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Farnesoid X receptor (FXR) is a bile acid receptor encoded by the Nr1h4 gene. FXR plays an important role in maintaining the
stability of the internal environment and the integrity of many organs, including the liver and intestines.+e expression of FXR in
nondigestible tissues other than in the liver and small intestine is known as the expression of “nonclassical” bile acid target organs,
such as blood vessels and lungs. In recent years, several studies have shown that FXR is widely involved in the pathogenesis of
various respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, and idiopathic pulmonary fibrosis.
Moreover, a number of works have confirmed that FXR can regulate the bile acid metabolism in the body and exert its anti-
inflammatory and antifibrotic effects in the airways and lungs. In addition, FXR may be used as a potential therapeutic target for
some respiratory diseases. For example, FXR can regulate the tumor microenvironment by regulating the balance of inflammatory
and immune responses in the body to promote the occurrence and development of non-small-cell lung cancer (NSCLC), thereby
being considered a potential target for immunotherapy of NSCLC. In this article, we provide an overview of the internal re-
lationship between FXR and respiratory diseases to track the progress that has been achieved thus far in this direction and suggest
potential therapeutic prospects of FXR in respiratory diseases.

1. Introduction

Farnesoid X receptor (FXR) is a ligand-activated tran-
scription factor encoded by the Nr1h4 gene; this tran-
scription factor belongs to the bile acid receptor of the
nuclear receptor superfamily [1]. FXR plays a vital role in
maintaining the stability of the internal environment and the
integrity of various organs, including the liver and intestines.
A large number of studies have demonstrated that FXR plays
an important role in the metabolism of bile acid [2], cho-
lesterol [3], lipids [4], and glucose [5] and the regulation of
intestinal flora [6]. It is also widely involved in the occur-
rence and development of cholestasis [7], alcoholic liver
disease [8], primary biliary cirrhosis [9], inflammatory bowel
disease [10], atherosclerosis [11], and even gastrointestinal
tract and other malignant tumors [12]. In addition, FXR can
be used as a potential therapeutic target for several diseases
[13, 14]. Recent studies have suggested that FXR may play a

considerable role in the physiological and pathological as-
pects of the respiratory system [15–17]. In this article, we
provide an overview of the internal relationship between
FXR and respiratory diseases to track the progress that has
been achieved thus far in this direction and suggest potential
therapeutic prospects of FXR in respiratory diseases.

2. Biological Characteristics of FXR

2.1. Distribution and Structure of FXR. FXR was isolated by
Forman for the first time in a rat liver cDNA library [18].
FXR was initially considered as a simple orphan nuclear
receptor. However, bile acid metabolites were observed to
have the ability to fully bind to FXR at the physiological level.
Hence, FXR was finally identified as a bile acid receptor. FXR
is presently considered as a kind of bioreceptor for bile acid
receptors and synthesis that fully participates in the regu-
lation of bile acid metabolism. FXR plays an important role
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in maintaining the stability of the internal environment and
the integrity of various organs, including the liver and in-
testines [19, 20].

FXR has two known genotypes, namely, FXRα (NR1H4)
and FXRβ (NR1H5). Since its discovery, the FXR gene has
been successfully cloned in numerous species, including
humans, rats, and mice. +e single FXRα gene in humans
and rodents encodes four different isoforms, namely,
FXRα1, FXRα2, FXRα3, and FXRα4, which are caused by
different promoters and RNA splicing, and their expression
is tissue specific [21]. However, FXRβ is expressed as a
pseudogene in human and primates, and its mechanism of
action remains unclear [22, 23]. +erefore, FXR is used to
express FXRα in this review.+e human FXR gene is located
on chromosome 12 (12q23.1), which is mainly expressed in
various digestible tissues, including the liver [24] and small
intestine [25]. In addition, the expression of FXR in non-
digestible tissues other than in the liver and small intestine is
known as the expression of “nonclassical” bile acid target
organs, such as kidneys [26], adrenal glands [27], lung tissue
[13], and blood vessels [28].

As an orphan nuclear receptor, FXR has a typical nuclear
receptor structure [29]. Its structure includes highly con-
served carboxy-terminal ligand-binding domain (LBD),
amino-terminal DNA-binding domain (DBD), low con-
served amino-terminal ligand-independent transcription
activation functional domain (AF-1), carboxy-terminal li-
gand-dependent transcription activation functional area
(AF-2), and hinge area connecting LBD and DBD. FXR is a
ligand-activated transcription factor classified as a nuclear
bile acid receptor. Under the action of a ligand, the FXR that
is activated by an agonist (such as bile acid) enters the
nucleus of the cells and then combines with retinoid X
receptor to form a heterodimer, which can be bound to a
specific FXR response elements and regulate the expression
of various target genes by changing the structural confor-
mation of FXR [30, 31].

2.2. Function of FXR. FXR was first widely recognized for
regulating the bile acid pathway in the liver and intestines.
Previous studies have demonstrated that FXR regulates the
bile acid synthesis through two main pathways [32–34]. In
the classical pathway, CYP7A1 is a liver-specific microsomal
cytochrome P450 enzyme, which is a rate-limiting enzyme in
the classic pathway of bile acid synthesis. CYP7A1 is only
expressed in the human liver and can catalyze the 7α hy-
droxylation of cholesterol. In the alternative pathway,
CYP27A1 initiates an alternative pathway of bile acid
synthesis, in which cholesterol is oxidized to form cheno-
deoxycholic acid. +e main physiological function of FXR is
to regulate the conversion of cholesterol into bile acid, which
is the basis for the body to participate in other biochemical
reactions.

Recent studies have reported that FXR plays an im-
portant role in regulating lipid and glucose metabolism
[4, 5]. Moreover, FXR plays a vital role in preventing dis-
order infections of intestinal flora and formation of biliary
calculus [6, 7]. FXR activation exhibits beneficial effects on

various metabolic diseases, including fatty liver [35], type 2
diabetes [36], and hyperlipidemia [37]. Accumulating evi-
dence supports the observation that FXR agonists are
beneficial to the regulation of enterohepatic circulation [38],
liver regeneration [39], and occurrence and development of
metabolic tumors, such as liver cancer [40]. Moreover, FXR
agonists prevent the development of atherosclerosis [11] and
kidney diseases [41], and they are valuable for the treatment
of diabetes, hyperlipidemia, and obesity [42, 43]. +ese
properties indicate that FXR activation has a systemic effect
and may be a potential strategy for the treatment of a variety
of disorders.

3. FXR and Respiratory Diseases

Increasing evidence shows that the expression of FXR in
“nonclassical” bile acid target tissues, such as blood vessels
and lungs [15, 28], is equivalently important. In the vas-
culature, FXR regulates cholesterol transport and vascular
tension by regulating its own expression [44, 45]. Hendrick
et al. confirmed the presence of FXR in human airway
epithelial cell lines and pulmonary vascular endothelial cell
lines [46]. Zhang et al. [47] established that FXR could
inhibit lipopolysaccharide- (LPS-) induced acute lung in-
flammation injury, as well as regulate and improve lung
regeneration in animal experimental models. Several studies
have reported that FXR agonists, such as 6-ethyl-
chenodeoxycholic acid (OCA), play an anti-inflammatory
and antifibrotic role in lung tissues, and FXR can be used as a
new target for the treatment of certain lung diseases [13, 48].
+is review provides an overview of these studies and then
summarizes the latest progress in FXR research on respi-
ratory diseases.

3.1. Chronic Obstructive Pulmonary Disease. Chronic ob-
structive pulmonary disease (COPD) is a common and
frequently occurring respiratory disease, with high mor-
bidity and mortality. COPD is characterized by continuous
and mostly progressive airflow limitation mainly due to
abnormal airway remodeling and chronic inflammation.
Lesions in small airways, such as small airway inflammation,
fibrous tissue formation, and lumenmucus plugs, can lead to
increased peripheral airway resistance in patients with
COPD [49]. Although the mechanism of airway remodeling
in COPD has not been fully clarified, the process involves
epithelial-mesenchymal transition (EMT) [50], the devel-
opment of which is related to the severity of airway re-
striction [51]. In addition, cyclooxygenase 2 (COX-2) is a key
enzyme involved in converting arachidonic acid to pros-
taglandin E2, which is an important factor leading to the
airway inflammation of COPD. In this manner, the ex-
pression of COX-2 is also related to the severity of airflow
limitation [52, 53].

Chen et al. [54] detected FXR expression in human small
airway epithelial cells and also in the rat COPD lung model.
+ey found that FXR could promote bile acid-induced EMT
in alveolar epithelial cell lines, suggesting that the over-
expression of FXR may lead to airflow limitation in patients
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with COPD by promoting EMT in the small airways. Fur-
thermore, they observed that COX-2 is overexpressed in the
small pulmonary airways of COPD, and bile acid inhalation
may promote airway inflammation through FXR-mediated
COX-2, which in turn results in continuous airflow limi-
tation of COPD. However, FXR could also inhibit LPS-in-
duced acute lung inflammation [47]. +is contradictory
effect of FXR may be related to various causes of respiratory
diseases, a research direction that requires further investi-
gation. Nevertheless, FXR does participate in the patho-
genesis of COPD.

3.2. Asthma. Asthma is among the most common chronic
diseases worldwide. It is a chronic inflammatory disease of
the airways involving multiple types of cells and cell com-
ponents [55]. It is characterized by airway inflammation,
hyperresponsiveness, and remodeling. On the one hand,
chronic airway inflammation of asthma is due to the acti-
vated helper +2 cells that produce interleukins, such as
interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13
(IL-13), to activate B lymphocytes, synthesize specific im-
munoglobulin E, and activate mast cells and eosinophils to
mediate the synthesis and release of a variety of active
mediators [56]. On the other hand, the production of cy-
tokines, such as interleukins, by activated helper +2 cells
can directly activate mast cells, eosinophils, and alveolar
macrophages, which in turn can secrete a variety of in-
flammatory mediators and cytokines, such as histamine,
leukotrienes, prostaglandins, and transforming growth
factors [57, 58]. In addition, nuclear factor-kappaB (NF-κB),
as an important nuclear transcription factor in the cell, is
widely involved in the inflammatory and immune responses,
can regulate cell apoptosis and stress response, and plays an
important role in the pathogenesis of asthma [59, 60].

Shaik et al. [61] found that FXR mRNA and protein can
be expressed in mouse lung tissues and in rat and human
lung endothelial cells, indicating that FXR is involved in
normal physiological responses in lung tissues. In the
constructed ovalbumin-induced acute rat asthma model,
they found that the anti-inflammatory effect of FXR is
achieved by blocking the infiltration of inflammatory cells
into normal lung tissues, thereby inhibiting the secretion of
IL-4, IL-5, and IL-13 by activated helper+2 cells and that of
tumor necrosis factor-α (TNF-α) by activated alveolar
macrophages. Moreover, they noted that FXR may partially
reduce airway inflammation in asthma by antagonizing NF-
κB signaling and target gene expression in vivo.

3.3. Idiopathic Pulmonary Fibrosis. Idiopathic pulmonary
fibrosis (IPF) is a chronic, progressive, and fibrotic inter-
stitial pneumonia [62]. It has typical histopathological
features or radiographic images of common interstitial
pneumonia. +e pathogenesis of IPF is not completely clear.
IPF may be the result of the interaction between genetic and
environmental factors. From the perspective of patho-
physiology, IPF is presently understood to originate from
abnormal repair of alveolar epithelium after repeated minor
injury [63]. Repeated minor injury leads to the apoptosis of

alveolar epithelium, and abnormal activation of epithelium
induces the proliferation of intrinsic fibroblasts which
stimulate the development of EMTand the differentiation of
fibroblasts into myofibroblasts. +ese processes in turn lead
to progressive pulmonary interstitial fibrosis and airway
stiffness that can cause breathing difficulties and eventually
result in respiratory failure. EMT, inflammatory processes,
and collagen deposition are considered as important
mechanisms in the pathogenesis of IPF [64, 65].

EMT is a process, in which fully differentiated epithelial
cells gradually transform into mesenchymal phenotypes that
involves the activation of transforming growth factor-β1
(TGF-β1), connective tissue growth factor, epidermal
growth factor, and platelet-derived growth factor subunit A
[66].+e common feature of these pathways is that they have
the ability to promote the activation of “major transcription
factors,” such as zinc finger transcription factors 1 (SNAI1)
and zinc finger transcription factors 2 (SNAI2), which are
responsible for initiating the EMTprogram in epithelial cells
[67, 68].

FXR is not only located in alveolar epithelial type I cells
(AECIs) but also in alveolar epithelial type II cells (ATECIIs)
[69]. ATII cells are multifunctional cells that synthesize and
secrete lung surfactants and can participate in the immune
response by producing AECIs [70]. In addition, the ex-
pression of FXR in ATECIIs is regarded as the main source
of mesenchymal expansion in pulmonary fibrosis [71].
Comeglio et al. [13, 72] reported that TGF-β1, SNAI1, and
SNAI2 expression levels substantially increase in the con-
structed rat model of pulmonary fibrosis, whereas, with the
participation of FXR agonists (such as OCA), their ex-
pression levels are restored to those of the control group,
thereby inhibiting the development of EMT. Several studies
have proposed that IL-6 is a key factor that mediates the
proliferation of fibroblasts driven by TGF-β1 in the lungs
likely by converting acute inflammation of the lungs to a
more chronic fibrotic state [73]. Comeglio et al. confirmed
that OCA could considerably reduce the production of
proinflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) in
the IPF rat model and could also regulate the proportion of
matrix metalloproteinases (MMP) and their inhibitors
(tissue inhibitor of metalloproteinases, TIMP), thereby al-
leviating the symptoms of pulmonary fibrosis. +erefore,
FXR inhibits the occurrence of IPF mainly via two avenues:
it inhibits the production of proinflammatory cytokines
(such as IL-1β, IL-6, and TNF-α), that is, inhibiting the
inflammatory stage of pulmonary fibrosis; it suppresses the
expression of TGF-β1/SNAI1 and SNAI2 to inhibit the
development of EMT and regulates the proportion of
MMPs/TIMPs to reduce the situation of pulmonary fibrosis
itself.

3.4. Pulmonary Hypertension. Pulmonary hypertension
(PAH) is a chronic progressive disease with abnormally
elevated pulmonary artery pressure that is characterized by
increased pulmonary vascular resistance, leading to right
heart failure and eventually death [74]. +e key pathological
change in PAH is the remodeling of small pulmonary ar-
teries. +is remodeling is characterized by thickening of the
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intima, media, and adventitia of small arteries, leading to the
gradual narrowing of small pulmonary vessels, gradual in-
crease in vascular resistance, and induction of adaptive right
ventricular hypertrophy. +e strain of constant pressure
overload in the small arteries will eventually result in right
heart failure [75]. Vascular remodeling in PAH is a complex
and multifactorial process that involves not only peri-
vascular inflammation, EMT, and pulmonary fibrosis but
also impairs vasodilatory function mediated by pulmonary
vascular endothelium [13, 76, 77].

Several studies have observed that FXR exists not only in
pulmonary vascular endothelial cells but also in epithelial
cells [69, 78]. FXR plays an important role in maintaining
lung function by inhibiting lung inflammatory response,
producing lung surfactants, and promoting alveolar repair to
resist lung injury. With regard to PAH [48, 79], FXR can
inhibit the expression of the proinflammatory factor IL-6
and monocyte chemotactic protein-1 (MCP-1), as well as
inhibit the NF-κB-mediated inflammatory response during
PAH progression. Furthermore, FXR can inhibit the ex-
pression of TGF-β1 to inhibit EMT and pulmonary fibrosis,
thereby delaying the development of PAH. In addition, the
bone morphogenetic protein/bone morphogenetic protein
receptor (BMP/BMPR) system plays a vital role in PAH.+e
lack of BMPR expression in pulmonary vascular endothelial
cells can result in the increased secretion of intracellular
growth factors and IL-6, thereby promoting the occurrence
of TGF-β1-induced EMT, thus providing a circular response
that aggravates the perivascular inflammation, EMT, and
pulmonary vascular remodeling. FXR promotes the ex-
pression of BMP2/BMPR1A in pulmonary vascular endo-
thelial cells, thereby improving the progress of PAH. Finally,
FXR can regulate the balance of relaxation and contraction
in smooth muscle cells by reducing the conduction of the
NO-sGC-cGMP signaling pathway, which in turn normal-
izes the function of pulmonary vascular endothelium and
thus inhibits the progression of PAH.

3.5. Acute Lung Injury and Acute Respiratory Distress
Syndrome. Acute lung injury (ALI) and its more serious
form, namely, acute respiratory distress syndrome (ARDS),
are common diseases worldwide that may lead to acute
respiratory failure and death [80]. +e essence of ALI/ARDS
is a variety of inflammatory cells, and their release of in-
flammatory factors and cytokines indirectly mediates lung
inflammatory response, which can be considered as the
pulmonary manifestation of systemic inflammatory re-
sponse syndrome [81].

Several studies have confirmed that FXR mainly plays an
important role in inhibiting lung inflammation and promoting
lung regeneration in ALI/ARDS. On the one hand, FXR in-
hibits the release of proinflammatory cytokines (IL-1β and
TNF-α) and chemokines (CXCL1 and MCP-1) and partially
upregulates the expression of anti-inflammatory cytokines (IL-
10) in the lungs to reduce the inflammatory response of ALI/
ARDS. ALI/ARDS induces the release of proinflammatory
cytokines and chemokines by activating the NF-κB signaling
pathway, whereas FXR inhibits the NF-κB signaling pathway

and also hinders MAPK and PI3K/Akt signaling pathways. In
turn, FXR partially reduces the pulmonary inflammatory re-
sponse of ALI/ARDS [82]. Notwithstanding, FXR activation
inhibits the expression of P-selectin and induces the expression
of the gene Foxm1b, thereby improving the permeability of the
lungs. Moreover, FXR activation inhibits the “chemotactic
movement” of leukocytes from the peripheral circulation into
the inflammatory tissues of the lungs. Furthermore, FXR ac-
tivation stimulates the proliferation of endothelial cells to help
restore the integrity of the pulmonary vascular endothelial
barrier, thereby promoting the lung repair to inhibit ALI/
ARDS disease progression [47].

3.6. Non-Small-Cell Lung Cancer. Lung cancer is the leading
cause of cancer-related deaths worldwide with the highest
mortality rate among all malignant tumors [83]. Non-small-
cell lung cancer (NSCLC) accounts for about 85% of all lung
cancer cases [84]. A large number of studies have observed
that numerous molecular changes and specific gene ex-
pressions are related to the occurrence and development of
NSCLC [85, 86]. Tumor cells can reshape the tumor mi-
croenvironment that will further affect the behavior and
state of tumor cells [87, 88].+e human lungs are susceptible
to various poisons and pathogens. Consequently, the human
lungs are prone to chronic damage and inflammation that
form an inflammatory tumor microenvironment, thereby
resulting in the occurrence of NSCLC [89].

FXR is regarded as a regulator of inflammation and
immune response in immune-mediated disease subpopu-
lations [47, 90]. As a ligand-activated transcription factor,
FXR can control the transcription of target genes by binding
to FXR response elements (FXRE) [91]. Several studies have
reported that, compared with that of healthy controls, the
FXR of patients with NSCLC is markedly increased and its
expression level is positively correlated with poor clinical
results [92]. FXR can be recruited to the promoter of
CCND1 in NSCLC cells and activate its transcription.
CCND1 transcription can shorten the G1/S phase transition
process in the cell cycle by upregulating the transcriptional
expression of cyclin D1 and then promote the growth of
NSCLC cells. FXR may also promote the development of
NSCLC by regulating the tumor microenvironment, espe-
cially its immunological characteristics. In the NSCLC cell
model, You et al. [93] found that knocking down FXR in-
creases the expression of PD-L1, whereas the overexpression
of FXR induces the downregulation of PD-L1 expression in
NSCLC cells. +ese results indicated that FXR inhibits the
expression of PD-L1 in NSCLC cells by binding to the
putative FXRE in the PD-L1 promoter. +is promoter could
be used as a potential target for immunotherapy of
FXRhighPD-L1low NSCLC. In summary, FXR plays a carci-
nogenic role in the progression of NSCLC.

4. Conclusion

As a multifunctional nuclear receptor, FXR can participate
in the immune regulation and inflammation in the body, so
it is highly expressed in the respiratory system with
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immune defense and prone to inflammation, such as
bronchial epithelial cells, alveolar epithelial cells, alveolar
macrophages, and pulmonary vascular endothelial cells. As
a bile acid-activated nuclear receptor, FXR can bind to the
FXRE and mediate anti-inflammatory and antifibrosis
responses in the respiratory system by inhibiting the ex-
pression of proinflammatory cytokines and chemokines,
texpression of COX-2 in the airways, toccurrence of EMT,
and conduction of NF-κB, MAPKs, and PI3K/Akt signaling
pathways. In addition, FXR can regulate the tumor mi-
croenvironment by regulating the balance of inflammatory
and immune responses in the body to promote the oc-
currence and development of NSCLC. +us, it can be a
potential target for immunotherapy of NSCLC.

In summary, FXR is expressed in the respiratory system
and plays an important pathophysiological function in re-
spiratory diseases. FXR regulates the bile acid metabolism in
the body and also exerts its anti-inflammatory and anti-
fibrotic effects in the airways and the lungs. Further research
on the role of FXR in the pathogenesis of various respiratory
diseases would aid in developing this receptor as an indicator
of the progression of these diseases and as their potential
therapeutic target. It is believed that FXR can play a pivotal
role in respiratory diseases in the near future.
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