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I t was a great privilege and honour to give the Christie 
Lecture at the Thoracic Society Meeting in Montreal, only 

a stone's throw from the present-day Meakins-Christie Insti
tute, where the tradition of innovative research established by 
Meakins and Christie has been so spectacularly continued. 
Ronald Christie (Figure 1) was a driving force in modem 
academic medicine, and respirology in particular, in Canada, 
and the link to Jonathan Meakins (Figure 2) must have been 
seminal, for it is certain that Meak:ins was a scientific father 
figure to Christie. When Christie was a medical student in 
Edinburgh, Meak:ins was the Christison Professor of Thera
peutics; with his Lecturer, H Whitridge Davies, he wrote 
Respiratory Function in Disease (1). Anyone writing on the 
pathophysiology of exercise in cardiopulmonary disorders or 
on dyspnea, and who thinks they have a new idea, should first 
check that it is not in this 1925 textbook. Meak:ins was clearly 
an important influence on Christie, and in 1934 when they 
were together at McGill, Christie as a junior research associ
ate and Meak:ins a.s Professor of Medicine, they wrote a paper 
on "Treatment of emphysema" for the Journal of the Ameri
can Medical Association (2). This put forward their ideas on 
the factors that limited patients, both pulmonary and cardiac. 
Notable in this paper is a great understanding regarding the 
changes in elastic recoil and lung volume, and the implica
tions for diaphragm function in emphysema. It included the 
following statement, which antedates modern ventilation
perfusion (V AIQc) concepts: "No longer are the alveoli 

equally ventilated, but the superficial, distended and is
chemic and relatively functionless alveoli are overventilated 
at the expense of the deeper and more healthy alveoli, which 
are underventilated." There followed a series of papers on the 
mechanical properties of the lungs in emphysema (3), and in 
1934, now Professor of Medicine at St Bart's in London, 
Christie delivered the Gouldstonian Lecture to the Royal 
College of Physicians on "Emphysema of the lungs" (4), 
which remains a classic to this day. This was followed in 
1938 by a massive review, "Dyspnea" in the Quarterly Jour
nal of Medicine (5). He had a great influence on young 
respiratory physicians in the United Kingdom; in 1956 in 
Britain's most prestigious internal medicine journal we find 
David Bates as the first author of a marvellous paper, "Res
piratory function in emphysema in relation to prognosis" (6), 
in which a grading of dyspnea is presented, exercise capacity 
is studied, and the diffusing capacity for carbon monoxide is 
identified as the strongest predictor of both exercise capacity 
and prognosis. Christie and his group appear to have domi
nated clinical respiratory physiology in the United Kingdom 
in the 'forties and early 'fifties; as a young trainee, Malcolm 
Mcilroy wrote a series of papers with Christie on the work of 
breathing in emphysema, showing that it was increased and 
suggesting that this must contribute to dyspnea by "making 
the patient conscious of respiratory effort" (7). Christie and 
Bates then went to Montreal; Mcilroy also moved, but to the 
Cardiovascular Research Institute in San Francisco. 
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Figure 1) Ronald Christie ( 1902-1986) 

Although Meakins and Christie identified dyspnea as the 
main limiting factor for patients with chronic airflow limita
tion, defining this symptom as "the consciousness of the need 
for increased respiratory effort" (8) and identifying its multi
factorial origins, the main concept underlying limitation was 
until very recently that of the attainment of a ventilatory or 
gas exchange limit. This concept was formally put forward 
by Baldwin, Coumand and Richards in 1949 (9), and elabo
rated during the next·50 years; patients were unable to exer
cise beyond the point at which ventilation reached the 
maximal voluntary ventilation (MYY) or a fall in arterial 
P02 impaired oxygen delivery to exercising muscle. These 
authors put forward the concept of breathing reserve, the ratio 
of maximal exercise ventilation to MYY, later elaborated 
into the 'dyspnea index' by Hugh-Jones and Lambert (10) 
and into a method to predict exercise capacity in patients with 
chronic obstructive lung disease (COLD) by Armstrong et al 
(11). 

WHAT IS MW? 
The maximal achievable ventilation or maximal breathing 

capacity (MBC) was initially measured by having the subject 
breathe as much as possible with a closed circuit spirometer 
system, usually for 15 s. Later, it was realized that MBC 
measured in this way represented a sprint performance and 
was greater than sustainable MYY (12), and MVV became 
more commonly estimated from measurements of forced 
expiratory volume in 1 s (FEY 1) by multiplying by 35 or 40. 
While this practice has stood the test of time, relationships 
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Figure 2) Jonathan Meakins ( 1882-1859) 

between MYY and maximal exercise ventilation tended to be 
quite variable, and at low levels of FEY 1, the MYY was often 
exceeded (13). At least in part, this finding was explained by_ 
inspiratory flow being less impaired than expired (Figure 3), 
leading to a recommendation that both FEY 1 and maximal 
inspiratory flow be used to estimateMYY (14). However, the' 
capacity to breathe during exercise is influenced by many 
factors, only some of which may be assessed by spirometry 
at rest. 

VARIATION IN THE VENTILATORY 
RESPONSES TO EXERCISE 

While exercise limitation due to reductions in ventilatory 
capacity was a useful concept, and there was a general rela
tionship between reductions in FEY 1 and maximum power 
output, there was a large variability, with many exceptions in 
both directions. Some patients with very low FEY1 (say, 
below 1.0 L) showed a normal exercise capacity, and con
versely some patients were extremely disabled in spite of 
relatively normal MYY. At least some of this variability 
could be related to differences in the ventilatory responses to 
exercise; thus, many disabled patients showed a higher ven
tilation than expected, and some who were less disabled 
showed a lower response. 

Considering the homeostatic function of breathing, acting 
to maintain blood gases between tolerable limits in the face 
of increases in metabolic consumption of oxygen, a number 
of factors may be recognized as influencing ventilation (VE) 
at any given level of exercise. 
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Figure 3) Flow/volume loops in a normal subject and five repre
sentative patients with chronic obstructive lung disease. Maximal 
flow at rest is shown as the outer loop; inner loop is resting tidal 
flow; final loop is in maximal steady state exercise. Note variable 
flow in inspiration ( 1h) as well as expiration (VE) in patients, with 
excellent inspiratory flow in spite of severe expiratory reduction in 
some, and with a loss of the normal reduction in end-inspired lung 
volume during exercise (43). TLC Total lung capacity 

Variations in carbon dioxide production: Increases in 
carbon dioxide production (V 002) as a result of a greater 
proportion of metabolism from glycogen than fat are due to 
complex regulatory factors, hormonal or biochemical in ori
gin, including insulin, glucagon and catecholamine secretion 
and variations in the activity of rate-limiting enzymes in the 
exercising muscle. Such factors also contribute to lactate 
production, which indirectly leads to carbon dioxide evolu
tion. These factors increase the respiratory exchange ratio 
(RER), leading to increases in VE, and explain the reductions 
in exercise capacity following a meal (15) or a glucose load 
(16) in patients with COLD, and the reductions in VE follow
ing exercise training (17). The importance of muscle oxida
tive enzyme activity in patients with COLD has been 
emphasized recently (18). 
Variations in the response of alveolar ventilation: Even in 
the healthy population, arterial PC02 varies between 35 and 
45 mmHg, which at a moderate work load (carbon dioxide of 
2 L/min) implies an alveolar ventilation (VA) of 38 to 50 
Umin. The variation in patients with COLD is much larger, 
PaC02 during exercise being less than 30 mmHg in some and 
above 70 in others (19). Variations in gas exchange capacity 
and ventilation-perfusion matching account for some of these 
variations, but differences in the work of breathing and in 
respiratory control mechanisms are also known to be impor
tant (20). 
Variations in dead space ventilation: The concept of dead 
space, influencing total ventilation for given carbon dioxide 
outputs and VA , has been used to explain variations in the 
ventilatory response to exercise in terms of ventilation-perfu
sion mismatching. Christie well understood the implications: 
"The emphysematous patient is indeed in an unfortunate 
position. Both inspiration and expiration have to be executed 
by unnatural respiratory efforts, and a considerable propor-
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Figure 4) Dead space/tidal volume ratio (VrlVT) at rest and exer
cise in patients with chronic obstructive lung disease grouped ac
cording to severity of dyspnea (United Kindgom Medical Research 
Council grades 1 to 4), showing increasing VdVTat rest, and with 
lessening reduction in exercise in patients with increasing dyspnea 
grade (21). N Normal subject 

tion of the air which is inspired is wasted by not coming into 
proper contact with the pulmonary blood" (5). Thus, patients 
with well-ventilated, poorly perfused areas in the lung tend to 
have higher ventilation; also, a shallow pattern of breathing 
leads to wastage of ventilation, a high dead space ventilation 
to tidal volume ratio (VoNT), resulting merely from a low 
VT. Nohnally, VoNT falls during exercise from around 0.3 
to less than 0.1, but in many patients the ratio is as high as 0.6 
and may not fall during exercise. VoNT was shown to con
tribute to dyspnea independent of the degree of airflow ob
struction (Figure 4) (21). 

The effects of these three factors on VE may be expressed 
in an equation that combines metabolism ( oxygen and RER), 
VA (reflected in PaC02) and dead space: 

VE = Vo, x 0.86RER 
PaC0,(1-Vo/VT) 

which helps us to understand why VE may be so variable 
among different individuals during exercise. Increases in 
VE contribute as much to dyspnea in COLD as reductions in 
MVV (Figure 5). 
Different types of COLD syndromes: Soon after I became 
a registrar in chest medicine at the Hammersmith in 1961, I 
was drawn into discussions regarding clinical and physi
ological differences between patients with chronic airflow 
obstruction who were 'pink and puffing' with evidence of 
emphysema, and those who were 'blue and bloated' and often 
did not show any emphysema physiologically or post mortem 
(22). Striking in this comparison was a difference in dyspnea 
and exercise limitation, both of which were much increased 
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Figure 5) Ventilation in relation to carbon dioxide output in the 
same patients as in Figure 4; ventilation in exercise progressively 
encroached on maximal voluntary ventilation (MW) with progres
sive dyspnea, due to both increases in ventilation and reductions in 
MW. VE Volume of expired gas · 
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Figure 6) Arterial P02 at rest and maximal steady state exercise in 
patients with type A and B syndromes. P02 tends to be higher at rest 
but to fall to a greater extent in type A, whereas most type B patients 
show an increase during exercise (19). \102 Volume of expired 
oxygen 

in the 'purfers' (type A); the 'bloaters' (type B), on the other 
hand, could often exercise surprisingly well, in the face of 
chronic hypercapnia, hypoxemia and right heart 'failure'. In 
spite of the work of Christie and his team showing that 
emphysema was associated with loss of elasticity and severe 
gas exchange impairment (6), the limiting factor at the time 
was thought to be mainly airflow obstruction as reflected in 
reductions in FEV 1. But differences in FEV 1 did not explain 
differences among patients in exercise capacity and dyspnea, 
and the thought arose that one could only discover the factors 
behind this variability by actually studying what happened 
during exercise. The opportunity presented itself as part of a 
joint study between the Hammersmith Hospital's Bronchitis 
Clinic and the University of Chicago's Emphysema Clinic -
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Figure 7) Mcilroy and Christie's measurements of the mechanical 
work of breathing at rest ( R) and exercise ( E) in normal subjects and 
patients with emphysema (redrawn;from 7) 

a comparison of 'British Bronchitis' with 'American Emphy
sema'. This study involved the careful characterization of 50 
patients in each clinic, and as part of the Hammersmith effort 
we carried out a series of exercise studies, including a com
parison of type A with type B patients. These studies (19) 
showed that, compared with type B, type A patients were 
more limited, kept PaC02 lower and showed a fall in Pa02 
with exercise (Figure 6); they had a large VoNT and an 
alveolar-arterial (A-a) P02 difference that increased. Type B 
patients showed a wide A-a P02 difference at rest, but this 
narrowed with exercise, suggesting that areas in the lung with 
a low V AIQc ratio improved their ventilation equally with the 
overall increase in exercise ventilation. Our thought then was 
that this behaviour removed a hypoxic drive to breathe during 
exercise and contributed to chronic underventilation, but this 
was an oversimplification. More recently, the elegant multi
ple inert gas washout technique has been applied to type A 
and B patients to confirm the dominant V AIQc patterns (23). 
The combination of improving, contrasted with worsening, 
V AIQc distribution, together with overall underventilation 
leads to ventilation being lower and dyspnea less prominent 
in the type B patient. 

THE RESPIRATORY MUSCLES 
Christie, in defining dyspnea as an increase in the effort 

accompanying breathing, clearly identified the role of in
creased respiratory muscle work and oxygen consumption. 
Later, with Malcolm Mcilroy, he measured intra-oesophag
eal pressure and VT, and calculated respiratory work at rest 
and exercise in normal subjects and patients with emphysema 
(7). At a given ventilation, the work was two to three times 
greater in patients (Figure 7) and "must at least be an impor
tant factor in the production of dyspnea". They also appor
tioned the work against the resistive and elastic impedances 
to breathing, to which are added the extra forces involved in 
expanding an already expanded chest and an inability to 
reduce end-expiratory lung, and thus to recruit normally the 
inspiratory outward recoil of the chest wall at low lung 
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Figure 8) Borg rating scale applied to dyspnea in patients grouped according to reduction in forced expiratory volume in 1 s (FEV1); each 
group is subdivided according to maximum inspiratory pressure (MIP) to show increasing perception of dyspnea with inspiratory muscle 
weakness (48). Working capacity is expressed as% predicted (pred) 

volume (Figure 3). The contribution of the last factor to 
dyspnea has recently been emphasized by O'Donnell (24). 

The work of breathing in type B patients was noted to be 
similar in type A by Howell (25), and thus unlikely to con
tribute to underventilation. The fact that this group of patients 
tends to be less dyspneic than type A indicates a complex 
interaction between the work of breathing and the control of 
breathing in influencing overall ventilation and the sense of 
respiratory effort. 

Studies of hyperventilation suggested that the oxygen cost 
of breathing during exercise could be as high as 1 L/min in 
COLD (26). However, because in studies ofloaded breathing 
to failure in healthy subjects oxygen uptake only increased by 
a mean of 142 mL/min (27), and in patients with severe 
airflow limitation during exercise the increase in oxygen 
uptake above that expected for the power output is only 100 
to 300 mL/min (28), it seems likely that such values were 
overestimates, as suggested also by the measurements of 
Mcilroy and Christie. 
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While it is possible to load well-motivated healthy sub
jects to the point of respiratory failure and muscle fatigue, this 
is associated with extreme dyspnea that is unlikely to be 
tolerated during exercise in patients, who appear more likely 
to stop exercise or breathe less, before this point is reached. 
However, the role of respiratory muscle fatigue in generating 
dyspnea or in limiting increases in ventilation may still be 
important (29). Studies employing continuous positive air
way pressure as an assist device in patients with COLD have 
shown that it may increase exercise performance (30) and 
reduce breathlessness (31). 

MECHANISMS OF DYSPNEA 
In a much-quoted introduction to a symposium on breath

lessness in 1966, Cornroe (32) predicted that few of the 
forthcoming speakers would actually deal with this symptom, 
and he was proved right. However, under the leadership of Dr 
Moran Campbell, who with Dr Jack Howell organized that 
symposium, threshold detection and later magnitude scaling 
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in the 'puffers' (type A); the 'bloaters' (type B), on the other 
hand, could often exercise surprisingly well, in the face of 
chronic hypercapnia, hypoxemia and right heart 'failure'. In 
spite of the work of Christie and his team showing that 
emphysema was associated with loss of elasticity and severe 
gas exchange impairment f 6), the limiting factor at the time 
was thought to be mainly airflow obstruction as reflected in 
reductions in FEV 1. But differences in FEV 1 did not explain 
differences among patients in exercise capacity and dyspnea, 
and the thought arose that one could only discover the factors 
behind this variability by actually studying what happened 
during exercise. The opportunity presented itself as part of a 
joint study between the Hammersmith Hospital's Bronchitis 
Clinic and the University of Chicago's Emphysema Clinic -
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Figure 7) Mcilroy and Christie's measurements of the mechanical 
work of breathing at rest ( R) and exercise ( E) in normal subjects and 
patients with emphysema (redrawn;from 7) 

a comparison of 'British Bronchitis' with 'American Emphy
sema'. This study involved the careful characterization of 50 
patients in each clinic, and as part of the Hammersmith effort 
we carried out a series of exercise studies, including a com
parison of type A with type B patients. These studies (19) 
showed that, compared with type B, type A patients were 
more limited, kept PaC02 lower and showed a fall in Pa02 
with exercise (Figure 6); they had a large VoNT and an 
alveolar-arterial (A-a) P02 difference that increased. Type B 
patients showed a wide A-a P02 difference at rest, but this 
narrowed with exercise, suggesting that areas in the lung with 
a low V AIQc ratio improved their ventilation equally with the 
overall increase in exercise ventilation. Our thought then was 
that this behaviour removed a hypoxic drive to breathe during 
exercise and contributed to chronic underventilation, but this 
was an oversimplification. More recently, the elegant multi
ple inert gas washout technique has been applied to type A 
and B patients to confirm the dominant V AIQc patterns (23). 
The combination of improving, contrasted with worsening, 
V AIQc distribution, together with overall underventilation 
leads to ventilation being lower and dyspnea less prominent 
in the type B patient. 

THE RESPIRATORY MUSCLES 
Christie, in defining dyspnea as an increase in the effort 

accompanying breathing, clearly identified the role of in
creased respiratory muscle work and oxygen consumption. 
Later, with Malcolm Mcilroy, he measured intra-oesophag
eal pressure and VT , and calculated respiratory work at rest 
and exercise in normal subjects and patients with emphysema 
(7). At a given ventilation, the work was two to three times 
greater in patients (Figure 7) and "must at least be an impor
tant factor in the production of dyspnea". They also appor
tioned the work against the resistive and elastic impedances 
to breathing, to which are added the extra forces involved in 
expanding an already expanded chest and an inability to 
reduce end-expiratory lung, and thus to recruit normally the 
inspiratory outward recoil of the chest wall at low lung 
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Figure 9) Histograms of maximum power output in patients grouped according to forced expiratory volume in I s ( FEV1 ), with subgrouping 
according to skeletal muscle strength measurement, to show contribution of muscle weakness to reductions in exercise capacity (37) 

began to be applied to this distressing sensation (33), and the 
subsequent 25 years has seen the progressive expansion of 
research in this field. At the time they organized the sympo
sium Campbell and Howell had for a number of years devel
oped the concept of 'length-tension inappropriateness' as 
underlying dyspnea (34). The proprioceptive neurophysiol
ogy was to many of us who trained under Dr Campbell hard 
to understand, but at some levels provided a more inclusive 
explanation for dyspnea than could be found elsewhere. 
Thus, at one level, patients with dyspnea sensed discomfort 
because the ventilation and associated effort were inappro
priate to level of exercise being accomplished when related 
to their past experience. 

After Dr Campbell came to McMaster University, he 
continued his loaded breathing studies and later was joined 
by Kieran Killian; since then, over a number of years they 
have employed the sensory magnitude as a dependent vari
able that is quantitatively influenced by many factors acting 
in concert. Studies of respiratory loading, resistive and elas
tic, at rest (27 ,35) and during exercise (36), established the 
importance of increases in carbon dioxide output; ventila
tion; VT in relation to vital capacity; reductions in pleural 
pressures in relation to the maximal pressure generating ca
pacity, representing the strength of respiratory muscles; and 
increasing frequency of breathing. Increases in end-inspira
tory lung volume, representing the extent of muscle shorten
ing, and increasing inspiratory flow, representing the velocity 
of contraction, were also shown to contribute by reducing the 
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force generating capacity of the inspiratory muscles through 
their force-velocity and length-tension relationships: a 3% 
increase in volume above functional residual capacity and 
1 Lis increase in inspired flow both reduced this capacity by 
5% (37). On the basis of these studies in healthy subjects, 
similar principles were applied in cardiorespiratory disorders 
to identify similar factors in them (38). Many of these factors 
were relatively predictable on the basis of the forces that have 
to be generated to achieve ventilation and of the general 
properties of muscle. Less predictable was the importance of 
variation in respiratory muscle strength. Respiratory muscle 
weakness contributed substantially to the sense of respiratory 
effort in patients with varying degrees of airflow limitation 
(Figure 8) (37). More recently its importance in patients with 
heart failure has been emphasized (39). 

WHAT LIMITS PATIENTS WITH COLD 
IN EXERCISE? 

The capacity to exercise used to be examined in terms of 
motor function and its impairment, but now we have good 
reasons for accepting an important role for the sensory cortex 
as well, in terms of limiting exercise when the sensation has 
risen to unacceptable intensities. Soon after Killian had 
shown how much information could be gained by consider
ing sensory information during exercise, we began to use the · 
Borg psychophysical rating scale to measure sensory intensi
ties during routine clinical exercise tests ( 40). Although 
shown to be very useful and valid in scaling respiratory 
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muscle effort in the studies described above, Gunnar Borg 
(41) had initially developed and validated the scale to enable 
measurement of skeletal muscle effort during exercise; 
compared with other scaling techniques it showed distinct 
advantages in conforming to Stevens' Power Law (42), in 
having ratio properties and in providing a category scale that 
allowed absolute magnitudes to be compared among sub
jects. Thus, in routine exercise studies, the intensity of both 
skeletal muscle effort and the effort related to breathing may 
be separately scaled. After only a short time, it became 
apparent that, among patients with respiratory disorders, 
some 30% were not limited by dyspnea but by the intensity 
of leg muscle effort (37). Furthermore, measurements of 
leg muscle strength indicated that leg muscle weakness con
tributed to this limitation. Thus, the incidence of weakness 
increased with increasing airflow limitation (Figure 9) and 
contributed to the intensity of effort and limitation of 
exercise capacity (43). It appears that, in many patients with 
cardiorespiratory disorders, enforced inactivity contrib
utes to weakness and to down-regulation of muscle oxidative 
enzymes (18,44), which separately contribute to their disabil
ity. The finding of respiratory and skeletal muscle weakness 
as major contributors to exercise limitation suggests that 
muscle strengthening, particularly when targeted towards the 
weaker patients, would be helpful. Although it used to be 
thought that strength or weight training was 'specific' in 
its effects, only improving strength, this conclusion was 
reached on the basis of studies in athletes; in less-trained 
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