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Automated guided vehicles (AGVs), so necessary in industrial environments, require precise control of trajectory tracking to
make accurate stops at logistics stations, such as loading stations, or to pick up or drop of trolleys, pallets, or racks. Tis paper
proposes a hybrid control architecture for trajectory tracking of a hybrid tricycle-diferential AGV.Te control strategy combines
conventional proportional integral derivative (PID) control with advanced nonlinear Lyapunov control (LPC). Te LPC is used
for trajectory tracking while the PID is used for speed control of the robot. Te stability of the controller is demonstrated for any
diferentiable trajectory. When a PID optimized with genetic algorithms is compared with the proposed controller for several
trajectories, the LPC outperforms it in all cases.

1. Introduction

Automated guided vehicles (AGVs) are used in industry to
replace conveyors and manned industrial trucks. Tey
provide more fexibility than other types of transportation
for logistics and production applications. Tey are safer and
more efcient than manned industrial vehicles, and they
improve the quality of the processes where they are
implemented [1]. Te digitalization of processes and the
industry 4.0 paradigm have driven its deployment in the
industrial sector [2].

For these AGVs to develop their full potential, it is
necessary to incorporate control systems that allow precise
tracking of trajectories. On the one hand, they should not
divert the defned routes so as not to cause safety problems,
process failures and production stops [3]. On the other hand,
they need to be very precise in following the trajectories to

make stops at stations, for example at charging stations (so
that there are no problems with the brushes or charging
pads) or when they are going to pick up or drop of a trolley,
a pallet or a rack [4].

Today, most of these vehicles use conventional PID
controllers [5], although some research show that intelligent
controllers are more and more used, being a fact that such
implementations in industry do not occur at the same speed
as in other felds [6]. Te conventional controllers have
proven to be very efective and versatile in diferent appli-
cations. However, it is well known that they have certain
limitations for the control of nonlinear systems. In the case
of AGVs, the trajectories described in logistics applications
can be nonlinear, and even more, sometimes they must cope
with non-linear efects. So, it is interesting to explore other
advanced techniques for the design of controllers, such as
intelligent algorithms or those based on Lyapunov theory.
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In this work, a nonlinear controller based on Lyapunov
(LPC) is proposed for AGV trajectory tracking. Te con-
troller is tested in simulation with a hybrid AGV that
combines the tricycle and diferential kinematic models.
Tose models represent a real AGV, the Mouse AGV de-
veloped by Asti Mobile Robotics.Tis AGV is quite common
in the industry due to its versatility and performance al-
though it is not usually considered in the literature because
its model is quite more complex than a diferential robot [7].
Te new controller is compared with a trajectory tracking
PID regulator optimized with genetic algorithms for dif-
ferent trajectories, and in all of them the LPC obtains better
results than the conventional PID in terms of precision in
following the trajectories. In both control approaches the
wheels speed control is performed with the same conven-
tional PID controllers.

Te main contributions of this work can be summarized
as follows:

(i) A hybrid control architecture for mobile robots has
been proposed. Tis control strategy combines
nonlinear Lyapunov control with conventional PID
controllers.

(ii) Lyapunov’s control law is based on the kinematic
model of the vehicle and can be adapted for diferent
types of mobile robots.

(iii) Te stability of the proposed controller has been
demonstrated. Following Lyapunov theory, it is
proven that the controller is stable as long as the
reference trajectory is diferentiable.

(iv) Te controller has been evaluated with 3 diferent
trajectories: circle, ellipse, and lemniscate. Tese
trajectories are common in the industrial applica-
tions of these vehicles [3, 8].

Te rest of the paper is organized as follows. In Section 2
some related works are commented. Te model of the AGV
is described in Section 3. Section 4 presents the hybrid
control architecture and proves its stability according to
Lyapunov’s theory. Simulation results are discussed in
Sections 5 and 6. Te last section is dedicated to the con-
clusions and future works.

2. Related Works

Tere are diferent studies focused on the control of an
AGV in trajectory tracking and trajectory planning. Te
recent review by [9] presents diferent methods such as
PID, sliding control, fuzzy logic combining with neural
networks, model predictive control, backstepping tech-
niques, among other, to compensate for lumped distur-
bances on the path tracking during the movement of an
AGV. A systematic literature review about the position
control of AGVs is presented in [10]. In this case the
principal focus is on the control strategies used in the AGV
position control problem, together with the mathematical
model considered, the sensors and guidance system used,
and the maximum payload of the vehicle and operation
under diferent load conditions.

Studies on AGV trajectory tracking usually concentrate
on controlling the AGV to minimize the guidance error for
a defned trajectory. It is difcult to deal with the efects of
nonlinearities present in the trajectories during AGV
tracking of the reference path because they are implicit in the
trajectories and afect the control of the guidance error. To
address this problem, diferent techniques have been ap-
plied, some coming from the felds of artifcial intelligence or
machine learning, or from the feld of nonlinear control such
as sliding mode control or Lyapunov based control.

To mention some examples, in [11], a tracking controller
for automatic guided vehicles (AGV) based on a kinematic
model is proposed to follow a desired trajectory using
Lyapunov method to provide robustness against load dis-
turbances and sensor noise. Zhang et al. proposed a Lya-
punov model-based predictive control method for the AGV
path following problem [12]. Te predictive path following
the control method is restricted by the Lyapunov function,
which guarantees the stability of the AGV motion control.
Te controller is constrained by the Lyapunov stability
criteria to prove the local and global convergence of the
control system. In [13], the authors propose the design of an
adaptive controller of a mobile robot for trajectory tracking,
performing the stability study by applying Lyapunov’s
theorem. In [14], the authors perform an analysis of the
trajectory tracking control using a Lyapunov function that
guarantees the global stability of the system based on the
kinematic model. For this purpose, they use as a nonlinear
control technique the backstepping, designing a trajectory
tracking controller of the AGV with nonholonomic con-
straints; this study is performed for diferent trajectories.
Another interesting article is the one by [15], where based on
a kinematic model of an AGV wheeled parking robot,
a sliding mode controller is designed with a Lyapunov direct
method and an improved fast stationary power approach law
is then applied. Simulation of linear and circular trajectories
are used to demonstrate the efectiveness of this approach.

In the paper by [16], the dynamics and kinematics
models of a four-wheel steering AGV were established, and
the Lyapunov direct method was used to construct a tra-
jectory tracking controller with global asymptotic stability.
Besides, an adaptive particle swarm optimization (PSO)
algorithm was applied to optimize the control parameters of
the controller. Te proposed control approach was com-
pared with an adaptive model predictive control under
simulated working condition of moving centroid giving
better results regarding trajectory tracking accuracy.

Others research works use the sliding control approach
as an efective method for nonlinear systems, with fast re-
sponse and insensitivity to parameter changes and external
disturbances. Jiang et al. address the AGV trajectory fol-
lowing control problem with nonholonomic constraints by
proposing a sliding mode control approach [17]. Tis work
analyses the AGV motion characteristics and designs
a backstepping sliding mode control with a ranging law.Tis
range law obtains the convergence rate of tracking errors. In
addition, with the sliding mode controller, it aims to strictly
guarantee the asymptotic stability of the tracking deviations.
It is applied to an AGV which structure consists of two
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actuated wheels and two passive wheels, and the front wheels
mainly support the body of the mobile AGV, whereas the
rear wheels drive the vehicle. In [18], the authors design
a robust controller for trajectory tracking of a two-wheeled
mobile robot by applying a second-order sliding mode
control methodology to ensure the continuity of torque
input and robustness against disturbances. Te designed
sliding mode control smooths out the commutation term. In
[19], the authors defne the kinematic and dynamic models
of the autonomous guided vehicle and propose a design of
a closed-loop control to realize trajectory tracking. Tey
design a sliding mode control based on an improved control
law to control the guidance error of the AGV. Taghavifar and
Mohammadzadeh [20], using a two-degrees-of-freedom
bicycle model, propose an integral backstepping control
that is hybridized with a terminal sliding mode control
method to enhance the lateral path-tracking performance of
the multilevel speed AGV.Te Lyapunov stability theorem is
employed to guarantee the global asymptotic stability of the
closed-loop system and the convergence of tracking errors.

Model predictive control is another approach that has
been used for autonomous guided vehicles. Te paper by
[21] defnes a control scheme that consists of three parts:
a referential path, a model predictive controller (MPC)
controller, and a kinematic model of a two-wheel diferential
driving AGV. Simulation control based on MPC is proposed
and the simulation control experiment is carried out in the
robotic operative system (ROS). Te MPC controller adopts
a quadratic programming method to obtain the optimal
linear and angular velocities as the output to control the
AGV. Te work by Liu et al. [22] proposes a real time
nonlinear MPC control method that considers both tracking
accuracy and lateral load transfer limitation for heavy duty
AGVs. In this case, the AGV with a four-wheel-steering
four-wheel-driving structure is simplifed into the well-
known bicycle mode. In [23], the authors develop an
adaptive learning MPC (ALMPC) scheme for the AGV
trajectory tracking problem with input constraints. Tis
article considers a general AGV with two diferential driving
wheels subject to both the parametric uncertainty and ex-
ternal disturbances. A lemniscate trajectory is used to show
the robustness of the method.

Some intelligent techniques have also been used to
enhance other controllers or to implement some control
elements. Te paper by [24] designs a fuzzy logic controller
for a 16-wheel heavy-duty AGV that is simplifed as a two-
wheel AGV model. Simulation of circular and straight
trajectories prove a good tracking by the AGV. In [4], an
intelligent hybrid control scheme that combines re-
inforcement learning-based control (RLC) with conven-
tional PI regulators is proposed.Te PI regulators are used to

control the speed of each wheel while the input reference of
these regulators is calculated by the RLC in order to reduce
the path tracking guiding error and to maintain the lon-
gitudinal speed. In addition, the PID regulators have been
tuned by genetic algorithms. Another example is found in
[25], where four tuning methods: Ziegler Nichols, empirical,
particle swarm optimization (PSO), and beetle antennae
searching (BAS) are applied to adjust the parameters of the
PID that controls the AGV platform. Results are compared
in four paths including the circle, ellipse, spiral and 8-shaped
paths.Te paper by Binh et al. [26] proposes a solution for an
AGV robot to efectively monitor a moving object using
deep learning and follow it. It is based on a model of a four-
wheeled self-propelled robot vehicle that is built and that can
adaptively track the speed and direction of a human’s
movements. Similarly, in [27] an active tracking system and
a control algorithm are implemented for a person-following
real industrial AGV. Te algorithm uses a LIDAR sensor to
detect and track the target.

Tis brief review of some related works shows that most
authors agree that AGVs must have capabilities provided by
nonlinear control techniques to address the efects of
nonlinearities present in trajectories or other intrinsic efects
of the vehicle, such as wear or friction. Although there are
some studies in the scientifc literature on nonlinear control
methods applied to trajectory tracking of AGVs, the main
diferences with the work here presented is that in this paper
the stability is analyzed, it deals with a general model of
a hybrid tricycle diferential industrial vehicle, not just
a diferential robot as most of them, and that the control has
been tested including some non-linearities such as the
friction in the wheels and in the drive unit.

3. Modelling of the AGV

In this section the model equations that describe the physical
behaviour of a hybrid diferential-tricycle AGV are de-
scribed. Briefy, the AGV is composed of a traction unit that
functions as a diferential mobile robot, connected to the
body of the AGV through an axis on which it pivots. Te
AGV body kinematics follows the movement of a tricycle-
type vehicle, but steering control is performed by the drive
unit itself rather than by the front wheel of the tricycle. Te
mathematical model follows the equations described in
detailed in [1]. Figure 1 shows a schematic of the AGV in the
(X, Y) plane.

Te dynamic equations are based on the Lagrange-Euler
approach (1) and (2) [1]. Te efective torque on the right
and left wheels of the traction unit (1) and the system
equations that describe the angular accelerations are given
by
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MeR � MR − FSWR
· sign · _θR ,

MeL � ML − FSWL
· sign · _θL ,
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, (2)

where the translational and rotational frictions are described
by (3) and (4), respectively.

frT � 0.5 · δair · SAGV · Caero · V
2
h  · sign Vh(  + 9.8 · mT · Croll · sign Vh( , (3)

frR � Fvh · _∅h + Fsh · sign _∅h . (4)

On the other hand, the kinematic equations are obtained
as the combination of a diferential and a tricycle vehicle.
Equations (5)–(8) allows to obtain the position and orien-
tation of the vehicle.

VL � Rh · _θL,

VR � Rh · _θR,

(5)
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VL + VR

2
cos ∅h( ,
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2
sin ∅h( ,
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,

(6)

_Xb � Vh cos(c) cos ∅b( ,

_Yb � Vh cos(c) sin ∅b( ,
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Vh

Lb

sin(c),

(7)
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�������
_X
2
h + _Y

2
h



�
VL + VR

2
. (8)

Te vehicle is subjected to kinematic constraints to avoid
the winding of the cables and the slippage (91011):

c � ∅h −∅b, cmin ≤ c≤ cmax, (9)

_Xb sin ∅b(  − _Yb cos ∅b(  � 0, (10)

_Xb sin ∅b + c(  − _Yb cos ∅b + c(  − _∅bLb cos(c) � 0, (11)

Path
Y

Guiding Sensor

Body

Traction unit
(xh, yh, øh)

(xb, yb, øb)

X

Figure 1: Traction unit and AGV body [1].
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where the main variables of the previous equations with the
corresponding units are the following:

(i) (xh, yh,∅h): position (m) and orientation (rad) of
the AGV drive unit.

(ii) (xb, yb,∅b): position (m) and orientation (rad) of
the AGV’s body.

(iii) c: steering angle (rad).Tat is the orientation of the
traction unit respect the body.

(iv) Vh: longitudinal speed of the traction unit (m/s).
(v) €θr: angular acceleration of the right wheel of the

drive unit (rad⁄ s2).
(vi) €θl: angular acceleration of the left wheel of the drive

unit (rad⁄ s2).
(vii) MeR: efective torque on the right wheel of the

traction unit (Nm).
(viii) MeL: efective torque on the left wheel of the

traction unit (Nm).
(ix) frT: translational frictional force (N).
(x) frR: rotational frictional force (N).
(xi) MR: motor torque in the right wheel (Nm).
(xii) ML: motor torque in the left wheel (Nm).

4. Hybrid Control Architecture

As seen in equation (2), which models the dynamic of the
system, the relationship between the torque (MeR, MeL) and
the acceleration (€θR, €θL), and thus with the speed ( _θR, _θL), is
mainly linear. Tere are only small nonlinearities related to
the friction. Terefore, the control of the wheel speed by
adjusting the torque can be efciently solved by PID reg-
ulators, whose ability to control linear systems has been
widely demonstrated.

On the other hand, in equations (6) and (7) it is possible
to observe that the sinusoidal functions introduce nonlinear
behavior in the kinematic model of the vehicle. In addition,
the trajectories are other sources of nonlinearities. Tese
nonlinearities appear in the trajectory tracking control, that
in this case is implemented so the references for the angular
and the longitudinal speed (w, u) are generated to minimize
the tracking error. Terefore, the trajectory tracking control
is solved by the LPC strategy which has proven efcient in
nonlinear control.

Terefore, the idea of this proposed control architecture
consists of combining the following controllers:

(1) Two conventional linear PI controllers, to control the
speed of each wheel, right and left, of the
traction unit.

(2) A controller based on the Lyapunov stability method
to deal with trajectory tracking control.

Figure 2 shows the architecture of this hybrid control
system where the LPC and the PI controllers can be
identifed.

Te variables involved in the speed control (PID) are:

(i) MR, motor torque of the right wheel (output of the
right PI speed controller)

(ii) ML, motor torque of the left wheel (output of the left
PI speed controller)

(iii) vR, longitudinal speed of the right wheel (output of
the AGV and input of the right PI speed controller)

(iv) vL, longitudinal speed of the left wheel (output of the
AGV and input of the left PI speed controller)

(v) vRREF
, reference speed of the right wheel (input of

right PI speed controller), it comes from the LPC
passing frst through the inverse kinematics of the
AGV model.

(vi) vLREF
, reference speed of the left wheel (input of right

PI left controller), it comes from the LPC passing
frst through the inverse kinematics of the
AGV model.

Te variables involved in the trajectory control (LPC)
are:

(i) u, longitudinal speed reference generated by
the LPC.

(ii) w, angular speed reference generated by the LPC.
(iii) (Xe, Ye, ∅e), position error (m) and orientation

error (rad) with respect to the trajectory to be
tracked. Te LPC tries to make these values zero.

Finally, the variables that play a role in the trajectory
planner are:

(i) vrefd, reference longitudinal velocity, specifed by the
user; it is the one considered to sample the points in
the trajectory.

(ii) (Xd, Yd,∅d), reference position (m) and reference
orientation (rad) generated by the trajectory planner.
Tese desired position and orientation are used to
calculate the error (Xe, Ye,∅e), that is the diference
between these desired values and the current posi-
tion and orientation (Xr, Yr,∅r).

Te functional description of this control strategy is as
follows. Te PI controllers of the left and right wheels have
the function of adjusting the input torque of the motors, MR,
and ML, respectively, so the AGV can follow the speed
reference of each wheel (vRREF

, vLREF
). Tese speed references

of each wheel are obtained by considering the inverse ki-
nematics of the drive unit of the AGV.

Te inverse kinematics module receives both, the ref-
erence angular velocity w and the reference longitudinal
velocity u obtained by the LPC controller, transforming
them into reference velocities for each wheel (vRREF

, vLREF
).

Te LPC controller receives as input the position and
orientation error, the diference between the position and
orientation of the trajectory generated by the trajectory
planner and the output position and orientation of the AGV
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model. Te reference longitudinal velocity vrefd (of the
system as a whole) confgured in the trajectory planner
module is used to sample the trajectory to generate the
position and orientation that has to be tracked. In this way,
the reference longitudinal velocity is included in the control
strategy.

With this control strategy, both the reference longitu-
dinal velocity u and the reference angular velocity w are
generated by the LPC control ensuring the stability, so that
the AGV can follow the path predefned by the path planner
correctly and, at the same time, solve both the vrefd velocity
profle tracking problem and the tracking control to mini-
mize the error in the path, making both adjustments si-
multaneously and in real time.

It is important to remark that the speed profle tracking
and trajectory tracking settings must be done simultaneously

because they are interrelated and coupled in the AGV, and
with this architecture the intention is to achieve that goal.

It is also noteworthy to note that vrefd and u are diferent
signals. Te input of the path planner is vrefd, the reference
longitudinal velocity. Tis speed is specifed by the user as it
is intended that the robot follows a determined speed profle.
Tis speed is used by the path planner to sample the desired
points of the trajectory and this way to obtain the points
(Xd, Yd,∅d). On the other hand, the outputs of the LPC, u

and w, are generated to reduce the tracking error to zero. If
the AGV perfectly follows the trajectory, the output u of the
LPC would perfectly match vrefd. However, there is always
a small tracking error. In other words, the output u of the
LPC asymptotically tends to follow vrefd.

Tis control architecture can be formalized by equations.

he ti(  �

Xe ti( 

Ye ti( 

∅e ti( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Xd ti(  − Xr ti−1( 

Yd ti(  − Yr ti−1( 

∅d ti(  −∅r ti−1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, _hd ti(  �

_Xd ti( 

_Yd ti( 

_∅d ti( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

w ti( , u ti(   � fLPC he ti( , _hd ti(  , (13)

vLREF
ti(  � u ti(  −

w ti(  · Lh

2
,

vRREF
ti(  � u ti(  +

w ti(  · Lh

2
,

(14)

errvL
ti(  � vLREF

ti(  − vL ti−1( ,

errvR
ti(  � vRREF

ti(  − vR ti−1( ,
(15)

ML ti(  � KVp ∗ errvL ti(  + KVI  errvL ti( dt, (16)

MR ti(  � KVp ∗ errvR ti(  + KVI  errvR ti( dt. (17)
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Figure 2: Hybrid control architecture for AGV trajectory tracking with Lyapunov-based controller.
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Te inverse kinematics model is calculated by equation
(14). Tese expressions are obtained from the kinematic
model of the diferential vehicle (5). Substituting the current
speed by its reference in the equations of the angular and
longitudinal speed, the equation of the inverse kinematics
(14) is derived and then it is possible to obtain equation (18).
Tis explains how reference angular velocity and the ref-
erence longitudinal velocity are obtained from the inverse
kinematics model.

u ti(  �
vLREF ti(  + vRREF

ti( 

2
,

w ti(  �
vRREF

ti(  − vLREF ti( 

Lh

.

(18)

Te tuning constants of the PI speed controllers were
adjusted by genetic algorithms (GA). Te equation (19) was
used as ftness function. Te confguration of the GA was as
follows. Te size of the population was set to 50 individuals,
the crossover fraction was set to 0.8, the mutation rate was
0.2, and the elite size was 5%. Individuals were randomly
initialized.

fcv �
1

Tsim


i

u ti(  − Vh ti( 


. (19)

4.1. Mathematical Description of the LPC. Te control ob-
jective is formulated directly in the trajectory space.Te goal
is that the vehicle must follow the desired motion in the
plane of the trajectory to be followed. Tis motion is
specifed by the trajectory [xd(t), yd(t)]T, which is assumed
to be diferentiable. Tis objective can be formalized by

lim
t⟶∞

x(t)

y(t)
  �

xd(t)

yd(t)
 . (20)

In this industrial robot, the kinematic model is defned as
a function of longitudinal velocity u and angular velocity w,
with the point located at the center of the axle of traction unit
(xh, yh,∅h), as represented in Figure 3. It can be expressed
by.

_xh

_yh

_∅h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

cos∅h 0

sin∅h 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

w
 . (21)

Te matrix that describes the kinematic model of
equation (21) is not invertible. However, this is a re-
quirement to apply the state feedback technique to design
the control low.Tus, to make it invertible, the orientation of
the diferential unit is not considered. In this way, one row of
the matrix of the kinematic model is removed, obtaining
a square and thus invertible matrix.

A point (xhp, yhp) located in the perpendicular axis to
the axle of the wheels at a distance called “a” is defned (see
Figure 3). Tis point of the traction unit will follow the path.
Te Jacobian matrix of the kinematic model at the point
displaced from the wheel axis a distance “a” will be used. For
this purpose, it is considered that there is no lateral
displacement.

Tis point (xhp, yhp) is given by

xhp

yhp

⎡⎣ ⎤⎦ �
xh + a∗ cos∅h

yh + a∗ sin∅h

 . (22)

Te derivative of this point is.

_xhp � _xh − a∗ _∅h ∗ sin∅h � u∗ cos∅h − a∗w∗ sin∅h, (23)

_yhp � _yh + a∗ _∅h ∗ cos∅h � u∗ sin∅h + a∗w∗ cos∅h. (24)

Tese equations can be expressed in matrix form

_xhp

_yhp

⎡⎣ ⎤⎦ �
cos∅h −a∗ sin∅h

sin∅h a∗ cos∅h

 
u

w
  � J

u

w
 . (25)

As said, the matrix J must be invertible; therefore, its
determinant must be diferent from zero. To ensure this, the
distance a must be also diferent from zero. In this work the
value a � 0.0 8 cm has been set, without losing generality.

By applying the state feedback, the control law is defned
as follows:

uRef �
u

w
  � J

−1 ∗
_xd

_yd

  + K
xd − xhp

yd − yhp

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ � J
−1 ∗ ( _hd + K · he), (26)

where

(i) hd �
xd

yd

  is the vector of the desired or reference

position.

(ii) h �
xhp
yhp

  is the position vector of the vehicle.

(iii) he � [hd − h] �
xd − xhp
yd − yhp

  is the position error
vector.
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(iv) _h �
_xhp
_yhp

  is the velocity vector of the

mobile robot.

(v) _hd �
_xd

_yd

  is the velocity vector of the reference.

(vi) K is a positive defned matrix which determines the
gain of the controller.

(vii) uRef �
u

w
  is the reference vector of the control

law. Te components are the longitudinal reference

speed u and the rotational reference speed w that
are the outputs of the LPC.

Tose equations illustrate the design of J for a diferential
robot unit. But this control law can be applied to diferent
types of robots just updating matrix J. For instance, if the
traction unit were a tricycle, equations (23) and (24) must be
updated and therefore, so must the J matrix.

In this case the point (xhp, yhp) is given by equations as
follows:

_xhp � _xh − a∗ _∅h ∗ sin∅h � u cos(c)∗ cos∅h − a∗
u

Lb

sin(c)∗ sin∅h, (27)

_yhp � _yh + a∗ _∅h ∗ cos∅h � u cos(c)∗ sin∅h + a∗
u

Lb

sin(c)∗ cos∅h, (28)

where c is the steering angle of the steering wheel. Now let us
defne the auxiliar control signals: u1 � u cos(c) and
u2 � u sin(c). Ten equations (27) and (28) can be also
expressed in a matrix form (29), which is equivalent to (25).

_xhp

_yhp

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

cos∅h −
a

Lb

∗ sin∅h

sin∅h

a

Lb

∗ cos∅h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1

u2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � J

u1

u2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (29)

Tus, the same control law (26) used for the diferential
traction unit is also applicable to the tricycle case, but it is
necessary to consider that the J matrix has to be updated. It
is noteworthy to remark that in this case the control law
generates the signals u1 and u2.

uRef �
u1

u2
  � J

−1 ∗
_xd

_yd

  + K
xd − xhp

yd − yhp

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ � J
−1 ∗ ( _hd + K · he). (30)

From signals u1 and u2, the control signals for the tri-
cycle u and c are obtained by

y

vL

vR

w
u

Lh

Lh

x

a

(xhp , yhp )

(xh, yh, øh)

øh

Sensor
Magnetic Tape

Figure 3: Traction unit of the AGV and displaced point.
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u �

��������

u
2
1 + u

2
2 

2



, (31)

c � a tan
u2

u1
 . (32)

Tis process can be applied for other robots with dif-
ferent kinematic confgurations to obtain the equivalent J
matrix and control law.

4.2. Study of the Control Law Stability. To carry out the
stability analysis, the AGV is assumed to perfectly follow the
reference, so he � [0 0]T.Tis way it is possible to express the
relationship between the velocity vector _h of the AGV and

the reference vector uRef that is the output from the Lya-
punov controller by

_h � J∗ uRef . (33)

Tis expression can be considered correct if a perfect
tracking of the AGV velocity _h is assumed, that is, without
errors. Tis way the control law cancels the J matrix.

A Lyapunov candidate function given by (34) is pro-
posed to demonstrate the stability of the control law. Tis
function is a positive defnite function V≥ 0.

V �
1
2

he 
T

he , (34)

Te derivative of this function is

_V �
1
2

_he 
T

he  +
1
2

he 
T _he  � he 

T _hd − _h  � he 
T _hd − J∗ uRef . (35)

Substituting (26) in (35), equation (36) is obtained.

_V � he 
T _hd − J∗ J

−1
( _hd + K∗ he)  � − he 

T
[K∗ he].

(36)

As K is positive defned, _V is negative defned, and this
implies that the system with this control law is locally as-
ymptotically stable (LAS).

When t⟶∞, thenV⟶∞, therefore the system
also is globally asymptotically stable (GAS). It is noteworthy
to remind once again that the trajectories must be derivable,
which is usually the case of real trajectory of these industrial
vehicles.

As equations (25) and (29) are equivalent as well as (26)
and (30), the study of the stability according to Lyapunov is
the same for diferential or tricycle traction units.

5. Simulation Setup

Te architecture of Figure 2 with the Lyapunov stability
controller (LPC) has been validated in simulation with the
model of a hybrid AGVwith the parameters listed in Table 1.
Te results have been obtained using Matlab software. Each
simulation runs for 40 s.

Te values of the parameters used in the simulation that
correspond to a real AGV, the commercial Mouse AGV of
Asti Mobile Robotics, are shown in Table 1 [1].

Te application of the equations derived in the previous
sections can be implemented by an algorithm which pseudo-
code is shown in Algorithm 1. Given a set of known motor
torques (ML(ti), MR(ti))  in ti ∈ t0, t1, . . . , Tsim , this al-
gorithm can be run in open loop, obtaining the evolution
of the state variables: (xh, yh,∅h), (xb, yb,∅b), (θR, θL),

( _θR, _θL). For closed-loop execution, as it is part of the path-
following control strategy, the function Controller()must be

substituted by the expression of the function used to control
the system in practice. In our case, the implementation of the
controllers is explained in Section 4.

5.1. Trajectories Evaluated. To validate the proposed hybrid
control strategy, three diferent trajectories have been used:
a circle (Figure 4), an ellipse (Figure 5) and a lemniscate
(Figure 6). Tese are characteristic curves that can be found
in the workspace where AGV performs logistics operations.

Circle:

x(t) � acir cos(t), (37)

y(t) � acir sin(t), (38)

For this circular trajectory, acir is the radius. Te kine-
matic constraints of the AGV are considered, so trajectory
tracking becomes more difcult as the radius becomes
smaller. If the curves are very sharp, the AGV could leave out
the circular trajectory. After several simulation tests with the
circular trajectory this parameter is set to acir � 0.7 m.

Ellipse:

x(t) � aeli cos(t), (39)

y(t) � beli sin(t). (40)

In the ellipse trajectory, aeli and beli are the semi-axes of
the ellipse. Again, due to the kinematic constraints of the
AGV, the trajectory tracking becomes more difcult as the
semi-axes become smaller. If they are too small, the AGV
could abandon the trajectory. After several simulation tests,
the selected values are (aeli, beli) � (1.4, 0.7)m.

Lemniscate:
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Table 1: Parameters of the AGV.

Parameter Description Value (units)
Lh Distance between wheels of the AGV 30 cm
Lb Distance between rear wheels and traction unit 100 cm
Rh Radius of front wheels 6 cm
Rb Radius of rear wheels 9 cm
mAGV Mass of the AGV 100 kg
Ih Inertia of traction unit 0.11 kg m2

Croll Rolling coefcient 0.01
Caero Aerodynamic coefcient 0.35
Fsh Static friction coefcient of traction unit 0.1N
Fvh Viscous friction coefcient of traction unit 0.01Ns/rad
Fsw Static friction coefcient of traction wheels 2.94e− 2
Fvw Viscous friction coefcient of traction wheels 5e− 4Ns/rad

t � t0
θR⟵ θR0

, θL⟵ θL0
, _θR⟵ _θR0

, _θL⟵ _θL0

Xh⟵Xh0
, Yh⟵Yh0

,∅h⟵∅h0
, Xb⟵Xb0

, Yb⟵Yb0
,∅b⟵∅b0

A⟵ mT∙Rh/2 mT∙Rh/2
IhRh/Lh −IhRh/Lh

 

While t<Tsim {
MeR⟵MR − FSWR

∙sign∙( _θR), MeL⟵ML − FSWL
∙sign∙( _θL)

[MeR, MeL]⟵Controller(xh, yh,∅h, trajectory)

VL⟵Rh∙ _θL, VR⟵Rh∙ _θR

Vh⟵ (VL + VR)/2
frT⟵ 0.5∙δair∙SAGV∙Caero∙(V2

h)∙sign(Vh) + 9.8∙mT∙Croll∙sign(Vh)

frR⟵Fvh∙ _∅h + Fsh∙sign( _∅h)

B⟵ (MeR + MeL)/2Rh − frT
(MeR + MeL)Lh/2Rh − frR

 

€θR
€θL]⟵A

−1
× B

_Xh⟵VL + VR/2 cos(∅h), _Yh⟵VL + VR/2 sin(∅h), _∅h⟵VR + VL/Lh
_Xb⟵Vh cos(c)cos(∅b), _Yb⟵Vh cos(c)sin(∅b), ∅b⟵Vh/Lb sin(c)

θR⟵  _θRdt, θL⟵  _θLdt

_θR⟵  €θRdt, _θL⟵  €θLdt

Xh⟵  _Xhdt, Yh⟵  _Yhdt,∅h⟵  _∅hdt

Xb⟵  _Xbdt, Yb⟵  _Ybdt,∅b⟵  _∅bdt

If ∅h >∅b + cmax then
∅h⟵∅b + cmax

endIf
If ∅h <∅b + cmin then
∅h⟵∅b + cmin

endIf
c⟵∅h −∅b

If _Xb sin(∅b)< > _Xb cos(∅b) then
stopSimulation

endIf
If ( _Xb sin(∅b + c) − _Xb cos(∅b + c))< > _∅bLb cos(∅b) then
stopSimulation

endIf
t � t + ∆T

}endWhile

ALGORITHM 1: AGV model simulation algorithm.
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Figure 4: Circle trajectory.
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Figure 5: Elliptical trajectory.
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Figure 6: Lemniscate trajectory.
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x(t) �
�
2

√
· alem ·

cos(t)

1 + sin(t)
2, (41)

y(t) �
�
2

√
· alem ·

cos(t) · sin(t)

1 + sin(t)
2 . (42)

In the lemniscate trajectory, alem is the width of the
curve. After several simulation tests, the value of alem is set to
1.6m.

5.2. Trajectory Tracking Conventional Regulator Used for
Comparison Purposes. As already explained, in these com-
mercial vehicles the guidance error controller is usually
a PID. Terefore, a comparison of the proposed Lyapunov
stability controller with a PID controller given by (43) is
performed.

u(t) � Kpe(t) + Ki 
t

0
e(t)dt + kd

de(t)

dt
. (43)

Te PID parameters [Kp, Ki, Kd] are tuned with the
following procedure. A simulation scenario is created with
Simulink software, considering the complete dynamicmodel
of the AGV. Te guidance error will be obtained for three
diferent trajectories, namely circle, ellipse, and lemniscate.
For each trajectory, the gains of the PID have been optimized
with genetic algorithms.

Equation (44) was used as ftness function of the GA.
Tsim denotes the total simulation time when the AGV
correctly completes the simulation without losing its track.
eMAX represents the maximum assumable error, in this case
this value was set to 40 cm. Tis ftness function is piecewise
defned. Te frst row is used to ensure the AGV completes
the simulation without leaving out the route.Te second row
is used to reduce the tracking error to zero.

cfgui �

1 +
Tsim − ti( 

Tsim
e ti( 


> eMAX,

1
Tsim · eMAX


i

e ti( 


 e ti( 


< eMAX ∧ ti � Tsim.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(44)

Te confguration of the GA is as follows. Te size of the
population was set to 50 individuals, the crossover fraction
was 0.8, the mutation rate was 0.2, and the elite size was 5%.
Initial individuals were randomly initialized.Te PID tuning
parameters obtained during this optimization are shown in
Table 2.

It is important to correctly tune the gains of the PID, if
the gains are set with the values of Table 2, the AGV does not
looses the track. However, poorly tuned gains can make the

AGV to lose the track as shown in Figures 7–9. It is assumed
that the AGV loses the trajectory when the tracking error is
larger than 40 cm. When this event raises the simulation is
stopped.

To summarize, the here proposed control strategy uses
a LPC for trajectory tracking control and a PI regulator for
speed control, that is, LPC+PI. It has been compared to
a conventional PID controller for trajectory tracking that has
the same PI for speed control, that is, PID+PI. In both cases
the gains of the PI speed controller have the same values.

5.3. Comparison Metrics. To make a comparison of the
diferent controllers in a quantitative way some metrics that
measure the performance when tracking the diferent refer-
ence trajectories are defned. Te metrics applied for the
evaluation of the control strategies are expressed by equations.

MAE �
1

Tsim


i

e ti( 
∗Ts ti( ,

 (45)

RMSE �

�������������������
1

Tsim


i

e ti( 
2 ∗Ts ti( ,



(46)

ME �
1

Tsim


i

e ti( Ts ti( , (47)

STD �

�������������������������
1

Tsim


i

e ti(  − ME



2 ∗Ts ti( ,



(48)

MAX � MAX
ti∈Tsim

e ti( 


 . (49)

6. Discussion of Simulation Results of
Trajectory Tracking Controllers

Te two AGV tracking trajectory controllers, PID and LPC,
have been simulated for the three defned paths: circle, el-
lipse, and lemniscate. Te AGV reference longitudinal ve-
locity vrefd, is the absolute value of a sinusoidal signal with
amplitude 1m/s.Te simulation lasts 40 s, although it ends if
the AGV completes or leaves out the trajectory.

Figures 10–12 show the results obtained for the trajec-
tory described by the AGV drive unit and the guidance error
of the two controllers, LPC and PID. Te color coding is as
follows. In the trajectory tracking plots, the reference tra-
jectory is the black line, the one followed with the LPC
controller is the blue line and the one followed by the AGV
with the PID controller is in red. In the tracking error plots
on the x-axis and y-axis, the Lyapunov controller error is
represented in blue and the PID error in red.

Table 2: Tuning parameters of the PID for the diferent trajectories.

Trajectory Kp Kd Ki
Circle 8.4402 2.221 1.4104
Ellipse 12.4902 2.2661 1.4421
Lemniscate 25.4700 2.2300 0.1201
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Figures 13–15 show the yaw rate, the lateral acceleration
and the longitudinal velocity obtained when the LPC and the
PID are applied. Te color coding is as follows. Te results
obtained when the LPC is applied are shown in blue, and in
red for the PID. In the fgure that illustrates the longitudinal
velocity, the reference for the velocity vref d is depicted
in black.

For the circular trajectory, we consider that the AGV
vehicle is initially located at the point (0.7, 0) and moves
counterclockwise. Figure 10 shows the simulation results for
this trajectory. It can be seen (Figure 10(a)) how the LPC
trajectory and the reference trajectory are very close. With
the PID controller, a greater distance to the reference is

observed. In the x and y axis tracking error graphs it can be
seen that the errors of the LPC controller are closer to zero
and are much smaller than with the PID (Figure 10(c)).

In Figure 13 it is possible to see how the yaw rate is larger
at the starting of the simulation. Tis may be caused because
the AGV needs to be aligned with the trajectory. After this,
the yaw rate tends to stabilize around a constant value. Tis
result is logic as the curvature in the circle is also constant.
On the other hand, as the turning radius is constant the
lateral acceleration has a similar shape to the speed. Finally,
it Figure 10(c), it is possible to observe how the controller
correctly follows the speed profle sinusoidal in
absolute value.
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Figure 7: Tracking of circle with poorly tuned PID (a) and its tracking error (b).
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Figure 8: Tracking of ellipse with poorly tuned PID (a) and its tracking error (b).
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Figure 10: Circular trajectory tracking (a) and tracking errors, x (b) and y (c) axes.

0.5-0.5 0 1.5-1.5 -1 1
X (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Y 
(m

)

Reference
LPC K=1
PID

(a)
Figure 11: Continued.

Complexity 15



LCP K=1
PID

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

er
ro

r x
 (m

)

3510 15 20 25 30 400 5
time (s)

(b)

LCP K=1
PID

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

er
ro

r y
 (m

)

5 10 15 20 25 30 35 400
time (s)

(c)

Figure 11: Elliptical trajectory tracking (a) and tracking errors, x (b) and y (c) axes.
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Figure 12: Lemniscate trajectory tracking (a) and tracking errors, x (b) and y (c) axes.
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For the elliptical trajectory, the AGV starts at the right
side of the ellipse, at point (1.4, 0), and moves counter-
clockwise. In Figure 11, the simulation result for tracking the
elliptical trajectory is shown. Te LPC controller tracks the
reference trajectory better than the PID, especially at the
ends of the ellipse, where they overlap. Te PID maintains
a nearly constant and larger error than with the LPC over the
entire ellipse. Te error of the LPC controller remains close
to zero, presenting smaller error in amplitude than the PID
in both the x-axis and y-axis, especially in the x-axis where
the error amplitude with the LPC controller is much smaller.

Te large value of yaw rate at the start of the simulation
is also observable in the case of the ellipse in Figure 14.
However, in this case the yaw rate does not tend to
a constant value as the curvature changes along the tra-
jectory. Like in the error signal, the values show a repetitive
pattern as the trajectory is repeated several times. Te

lateral acceleration changes with the longitudinal speed,
when the longitudinal speed becomes zero, the lateral
acceleration also does it. Te changes in the turning radius
also afect this value, when the AGV moves in the zones of
the ellipse where the radius decreases the acceleration
grows. Finally, as in the case of the circular trajectory, the
speed profle is correctly followed.

For the lemniscate trajectory, the AGV starts at the right
end, at point (2.25, 0), and moves counterclockwise.
Figure 12(a), shows the simulation results of this trajectory
tracking with the PID controller and the LPC. Te trajec-
tories are very similar, indeed both controllers track the
reference trajectory quite well, although the LPC controller
is slightly better as shown in the guiding errors. In addition,
the PID controller presents a disturbance at the beginning of
the AGV motion, which causes the error to present large
peaks (Figure 12(b)).
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Figure 14: Elliptical trajectory, yaw rate (a), lateral acceleration (b), and longitudinal velocity (c).
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Yaw rate in Figure 15 reaches smaller values than in
previous trajectories, this is due to the in the middle of the
lemniscate the curvature is very low, and the AGV behaves
like in a straight line. Another interesting result is that in this
case, the yaw rate takes positive and negative values. Tis is
explained because in the frst half of the lemniscate the AGV
travels counterclockwise, and the second half clockwise.
Regarding the lateral acceleration, as expected the zones of
the trajectory with a low curvature, mainly the center of the
lemniscate, experiment the lowest lateral acceleration.
Conversely in the zones with larger curvature the acceler-
ation tends to be larger. Again, the controller follows per-
fectly the sinusoidal speed profle.

Te values of the metrics are shown in Table 3, where
the columns present the mean absolute error (MAE), root
mean squared error (RMSE), the standard deviation, the

maximum value of the guidance error, and the yaw angle
rate (YAR) obtained when the LPC or the PID are applied
to the reference trajectories.

Analyzing the results of Table 3, the error values are
smaller when the LPC controller is used in the tracking of
each of the reference trajectories. Lyapunov controller gives
good results in curved trajectories and with varying radius. If
we look at the results of the table by type of trajectory, the
lemniscate is the one with the smallest error for both, the
PID and LPC controllers.

If we make a comparison between LPC and PID for each
type of trajectory, the LPC controller gives better results. For
the ellipse, the MAEwith the LPC shows an improvement by
65.22% with respect to the PID, the RMSE improvement is
65.38%, 69.15% improvement of the STD and regarding the
MAX metric, the LPC improves by 65.52%.
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Figure 15: Lemniscate trajectory, yaw rate (a), lateral acceleration (b), and longitudinal velocity (c).
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Table 3: Comparison of the controller performance for diferent trajectories.

Trajectory
MAE RMSE STD MAX

LPC PID LPC PID LPC PID LPC PID
Circle 0.2 0.57 0.279 0.79 0.35 1.02 1.17 2.45
Ellipse 0.4 1.15 0.54 1.56 0.62 2.01 2.22 6.44
Lemniscate 0.04 0.175 0.0542 0.24 0.058 0.28 1.83 2.085
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Figure 16: Circular trajectory (a) for diferent values of gain K and its corresponding guiding error (b).
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Figure 17: Ellipse trajectory (a) for each K and its corresponding guiding error (b).
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Summarizing, the Lyapunov LPC stability controller
outperforms the PID for the guidance control of the tested
trajectories.

6.1. Sensibility Analysis: Infuence of the Gain of the LPC.
An analysis of the efects of varying the gain K of the
Lyapunov controller has been carried out. Te paths fol-
lowed by the AGV for diferent LPC gains when tracking
each of the proposed trajectories are studied. Te simulation
period is 40 s. Tree values of K have been considered: less
than 1, 1, and bigger than 1.

In the following fgures of the trajectories and the errors,
the AGV trajectory tracking response with the LPC con-
troller is represented in blue for K� 1.5, in green for K� 1
and in red for K� 0.5. Te reference trajectory is shown
in black.

Figure 16 shows the efect of the variation of the Lya-
punov control gain K when it follows the circular trajectory.
Te AGV starts at (0.3, 0), outside the circle, and moves
counterclockwise.

It can be observed in Figure 16 that for K� 1.5 (blue
line), the variations at the beginning of the AGV movement
are larger but it quickly follows the circular reference (black
line). Reducing the LPC gain K� 1 (green line) makes the
path to join the reference shorter. With a LPC gain smaller
than 1, i.e., K� 0.5 (red line), the response is even quicker,
but the errors are bigger. In fact, there is a stationary error
with all the values of K tested (Figure 16, right), being the
LPC with K� 1.5 the more stable and with less
stationary error.

Figure 17 shows the efects of varying the gain K of the
LPC when the AGV follows the elliptical trajectory. Te
AGV starts at (0.7, 0), outside the path, and moves
counterclockwise.

Again, the larger the gain of the LPC the slower it is to
join the reference. But observing the error (Figure 17(a)), the
LPC with the smallest gain K� 0.5 requires more time to
reach the reference and it presents the more unstable re-
sponse, with oscillations.Te green line (K� 1) shows a peak
at the beginning and then it also presents an oscillatory
stationary error, although the amplitude of these oscillations
is smaller than with K� 0.5. Finally, the solution with K� 1.5
(blue line) is the more stable although it still presents small
error oscillations.Te stationary error is bigger than with the
circular trajectory.

Figure 18 shows the response of the AGV following the
lemniscate trajectory with the three values of K. Te vehicle
starts at (1.2, 0), outside the path, and moves
counterclockwise.

As in the previous trajectories, the larger the K the
shorter the time it requires to reach the reference trajectory
(Figure 18(a)). Again, there are small perturbations at the
beginning of the movement. In this case, the LPC makes the
AGV follow the trajectory with a very small error, that
presents smooth oscillations, but it can be considered stable.

In conclusion, it seems that Lyapunov controller K
values bigger than 1 gives better response as the stationary
error is smaller than with smaller values of K, and the re-
sponse is also faster.

7. Conclusions and Future Works

In this article, a control architecture is proposed that
combines a Lyapunov controller for tracking the trajectory
of an AGV and PID controllers. Tis hybrid conventional
and advanced control scheme has proven very efcient in
industrial and engineering applications.

Te objective of proposing an LPC system is to guarantee
the stability of the controller and provide it with robustness
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Figure 18: Lemniscate trajectory (a) for each K and its corresponding guidance error (b).
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against non-linearities, such as those related to the trajec-
tories and friction experienced by the wheels or the traction
unit of the AGV, which brings it closer to reality.

Te main advantages of the controller proposed in this
paper can be summarized as follows:

(i) Te stability of the trajectory tracking is mathe-
matically demonstrated, something that is lacked in
most of the papers found in the literature.

(ii) Te independence of the tuning of the speed control
and the trajectory control that is something that
facilitates the design of these controllers. Specif-
cally, the speed control is tuned adjusting the gains
of the PI speed controllers. On the other hand, the
tuning of trajectory tracking control is done by
adjusting the gain K in the control law.

(iii) Te control law can be applied to diferent mobile
robots adjusting the J matrix.

To evaluate the controller, a hybrid AGV that combines
the tricycle and diferential kinematic models is used, with
parameters that correspond to a commercial vehicle. Te
LPC has been compared with a PID controller optimized
with genetic algorithms when following three trajectories
that can be found in the work environment of these in-
dustrial vehicles.Te LPC outperforms the PID in all cases in
terms of trajectory tracking.

Furthermore, the sensitivity of the LPC has been ana-
lyzed for diferent values of its gain, which allows it to be
better adjusted.

Among other possible future works, it is possible to
highlight the application of optimization techniques to tune
the gain of the LPC controller. Te infuence of the changes
in friction in the performance of the controller is something
that deserves to be analyzed. Finally, the validation of the
controller with an industrial AGV prototype could be
worth it.
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