Flecainide Toxicity Secondary to Accidental Overdose: A Pediatric Case Report of Two Brothers

Sarah E. Gardner Yelton,1 James B. Leonard,2 Caridad M. de la Uz,3 Rajeev S. Wadia,1 and Sean S. Barnes1

1Department of Anesthesia and Critical Care Medicine, Charlotte R. Bloomberg Children’s Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
2Maryland Poison Center, Baltimore, Maryland, USA
3Department of Pediatrics, Division of Pediatric Cardiology, Charlotte R. Bloomberg Children’s Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Correspondence should be addressed to Sarah E. Gardner Yelton; sgardn19@jhmi.edu

Received 9 December 2020; Revised 15 April 2021; Accepted 3 May 2021; Published 15 May 2021

Flecainide is a class 1C antiarrhythmic with a narrow therapeutic window and thereby a high-risk medication for causing acute toxicity. Dysrhythmias secondary to flecainide ingestion are often refractory to antiarrhythmics and cardioversion, and patients commonly require extracorporeal support. We review the successful resuscitation of two brothers aged 2 and 4 who presented two years apart with unstable wide-complex tachyarrhythmia suspicious for severe flecainide toxicity. Each patient received sodium bicarbonate and 20% intravenous lipid emulsion with a full recovery. While extracorporeal support is often required following flecainide ingestion, we present two cases where it was avoided due to aggressive multimodal management with sodium bicarbonate, electrolyte repletion, and 20% intravenous lipid emulsion. In addition, avoidance of agitation-induced tachycardia may be beneficial.

1. Introduction

Flecainide is a class 1C antiarrhythmic commonly used in pediatrics to treat refractory supraventricular arrhythmias [1]. It has a narrow therapeutic index with goal trough levels ranging from 0.2 μg/mL to 1 μg/mL but toxic levels as low as 0.7 μg/mL and a mortality rate of approximately 22.5% [1–3]. Maximum recommended pediatric daily dosing is 200 mg/m²/day [1]. Flecainide blocks fast sodium channels to slow cardiac conduction, therefore widening the QRS complex and prolonging both the QT and PR intervals [1]. Signs of serious intoxication include altered mental status, seizures, hypotension, ventricular tachydysrhythmia, severe bradycardia, and AV block [1]. Patients with structural heart disease are particularly vulnerable to arrhythmias [4]. Although there are some reports of successful cardioversion with usual therapies (i.e., amiodarone, lidocaine, and defibrillation), flecainide-induced dysrhythmias are often refractory to these treatments [5, 6]. Alternative therapies include sodium bicarbonate, 20% intravenous lipid emulsion (ILE), and progression to extracorporeal support. However, there are no randomized controlled trials to support these treatments, and neither sodium bicarbonate nor ILE is approved by the Food and Drug Administration for the indication of flecainide overdose [1]. We describe the clinical presentation of two children with flecainide toxicity and review their lifesaving resuscitation.

2. Case Presentation

Informed parental consent was obtained to report the following cases.

2.1. Case 1. Child 1 is a 4-year-old male with permanent junctional reciprocating tachycardia (PJRT) on flecainide maintenance therapy (30 mg every 8 hours). He presented to the emergency department three hours after an unnoticed ingestion of approximately 2 g of flecainide with alternating
bradycardia and wide complex tachyarrhythmia (Figure 1(a)), altered mental status, hypotension, and poor perfusion. Presenting heart rate varied from 60 beats per minute (BPM) to 160 BPM, blood pressure was 50/30 mmHg with weak central pulses. Although the patient was breathing spontaneously with oxygen saturations of 100% on a nonrebreather mask, he was responsive only to pain. Initial pH was 7.13 with a pCO₂ of 71 mmHg and a serum bicarbonate level of 23 mmol/L. Sodium bicarbonate can be used as monotherapy and is 8.4% sodium bicarbonate boluses were given three times, resulting in conversion to sinus rhythm with widened QRS (Figure 1(b)). The patient was transferred to the pediatric intensive care unit (PICU) with consultation from the local poison center.

On admission to the PICU, the patient’s heart rate was 160 BPM with no other changes to his physical exam or vital signs. He was intubated and mechanically ventilated with extracorporeal support and a pediatric cardiac electrophysiologist consultant immediately available. The patient’s serum potassium was 2.5 mEq/L; ionized calcium was 0.9 mmol/L with otherwise normal electrolytes. Sodium bicarbonate boluses were given in 1-2 mEq/kg increments for QRS > 100 ms to maintain a goal pH of 7.5. He was initiated on a sodium bicarbonate infusion at a rate of 1 mEq/kg/hr which continued until the following morning. Serum calcium and potassium were replaced and magnesium given for treatment of the wide complex arrhythmia. Due to continued dysrhythmia and hemodynamic instability despite the above treatments, the child received 1.5 mL/kg 20% ILE bolus followed by a 0.25 mL/kg/min infusion. Following, the child had successful conversion to a sinus rhythm at a rate of 80 BPM with a wide QRS, blood pressure of 90/60 mmHg, and improved perfusion and mental status. The ILE infusion was weaned and completely discontinued after two hours. The child continued to have intermittent runs of pleomorphic ventricular tachycardia with agitation while mechanically ventilated. These episodes of agitation-induced tachycardia were successfully treated with an appropriate sedative dose. Following hemodynamic stability, the child was extubated after 36 hours, at which time the QRS had completely normalized. The patient’s serum flecainide level had decreased to 0.3 μg/mL, and his home dose of flecainide restarted. He was discharged home on the same maintenance dose of 30 mg every 8 hours.

2.2. Case 2. Child 2, a 2-year-old male with history of fetal supraventricular tachycardia (resolved), presented to the emergency department with seizure-like activity, altered mental status, bradycardia, and hypotension. Although serum flecainide concentrations were not obtained, the patient’s mother reported finding the child near his brother’s (child 1) empty flecainide bottle, estimating approximately a 400 mg ingestion 45 minutes prior to presentation. This occurred two years following his brother’s hospitalization. On arrival to the hospital, his heart rate was 70 BPM, blood pressure 70/30 mmHg with faint central pulses, and capillary refill time of 4 seconds. He was breathing spontaneously with an oxygen saturation of 100% on a nonrebreather mask. He was responsive only to pain. Presenting pH was 7.2 with a pCO₂ of 63 mmHg and a serum bicarbonate level of 24 mmol/L. After receiving 1 mg/kg lidocaine bolus with no effect, he was given three 0.5 mEq/kg sodium bicarbonate boluses resulting in wide complex tachycardia (Figure 1(c)). He was then transferred to the PICU. The local poison center was consulted.

On admission to the PICU, the patient’s heart rate was 150 BPM with a blood pressure of 64/40 mmHg but otherwise no change in his physical exam or vital signs. The child was intubated and mechanically ventilated with extracorporeal support and a pediatric cardiac electrophysiologist immediately available, as above. Sodium bicarbonate boluses were given in 1-2 mEq/kg increments for QRS > 100 ms to maintain a goal pH of 7.5. Serum potassium was 3.3 mEq/L, and ionized calcium was 0.91 mmol/L, both of which were repleted. All other electrolytes were normal. A 50 mg/kg intravenous dose of magnesium sulfate was given for the wide complex tachyarrhythmia with brief conversion to sinus rhythm (Figure 1(d)).

An isoproterenol infusion was initiated in an attempt to suppress recurrent ventricular tachycardia at 0.1 mcg/kg/min, resulting in persistent widening of the QRS, so the infusion was stopped. He also received 1 mEq/kg 3% hypertonic saline. Due to continued dysrhythmia and hemodynamic instability despite the above interventions, the child received 1.5 mL/kg 20% ILE bolus followed by a 0.25 mL/kg/min infusion. He required a second bolus of 1.5 mL/kg 20% ILE due to persistent hypotension, followed by an increase in the infusion rate to 0.5 mL/kg/min. With the above interventions, the child had successful conversion to a sinus rhythm at a rate of 90 BPM with a wide QRS, blood pressure of 100/50 mmHg, strong pulses, and capillary refill time of 2 seconds. The ILE infusion was weaned and completely discontinued after two hours. Similar to his brother, the patient continued to have intermittent runs of pleomorphic ventricular tachycardia with agitation while mechanically ventilated, which resolved with appropriate sedative dosing. Following hemodynamic stability, child 2 was extubated after 24 hours of mechanical ventilation with no remaining sedative requirement. Complete normalization of the QRS took approximately 36 hours. Child protective services was notified in both cases, and a safety plan for discharge was determined.

3. Discussion

Management of flecainide toxicity can be challenging. We described the presentation and successful treatment of two children, which precluded the need for extracorporeal support. In cases of severe intoxication and hemodynamic instability, we recommend an integrated approach with sodium bicarbonate, normalization of electrolytes, ILE, avoidance of agitation, mechanical ventilatory support, and immediate availability of extracorporeal support.

Sodium bicarbonate can be used as monotherapy and is commonly given as the first line treatment for QRS > 100 ms in increments of 1-2 mEq/kg [1, 7–9]. It increases the
Figure 1: Continued.
availability of extracellular sodium to compete with flecainide for binding sodium channels and raises the serum pH to increase the electrochemical gradient across cell membranes [10]. In animal models, sodium bicarbonate decreases QRS prolongation caused by flecainide and improves survival when compared with normal saline [11, 12]. Although child 1 received a bicarbonate infusion, administering serial bolus doses is considered more effective. Alkalization of the urine following bicarbonate administration may delay clearance of flecainide, so adjunctive therapies have been proposed [1]. Limited data supports the use of 3% hypertonic saline as an adjunct to sodium bicarbonate administration [13]. Additionally, isoproterenol has been used to reverse toxic effects of flecainide by increasing inward sodium current [14].

The rationale for using intravenous lipid emulsion (ILE) in flecainide toxicity is extrapolated from its use in the treatment for regional anesthetic drug toxicity [15, 16]. Similar to flecainide, regional anesthetic drugs (i.e., bupivacaine and ropivacaine) are also lipophilic and block sodium channels. ILE creates a “lipid sink” that removes any lipophilic drug from the intravascular space by incorporating it into the fat globules of the lipid, thus sequestering it from the remainder of the body [15, 17, 18]. Additionally, it increases inotropy [19]. In a systematic review, Jamaty et al. recommend ILE for local anesthetic toxicity in the setting of neurologic or cardiovascular deterioration, in addition to hemodynamic instability from intoxication from other fat-soluble drugs, after other supportive measures and antidotes have been unsuccessful [20]. In the case of flecainide ingestion, collaborative guidelines from several toxicology societies give ILE use a neutral recommendation if cardiac arrest or potential life-threatening ingestion is present and recommend against its use for non-life-threatening ingestions [21, 22]. Most commonly cited dosing is reported in Table 1. There have been reports of fat emboli, pancreatitis, and acute respiratory distress syndrome with administration of large doses of ILE and decreasing the infusion rate followed by ILE discontinuation as soon as hemodynamic stability is achieved is suggested [20–24]. The most common side effect, which occurred in our case, is lipemia, which can interfere with serum analysis and complicates laboratory interpretation [20].

Rhythm response to normalization of electrolytes has been reported, and as per pediatric advanced life support recommendations, magnesium should be administered for polymorphic ventricular tachycardia [1, 25, 26]. Extracorporeal support is commonly required for unstable refractory arrhythmias to support hemodynamics until drug clearance can occur [27, 28]. Flecainide clearance can be prolonged as the average half-life is 20 hours, and failure to provide hemodynamic support can result in death or permanent neurologic injury. The volume of distribution of flecainide precludes the use of dialysis and hemoperfusion for removal and is therefore not recommended [29].

Both children had progressive widening of the QRS complex with tachycardia in the setting of agitation during the first 12 hours postingestion. This association of tachycardia and QRS prolongation has been described in both human and animal models with maintenance flecainide doses, even
in the absence of toxicity [30–32]. At a higher heart rate, more sodium channels are normally open, and since fleca
nide preferentially blocks open channels, its effects may be
exacerbated [31]. To our knowledge, no other case reports
describe induction of wide-complex tachycardia with agita-
tion. In both children, this arrhythmia was successfully
reversed with administration of sedation.

4. Conclusions

Flecainide ingestions can cause wide complex tachyarrhyth-
mas and hemodynamic collapse refractory to typical
management, often requiring extracorporeal support. While
we cannot conclude with certainty if one treatment was solely
responsible for the improvement observed in our patients, we
do provide validation for a multimodal treatment approach
to flecainide toxicity, preventing the need for extracorporeal
support. Flecainide toxicity should be treated with sodium
bicarbonate boluses; electrolyte repletion, with particular
attention to magnesium: intravenous lipid emulsion; judi-
dicious administration of sedatives to avoid tachycardia from
agitation; and if needed extracorporeal support.

Consent

Written consent from caregiver obtained for case publication.

Conflicts of Interest

The authors have no conflicts of interest to report.

References

[1] IBM Micromedex® DRUGDEX® (electronic version), Flecain-
ide, IBM Watson Health/EBSCO Information Services,
Greenwood Village, Colorado; Cambridge, Massachusetts,
index drugs: a clinical pharmacological consideration to fleca
nide,” European Journal of Clinical Pharmacology, vol. 71,
and outcome in class IC antiarrhythmic overdose,” Journal of
Toxicology: Clinical Toxicology, vol. 28, no. 4, pp. 433–444,
1990.
Potier, “Proarrhythmic effects of antiarrhythmic drugs,” La
resuscitation after near-fatal flecainide overdose,” Resuscita
life-threatening flecainide overdose,” Intensive Care Medicine,
double dose,” The American Journal of Emergency Medicine,
collapse in severe flecainide overdose without recourse to
extracorporeal therapy,” Emergency Medicine Australasia,
fatal flecainide overdose in a neonate successfully treated with
sodium bicarbonate,” The Journal of Emergency Medicine,
of flecainide’s cardiac sodium channel blocking actions by
extracellular sodium: a possible cellular mechanism for the
action of sodium salts in flecainide cardiotoxicity,” The Journal
of Pharmacology and Experimental Therapeutics, vol. 264,
partially reverses QRS prolongation due to flecainide in rats,”
and P. R. Pentel, “Reversal of flecainide-induced ventricular
arrhythmia by hypertonic sodium bicarbonate in dogs,” The
American Journal of Emergency Medicine, vol. 13, no. 3,
cardiac arrest treated with 3% hypertonic saline in addition
to standard sodium bicarbonate therapy,” Journal of Medical
Toxicology, vol. 15, 2019.
[14] B. Avitall, J. W. Hare, P. Tchou, M. Jazayeri, and M. Akhtar,
“Flecainide toxicity: reversal of drug effects by isoproterenol
infusion,” Journal of Cardiovascular Electrophysiology, vol. 2,
Garcia-Amaro, and M. J. Cwik, “Pretreatment or resuscita-
tion with a lipid infusion shifts the dose-response to
bupivacaine-induced asystole in rats,” Anesthesiology,
[16] M. A. Rosenblatt, M. Abel, G. W. Fischer, C. J. Itzkovich,
and J. B. Eisenkraft, “Successful use of a 20% lipid emulsion to
resuscitate a patient after a presumed bupivacaine-related car-
thetic cardiac toxicity: a review,” Regional Anesthesia and Pain
[18] J. Picard and T. Meek, “Lipid emulsion to treat overdose of
local anaesthetic: the gift of the glob,” Anaesthesia, vol. 61,
effects of lipid emulsion infusion,” Critical Care Medicine,
vol. 41, no. 8, pp. e156–e162, 2013.
and J. M. Chauny, “Lipid emulsions in the treatment of acute poi-
soning: a systematic review of human and animal studies,”
Clinical Toxicology (Philadelphia, Pa.), vol. 48, no. 1, pp. 1–
27, 2010.
[21] American College of Medical Toxicology, “ACMT position
statement: guidance for the use of intravenous lipid emulsion,”
[22] S. Gosselin, L. C. Hoegberg, R. S. Ho, S. Ranger et al., “Evidence-
based recommendations on the use of intravenous lipid emul-
sion therapy in poisoning,” Clinical Toxicology, vol. 54, no. 10,
guideline: management of severe local anaesthetic toxicity,”


