the one that the width-to-length ratio tends
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Figure 7: Sensitivity analysis of hyperparameters Pc/Pm. (a) Pc� 0.2, Pm� 0.05, (b) Pc� 0.4, Pm� 0.1, (c) Pc� 0.6, Pm� 0.15, and
(d) Pc� 0.8, Pm� 0.2.

Table 4: Results of Gurobi and IGA for the small-scale instances.

K R L T B

Gurobi IGA

Obj Time (sec) Obj Gap (%) Time
(sec)

20 10 16 3 20 12 12.35 12 0.00 11.69
20 10 16 3 100 79 93.27 79 0.00 78.63
20 10 16 3 500 497 23913 501 0.80 2756.61
20 10 16 3 1000 1036 37163 1056 1. 3 3573.97
20 10 16 3 1500 — — 1632 — 4667.53
Te bold value in Table 4 indicates the maximum Gap of IGA and Gurobi.
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to be 1. Note that this conclusion is diferent from that of
Duan et al. [36]. Duan et al. [36] found out that the order
throughput time is shortest when the width-to-length
ratio is 0.5. Tis is because in Duan et al. [36], the
aisles are unidirectional and the warehouse is asymmetric.
However, in this article, aisles are bidirectional and the
warehouse is symmetrical.

5.3.2. Efect of the Workload Balance Constraint. Te J-
IPSAP model uses σ to balance the workload of each picking
aisle. Tis section further analyzes the infuence of diferent
σ, σ � 0, 0.5, 0.55, 0.6, 0.65, and 0.7. Note that there is no
penalty cost when σ � 0∼0.7, which means the model does
not violate the workload balance constraint.

Table 7 shows the results in diferent scale instances.
Te variance is used to measure the workload balance of
diferent picking aisles. It can be found that with the
increase of σ, the value of the objective function increases
and the variance of the workload in diferent picking aisles
decreases. Te minimum Obj and Variance in each in-
stance are shown bolded in Table 7. Te reasons are that

with the increase of σ, the workload balance constraint is
tighter, and the workload of each picking aisle is more
balanced. Te larger σ is helpful to ease the aisle con-
gestion, but the robot’s movement distance will increase.
Tus, it is recommended to set σ to around 0.5∼0.6 to
balance both the robot’s movement distance and the aisle
congestion.

Figure 9 shows the work intensity of the pods when
σ � 0 and 0.7 in the medium-scale instance. Te red color
indicates the pods with the largest movement times, and the
green color indicates the pods with the smallest movement
times. When σ � 0, the thermodynamic diagram shows a “V”
shape, and when σ � 0.7, the thermodynamic diagram shows
an “M” shape. It can be seen that when σ � (no workload
balance constraint), the high turnover pods (red pods) are
scattered closer to the picking station, thus the movement
distance is smallest. When σ � 0.7, the high turnover pods
(red pods) are scattered in diferent aisles; thus the move-
ment distance is largest, but the workload is most balanced.
Tis also refects the decentralized pod storage assignment
strategy proposed in the study.

Table 5: Comparative results among the IGA, Two-stage-1, and Two-stage-2.

Instances K R L T B

IGA Two-stage-1 Two-stage-2

Obj Distance Obj1 Distance Gap1
(%) Obj2 Distance Gap2

(%)

Small-scale

20 10 16 3 20 13.75 13 25 25 81.82 30 30 118.18
20 10 16 3 100 86 86 125 125 45.35 131 131 52.33
20 10 16 3 500 528 528 646 646 22.35 769 769 45.64
20 10 16 3 1000 1120 1120 1288 1288 15.00 1506 1506 34.46
20 10 16 3 1500 1713 1713 1938 1938 13.13 2301 2301 34.33

Medium-scale

250 200 240 7 20 49.50 49 95.50 95 92.93 84 84 69.70
250 200 240 7 100 421 421 624 624 48.22 593 593 40.86
250 200 240 7 500 3941 3941 4839 4839 22.79 4546 4546 15.35
250 200 240 7 1000 9105 9105 10188 10188 11.89 9962 9962 9.41
250 200 240 7 1500 14484 14484 15729 15729 8.60 15482 15482 6.8 

Large-scale

500 400 448 9 20 114.50 114 206.50 206 80.35 130 130 13.54
500 400 448 9 100 1013 1013 1589 1589 56.86 1149 1149 13.43
500 400 448 9 500 11155 11155 12881 12881 15.47 12269 12269 9.99
500 400 448 9 1000 27197 27197 30207 30207 11.07 29546 29546 8.64
500 400 448 9 1500 44105 44105 47736 47736 8.23 47041 47041 6.66

Note. Gapi � (Obji − Obj/Obj); Distance: the ftness function value without considering the penalty cost. Te bold values in Table 5 indicate the minimum
Gap of two-stage-1, two-stage-2, and IGA, respectively.

Table 6: Te layouts of the storage area in medium- and large-scale instances.

Instances |K| |R| |L| |B| T (width : length)

Medium-scale 250 200 240 500

3 (60 : 4)
5 (30 : 8)
7 (20 :12)
9 (15 :16)
11 (12 : 20)

Large-scale 500 400 480 1500

3 (120 : 4)
5 (60 : 8)
7 (40 :12)
9 (30 :16)
11 (24 : 20)
13 (20 : 24)
16 (16 : 30)

Complexity 11



5.4. Discussion. Tis article can provide some management
insights as follows:

(1) It is necessary to jointly optimize the item and pod
storage location problems, which can decrease the
robots’ movement distance and improve the per-
formance of RMFS. Te J-IPSAP makes the robot’s
movement distance smaller than one of the two-stage
optimization models.

(2) Te width-to-length ratio of the storage area has
a great impact on the robots’ movement distance. It
is recommended to set the width-to-length ratio of
the storage area is 1, which can further decrease the
robots’ movement distance.

(3) Managers should balance the robots’ movement
distance and the picking aisles’ workload in the J-
IPSAP. Te more stringent the workload balance
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Figure 8: Robots’ movement distance under diferent layouts in (a) medium-scale instance and (b) large-scale instance.

Table 7: Results of the infuence of picking aisles’ workload in diferent scale instances.

Instances K R L B σ Obj Distance Variance

Small-scale 20 10 16 100

0 7 7 62
0.5 82 82 24.67
0.55 83 83 13.56
0.6 84 84 12.67
0.65 85 85 8
0.7 86 86 6

Medium-scale 250 200 240 500

0 3638 3638 845.84
0.5 3896 3896 16.86
0.55 3908 3908 12.82
0.6 3939 3939 10.53
0.65 3946 3946 9.96
0.7 4089 4089  .43

Large-scale 500 400 448 1500

0 43077 43077 992.91
0.5 44105 44105 225.21
0.55 44385 44385 204
0.6 44538 44538 194.62
0.65 44730 44730 185.21
0.7 45160 45160 165.06

Te bold values in Table 7 indicate the optimal values of obj, distance, and variance at the three instances.
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constraint is, the larger the robots’ movement dis-
tance is, but the more balanced the workloads within
picking aisles are. It is recommended to set σ to
around 0.5∼0.6 to balance both the robot’s move-
ment distance and the aisle congestion.

 . Conclusions and Future Work

Tis article studies the joint optimization of ISAP and PSAP (J-
IPSAP) in RMFS by considering the workload balance within
the picking aisles. Te J-IPSAP mathematical model is for-
mulated to minimize the robots’ movement distance. Te
workload balance constraint is added to the model. By pro-
posing the decentralized pod storage assignment strategy, this
article designed the improved elite-preservation genetic algo-
rithm to efectively solve the J-IPSAP. Te results indicate that
the IGA has good performance in diferent scale instances.
Trough sensitivity analysis, it can be found that (1) when the
width-to-length ratio of the storage area is close to 1, the robot’s
movement distance is the smallest, and (2) the more stringent
workload balance constraint will increase the robot’s move-
ment distance but ease the aisle congestion.Te contribution of
this article is to extend SAP by jointly optimizing the ISAP and
PSAP to improve the picking efciency of RMFS. In addition,
the workload balance within the picking aisles is considered,
and a new decentralized pod storage allocation strategy is
proposed to solve the workload balance problem of robots to
avoid aisle congestion. Finally, the J-IPSAP model is efciently
solved by the designed IGA, which proves that the joint op-
timization is better than other algorithms.

In theoretical implications, the J-IPSAP model with
picking aisles’ workload balance is efcient in reducing the
robots’ movement distance and balancing the workload in
each picking aisle. In practical implications, there are several
decision recommendations for managers. (1) Managers are
recommended to decide the item and pod storage location
problems together when planning the storage locations. (2)
Te picking aisles’ workload balance is recommended to be

considered to reduce aisles’ congestion. (3) Te decentral-
ized pod storage assignment strategy designed in this paper
is efcient in deciding the pod storage assignment problem
with workload balance constraints. (4) Te width-to-length
ratio of the storage area is recommended to be set to 1, and σ
is recommended to be set to around 0.5∼0.6 to balance the
robots’ movement distance and picking aisles’ workload.

Te research still has some limitations and needs further
improvement in the future. First, this article considers only one
picking station. Besides, the replenishment process and the
human factors of the pickers are not considered in the picking
process. Future research can consider dynamic PSAP in a re-
plenishment state. Te human factors can be considered in the
human-robot collaborative picking system.
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