Case Report

Recurrent Stress Cardiomyopathy: A Rare Variant in a Young Patient with Undiagnosed Pheochromocytoma

Robert Lembo, Paul Wesley, and Joe B. Calkins

Department of Cardiovascular Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA

Correspondence should be addressed to Robert Lembo; rlembo@augusta.edu

Received 5 February 2021; Revised 14 April 2021; Accepted 20 April 2021; Published 2 June 2021

Biventricular stress cardiomyopathy is one of several known anatomical variants of reversible cardiomyopathies to occur. We present a case of a young patient with recurrent stress cardiomyopathy complicated by cardiogenic shock in the perioperative period. The cardiomyopathy observed was in a patient with neurofibromatosis type I and undiagnosed pheochromocytoma who presented for intervention of hydrocephalus. This case demonstrates the importance of vigilance in the young patient who develops shock in the perioperative period.

1. Introduction

Stress cardiomyopathy can often be encountered in the perioperative setting. Shock with rapid hemodynamic collapse in a young patient should raise concern for stress cardiomyopathy.

2. Case Report

A 28-year-old woman with a previous diagnosis of neurofibromatosis type I (NF I) presented to the hospital with dizziness, nausea, emesis, and anorexia. Magnetic resonance imaging of her head demonstrated a left thalamic mass and obstructive hydrocephalus. Seven years prior, the patient underwent ablation of atrioventricular nodal reentry tachycardia. Electrophysiology study at that time demonstrated dual AV nodal physiology, and she underwent successful cryoablation of her slow pathway without further history of palpitations. The ablation was complicated by biventricular failure requiring inotropic infusion for 12 hours. Rapid resolution occurred, and the patient was discharged without further event.

The patient underwent a biopsy of the left thalamic mass and drain placement to relieve obstruction. During anesthesia induction supraventricular tachycardia (SVT) occurred and was terminated with cardioversion. The procedure was aborted, and the patient was returned to the intensive care unit. A postoperative echocardiogram demonstrated severe left and right ventricular function and hypokinetic basal left ventricular segments, with akinesis of all other segments. The EF was less than 10% (see echocardiogram in Figures 1(a)–3(a)). Inotropic support with milrinone was initiated. Three days later, limited echocardiogram demonstrated normal left ventricular size with hyperdynamic systolic function and an EF greater than 70% (see echocardiogram in Figures 1(b)–3(b)). Metoprolol tartrate was initiated to prevent recurrence of SVT. The patient returned to the operating room and underwent successful external ventricular drain placement. Induction of anesthesia was uneventful. The patient was discharged without further cardiac event.

The patient again presented for symptoms with worsening hydrocephalus requiring further intervention. Upon anesthesia induction, the patient again developed SVT requiring cardioversion. Profound hypertension surrounded this arrhythmia with systolic blood pressure greater than 220 mmHg. Given the recurrent intraoperative hemodynamic events, testing of urinary and serum metanephrines was pursued which demonstrated elevated metanephrines and catecholamines. CT scan demonstrated a heterogeneous enhancing mass of the left adrenal gland and dotatate scan demonstrated increased uptake in the left adrenal gland suggestive of pheochromocytoma. Prazosin was initiated prior

Copyright © 2021 Robert Lembo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
to definitive treatment of the hydrocephalus and pheochromocytoma. She underwent robotic-assisted laparoscopic left adrenalectomy in addition to left ventriculoperitoneal shunt placement. Pathology confirmed pheochromocytoma. The patient was discharged without further event and with normal left ventricular function.

3. Discussion

Pheochromocytoma and NF1 are rarely observed in the same patient and occur with an incidence of about 1% of individuals affected with NF1 [1]. Common presenting symptoms of pheochromocytoma are paroxysms of hypertension,
headache, palpitations, and diaphoresis which occur in 50% of the cases. However, 10% of the patients remain normoten-
sive and asymptomatic thereby limiting diagnosis [2]. It is
common for pheochromocytoma to be first detected during
anesthetic induction [3]. Uncontrolled catecholamine release
can occur in the perinduction period causing cardiovascular
complications including cardiogenic shock, takotsubo car-
diomyopathy, myocardial infarction, and aortic dissection
[4]. Furthermore, young patients without prior history who
suffer from acute cardiac decompensation intraoperatively
must be considered for entities such as pheochromocytoma.
It has been suggested that supraventricular tachycardia in
the presence of pheochromocytoma has led to acute depres-
ion in ventricular function, despite cardioversion of the
arrhythmia [5].

As in this patient, the diagnosis of pheochromocytoma
was considered after labile hemodynamics and rhythm
abnormalities were encountered during two anesthetic
inductions. Reversible biventricular dysfunction occurred
after initial cryoablation seven years earlier, likely due to
the same process; however, clinical details are limited. An
atypical stress cardiomyopathy with biventricular dysfunc-
tion with hypokinesis at the base and subsequent akinesis
in all other segments occurred in this patient.

Five anatomical variants of stress cardiomyopathy have
been reported in the literature with apical ballooning (typi-
cal) occurring with a prevalence of 75–80% [6]. This biventri-
cular anatomic variant that was observed in our patient
occurs with a prevalence of less than 0.5%. Atypical patterns
of left ventricular dysfunction are more common in young
individuals and are associated with the development of
shock. In the absence of LVOT obstruction, supportive care
with inotropic use is indicated. Patients may require mechani-
support in the form of an intraaortic balloon pump or
percutaneous left ventricular assist devices until ventricular
function recovers [5]. Kumar et al. report that a perioperative
catecholamine surge may be attenuated with pretreatment
with IV benzodiazepine, although this has not been exten-
sively studied [3]. Recovery of left ventricular function from
stress cardiomyopathy will vary from days to weeks as
observed in the International Takotsubo Registry. Clinical
factors unfavorable with ventricular recovery include male
sex, baseline LVEF < 45%, and acute neurologic events asso-
ciated with the cardiomyopathy [7].

This case demonstrates the importance of vigilance in the
young patient who develops acute cardiomyopathy with
biventricular involvement in the perioperative setting. Phe-
ochromocytoma should be investigated in these instances. The
biventricular variant of stress cardiomyopathy may be related
to pheochromocytoma and appears to be reversible. Support-
ive care with inotropic therapy and serial echocardiographic
evaluation is indicated and evaluation of possible pheochro-
mocytoma is paramount.

Additional Points

Learning Objectives. (i) Shock in the perioperative setting in
young patients should raise the possibility of stress cardio-
myopathy. (ii) Supportive care with inotropic therapy and
serial reevaluation with echocardiography is paramount. (iii)
Biventricular variant stress cardiomyopathy may be related
to pheochromocytoma and appears to be reversible.

Conflicts of Interest

The authors declare that there is no conflict of interest.

Supplementary Materials

Supplementary 1. Transthoracic echocardiogram demonstr-
stating parasternal long axis view (a) with hypokinesis of
basal left ventricle and akinesis in all other segments with
subsequent recovery (b).

Supplementary 2. Apical 4 chamber view (a) with ultrasound-
endhancing agent demonstrating hypokinesis of basal left ven-
tricle and akinesis of all other segments with subsequent
recovery (b).

Supplementary 3. Short axis view (a) with ultrasound-
endhancing agent demonstrating profound biventricular
hypokinesis and subsequent recovery (b).

References

[1] V. Kantorovich and K. Pacak, "Pheochromocytoma and para-
ganglioma," Progress in Brain Research, vol. 182, pp. 343–373,
2010.

localization and management," The New England Journal of

[3] V. Kumar, J. Spivey, M. Arthur, and M. Castresana, "Pheo-
chromocytoma detected during anesthesia induction," Journal of
Cardiothoracic and Vascular Anesthesia, vol. 25, no. 5,
p. e43–e44, 2011.

agement of Pheochromocytoma: Focus on Magnesium, Cle-
vipidine, and Vasopressin," Journal of Cardiothoracic and

[5] H. Shawa, M. Bajaj, and G. R. Cunningham, "Pheochromocyt-
toma-induced atrial tachycardia leading to cardiogenic shock
and cardiac arrest: resolution with atrioventricular node abla-
tion and pacemaker placement," Texas Heart Institute Journal,
vol. 41, no. 6, pp. 660–663, 2014.

[6] M. de Chazal, M. G. Del Buono, L. Keyser-Marcus et al.,
"Stress Cardiomyopathy Diagnosis and Treatment," Journal of
the American College of Cardiology, vol. 72, no. 16,

prognostic impact of recovery of wall motion abnormalities in
Takotsubo syndrome: results from the International Takotsubo
Registry," Journal of the American Heart Association, vol. 8,
no. 21, article e011194, 2019.