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Background. Immune checkpoint inhibitors (ICIs) have become a standard care in non-small-cell lung cancer (NSCLC). However,
its application to epidermal growth factor receptor (EGFR)-mutant NSCLC patients is confronted with drug resistance.Tis study
aimed to clarify the potential role of Yes1-associated transcriptional regulator (YAP1) in ICIs treatment for EGFR-mutant NSCLC
population.Methods. All the clinical data of NSCLC were downloaded from Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) for GSE11969 and GSE72094. Based on YAP1 expression, all the NSCLC patients including the EGFR-mutant
and EGFR-wildtype (WT) patients were divided into two groups, YAP1_High and YAP1_Low. Using cBioPortal, genetic al-
terations were analyzed for identifcation of immunogenicity in EGFR-mutant NSCLC. MR analysis was used to analyze the hub
gene of EGFR.Te infltration of immune cells and the expression of the identifed tumor-associated antigens were identifed with
TIMER. By graph learning-based dimensionality reduction analysis, the immune landscape was visualized. Moreover, survival
analysis was performed to verify the predictive value of YAP1 in ICIs treatment for EGFR-mutant NSCLC population using Ren’s
research data (NCT03513666). Results. YAP1 was a poor prognostic factor of EGFR-mutant NSCLC population rather than lung
adenocarcinoma (LUAD) patients. MR analysis revealed that the EGFR gene regulated YAP1 expression. YAP1 was identifed as
a hub gene closely associated with immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC
population in TCGA LUAD. Tumors with YAP1_High showed an immune-“cold” and immunosuppressive phenotype, whereas
those with YAP1_Low demonstrated an immune-“hot” and immunoactive phenotype. More importantly, it was verifed that
YAP1_High subpopulation had a signifcantly shorter progression-free survival (PFS) and overall survival (OS) after ICIs
treatment in EGFR-mutant NSCLC patients in the clinical trial. Conclusions. YAP1 mediates immunosuppressive microenvi-
ronment and poor prognosis in EGFR-mutant NSCLC population. YAP1 is a novel negative biomarker of ICIs treatment in
EGFR-mutant NSCLC population. Clinical Trials. Tis trial is registered with NCT03513666.

1. Introduction

Lung cancer is still the leading cause of cancer death
worldwide [1, 2], among which non-small-cell lung cancer
(NSCLC) is the most common type. Despite great progress
in treatment over the last decade, the mortality remains high,
and the 5-year survival rate is approximately 15% in ad-
vanced NSCLC patients [3]. Encouragingly, the immuno-
therapy for NSCLC has been revolutionized by the
introduction of immune checkpoint inhibitors (ICIs) against

programmed death protein-1 (PD-1) and its ligand PD-L1 or
cytotoxic T-lymphocyte antigen-4 (CTLA-4) [4–6]. In-
creasing studies have indicated that ICIs treatment has
promising efcacy since it can greatly prolong the survival of
patients with advanced NSCLC including lung adenocar-
cinoma (LUAD) and lung squamous carcinoma (LUSC) [7].
Application of ICIs treatment in advanced NSCLC patients
has thus become a research hotspot and standard care,
especially in those patients without epidermal growth factor
receptor (EGFR) mutation [8]. However, those EGFR-
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mutant patients appeared to respond poorly to ICIs treat-
ment [9]. Te reasons for diferent efects of ICIs treatment
on EGFR-mutant and wild type (WT) NSCLC patients are
unknown. Tus, we intended to explore some clues from
gene regulation and immune microenvironment.

At present, PD-L1 is widely used as a biomarker in-
dicating sensitivity to ICIs treatment in NSCLC [10].
However, not all PD-L1-positive NSCLC patients can beneft
from ICIs treatment [11]. In addition, tumor mutation
burden (TMB) and microsatellite instability (MSI) are
widely used as major clinical indicators for ICIs treatment in
pan-cancer. However, TMB or MSI cannot fully predict the
response of NSCLC to ICIs treatment [12–15]. Nevertheless,
ICIs treatment has greatly improved the outcomes of
NSCLC patients without EGFR mutation.

As for EGFR-mutant NSCLC patients, tyrosine kinase
inhibitors (TKIs) are milestones of tumor-targeted therapy,
which have greatly improved the outcomes. However, ac-
quired resistance to EGFR-TKIs remains a clinical challenge.
Despite a report demonstrating clinical benefts of ICIs
monotherapy or ICIs combination with chemotherapy for
some patients with EGFR-TKIs resistance [16], it is still
controversial which subpopulation with EGFR-TKIs re-
sistance is suitable for ICIs. Many factors may account for
the insensitivity of NSCLC patients with EGFR mutation to
ICIs treatment, but undisputed biomarkers are still lacking.
Hence, to improve the curative efect in those patients with
EGFR mutation, it is necessary to explore a novel biomarker
to guide ICIs treatment in clinical work.

Our team previously found that the Yes1-associated
transcriptional regulator (YAP1) was associated with
EGFR-TKI resistance [17]. Here, we identifed YAP1 as
a hub gene that was closely associated with EGFR regulation
in NSCLC patients. Dividing the EGFR-mutant NSCLC
patients into two subpopulations based on YAP1 expression,
we found that patients with YAP1_High tumor had im-
munosuppressive immune cells and inferior prognosis in
EGFR-mutant NSCLC patients compared to those with
YAP1_Low tumor. Moreover, YAP1_High patients had
poor progression-free survival (PFS) and overall survival
(OS) after ICIs treatment in EGFR-mutant NSCLC pop-
ulation. Tus, our fndings might provide scientists and
oncology clinicians with a valuable and reliable biomarker
for selection of patients suitable for ICIs treatment from
EGFR-mutant NSCLC population.

2. Methods

2.1. Data Acquisition. Te LUAD dataset required for the
study was downloaded from the Cancer Genome Atlas
(TCGA, https://portal.gdc.Cancer.gov/), including raw
counts of RNA sequencing data of the tumor transcriptome
with their clinical information. Tere were 513 cases of
tumor tissues. Mutation information from the TCGA cohort
was collected from the UCSC Xena database (https://
xenabrowser.net/datapages/), excluding the patients with-
out survival information. Finally, 444 EGFR-WT and
65 EGFR-mutant NSCLC cases were obtained. GSE11969,
GSE72094, GSE31210, and GSE13522 were obtained from

the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/GEO/). Te data of 149 NSCLC
patients were collected from GSE11969, including 90 LUAD
patients and 34 EGFR-mutant patients. Te data of 442
LUAD patients were obtained from GSE72094, including
47 EGFR-mutant cases. Te expression profles of 226 cases
of LUAD were collected from GSE31210, including
127 EGFR-mutant cases. A total of 27 EGFR-WT LUAD
patients having received ICIs treatment were from
GSE13522. Te mutation frequency was analyzed by the
cbioportal (https://www.cbioportal.org/). All the detailed
dataset information including the LUAD dataset, GSE11969,
GSE72094, GSE31210, GSE13522, immune infltration,
mutation enrichment, GO-KEGG, and the phase-II trial
from Prof. Ren’s lab (NCT03513666) are shown in Sup-
plementary Table 1. Te progression-free survival (PFS),
overall survival (OS), and the expression of YAP1 were
included. Te immune infltration of B cells, CD8+/CD4+

T cells, Tregs, NK cells, macrophages M1/M2, and dendritic
cells and the term of gene ontology-Kyoto Encyclopedia of
Genes and Genomes (GO-KEGG) as well as mutation en-
richment are also provided in Supplementary Table 1.

2.2. MR Analysis and PCA Analysis. Te MR graph (https://
www.mr-graph.org/) was used to establish the interaction
network between diferent main regulatory proteins and
their upstream driving genes in diferent TCGA datasets.
Principal component (PC) analysis was used to visualize the
data in two dimensions with the “ggplot2” packages.

2.3. Functional Enrichment Analysis. Te selected patients
were divided into two groups based on YAP1 expression. By
using a bioinformatics online tool (https://www.
bioinformatics.com.cn), (GO) including biological process
(BP), cellular components (CC), molecular function (MF),
and (KEGG) pathway enrichment analyses were performed.
∗P< 0.05 was considered statistically signifcant.

2.4. Survival Analysis. Kaplan–Meier analysis of OS and
PFS) was performed using Survminer [18] (R package). We
calculated the hazard ratio (HR) and log-rank P value of the
95% confdence interval. All codes used for the analyses were
written in R software (3.6.1).

2.5. Relative Proportions of Immune Cells in NSCLC.
Based on normalized gene expression data from the TCGA
LUAD, we estimated a subset of 22 tumor-infltrating im-
mune cells (TIICs) in LUAD tissue using the CIBERSORT
(https://cibersort.stanford.edu/) computational algorithm
[19] and inferred the relative proportions of the 22 TIIC
subtypes. Only patients with CIBERSORT P< 0.05 were
considered eligible for further analysis. By using the Wil-
coxon rank sum test, TIIC proportions were analyzed be-
tween low and high expression groups based on prognosis-
related gene expression in LUAD patients. Te single-
sample GSEA method of “GSVA” (R package) [20] was
used, including 22 types of immune cells, to analyze the level
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of immune cell infltration of LUAD expression profle data
and evaluate the correlation of prognostic genes with these
immune cells using Spearman analysis. P< 0.05 was con-
sidered statistically signifcant.

2.6. Statistical Analysis. Te expression levels of hub genes
between mutation and wild-type groups were assessed and
compared using t-test. Statistical signifcance was set at
∗P< 0.05. Pearson analysis was used to evaluate the corre-
lation between prognosis-related genes and immune cells.
Te value of correlation strength >0.2 was considered
signifcant.

3. Results

3.1. YAP1 Is Not a Prognostic Factor of LUAD. Our previous
work has confrmed that YAP1 regulated the stemness and
promoted the growth of tumor cells [21], and it was closely
related to EGFR-TKI resistance [17]. Tus, we tried to
observe the efect of YAP1 on ICIs treatment for NSCLC.
First, all the LUAD patients from TCGA LUAD were di-
vided into two subpopulations according to YAP1 expres-
sion (YAP1_High vs YAP1_Low� 4 : 6). Second, by
analyzing the information of LUAD patients from TCGA
LUAD, we found that the OS had no signifcant diference
between YAP1_High and YAP1_Low LUAD patients
(46months vs 51months, P � 0.226, Figure 1(a)). Next, MR
analysis revealed that the EGFR gene regulated YAP1 ex-
pression (Figure 1(b)). Together, the results indicate that
YAP1 has no efect on the prognosis of LUAD.

3.2. Identifcation of Immunogenicity in EGFR-Mutant
NSCLC. A total of 925 mutant genes encoding tumor-
specifc antigens were screened by assessing fraction ge-
nome alteration and mutation counts in each EGFR-mutant
NSCLC patient. Genes with more than 4 mutations
accounted for approximately 30% of all mutated genes
(Figure 2(a)). Similarly, the majority of genes had a per-
centage of genomic mutations less than 0.08, and only
a small proportion of genes had a large percentage of ge-
nomic mutations (Figure 2(b)). Genes with the highest al-
teration frequency in the fraction genome altered group,
including tumor protein p53 (TP53), Ras homolog,
mTORC1 binding (RHEB), and lysine demethylase 5C
(KDM5C), were individually displayed (Figure 2(c)). Genes
with the highest mutation frequency in the mutation count
group, including DNA methyltransferase 3 alpha
(DNMT3A), DNA methyltransferase 3 beta (DNMT3B),
EPH receptor A5 (EPHA5), FATatypical cadherin 1 (FAT1),
insulin like growth factor 2 (IGF2), KRAS, T-box tran-
scription factor 3 (TBX3), TEK, TP63, and EPH receptor A3
(EPHA3), were individually displayed (Figure 2(d)). To-
gether, the results indicate the low immunogenicity of
EGFR-mutant NSCLC.

3.3. YAP1 Is Associated with the Poor Prognosis of EGFR-
Mutant NSCLC Patients. We tried to determine the po-
tential biomarkers and immune subtypes of NSCLC for
selection of patients suitable for ICIs therapy from EGFR-
mutant population. Te expression of YAP1 in the EGFR
mutation group was higher than that in the EGFR-WTgroup
(Figure 3(a)). Analyzing the 65 LUAD patients with EGFR
mutation from TCGA LUAD, we assigned all the patients
into the YAP1_High or YAP1_Low groups (4 : 6) and found
that the gene profles of the two subtypes were obviously
diferent (Figure 3(b)). Analysis of the survival relevance of
YAP1 showed that YAP1_High subpopulation had signif-
cantly shorter OS (39.1months vs 49.7months, P � 0.01,
Figure 3(c)) and PFS (18.7months vs 31.5months,
P � 0.038, Figure 3(d)) than the YAP1_Low group.

Similarly, survival analysis was repeated from 32 to
29 EGFR-mutant NSCLC patients for GSE11969 and
GSE72094. As a result, the OS of the YAP1_High group was
80.9months while not reached (NR) in the YAP1_Low
group in GSE11969 (P � 0.838, Figure 3(e)). Te OS curves
of both groups were separated in GSE72094 (NR vs NR,
P � 0.224, Figure 3(f)). Taken together, YAP1 is associated
with poor prognosis of EGFR-mutant NSCLC population
both in TCGA LUAD and GEO datasets.

3.4. YAP1 Is Associated with Immunosuppressive Microen-
vironment in EGFR-Mutant NSCLC. Infltration of TIICs
was assessed using ssGSEA and CIBERSORT tools. First, we
found that the suppressive immune cells including mac-
rophage M2 and activated mast cells were highly expressed
in the EGFR-mutant group. Te active immune cells in-
cluding NK cells, CD8+ T cells, and T-helper cells were
highly expressed in the EGFR-WT group for the patients
from TCGA LUAD (all P< 0.05, Figure 4(a)).

Further, we compared the immune cell subsets between
the YAP1_High and YAP1_Low groups of EGFR-mutant
patients in TCGA LUAD. Te YAP1_High group showed
a signifcant decrease in the proportion of immunoactive
cells including NK cells, CD8+ T cells, and helper T cells
compared with the YAP1_Low group (all P< 0.05,
Figure 4(b)). YAP1_High tumors were rich in immuno-
suppressive cells infltration (Figure 4(c)).

Additionally, we explored other factors that may afect
this property. Previous studies have elucidated that TMB
and mutation for quantifcation of tumor antigens are
closely associated with immunotherapeutic efcacy [22, 23].
Terefore, we assessed TMB and mutations from the
mutect2-processed TCGA LUAD between YAP1_High and
YAP1_Low subtypes in EGFR-mutant patients. No signif-
icant diference was observed between the two subtypes in
the number of mutant genes (P > 0.05, Figure 4(d)) or TMB
(P > 0.05, Figure 4(e)). Accumulating evidence showed that
PD-L1 is a predictive biomarker of response to ICIs treat-
ment in NSCLC patients [24, 25]. Terefore, we analyzed the
correlation between YAP1 and PD-L1 (CD274). As
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predicted, YAP1 was negatively correlated with PD-L1 in
EGFR-mutant TCGA LUAD (Figure 4(f)) and GSE31210
(Figure 4(g)). Together, YAP1 was identifed as a biomarker
for immunosuppressive microenvironment in EGFR-
mutant NSCLC.

3.5. Immune Landscape and YAP1 Expression in EGFR-
Mutant NSCLC Patients. Based on the above results, we
used PC analysis to test the immune landscape. Te plots
revealed an obvious clustering between the YAP1_High and
YAP1_Low groups (Figure 5(a)). Next, the enrichment
analysis of GO and KEGG between the two groups was
performed. In the YAP1_High group, GO analysis showed
the enrichment of histone modifcation, hippo signaling and
Wnt signaling in biological process (BP), cell-cell junction
and bicellular tight junction in cellular component (CC),
histone binding, DNA-binding transcription factor binding,
and Wnt-activated receptor activity in molecular function
(MF). KEGG analysis showed the enrichment of ECM-
receptor interaction, Notch signaling pathway, PI3K-Akt
signaling pathway, andWnt signaling pathway (Figure 5(b)).

3.6. Survival Analysis of ICIs Treatment Associated with YAP1
Expression in EGFR-Mutant NSCLC. We also analyzed the
role of YAP1 as a biomarker for predicting response to ICIs
treatment in EGFR-mutant NSCLC. Tere were 18 EGFR-
mutant NSCLC patients receiving ICIs treatment from Ren’s
research (NCT03513666) [26]. Te YAP1_High group had
a trend of shorter OS (15.6months vs NR, P � 0.053, Fig-
ure 6(a)) and shorter PFS (5.6months vs 6.7months,
P � 0.086, Figure 6(b)). Tere were 27 EGFR-WT NSCLC

patients receiving ICIs treatment from GSE13522, and the
YAP1_High group had no diferent PFS with the YAP1_Low
group (1.8months vs 2.4months, P � 0.894, Figure 6(c)).
Taken together, YAP1 is a strong negative biomarker for
predicting efcacy of ICIs treatment in EGFR-mutant
NSCLC.

4. Discussion

As is known, the majority of patients experience insensitive
response to ICIs monotherapy. Priority should be given to
explorations of predictive biomarkers to determine which
subpopulation of lung cancer patients will respond to ICIs.
PD-L1 is regarded as the routine biomarker to predict the
efcacy of ICIs treatment. NSCLC patients with high PD-L1
expression undergo durable response and achieve long PFS
fowing ICIs treatment [27]. Also, TMB serves as a candidate
biomarker for predicting the efcacy of ICIs monotherapy in
various solid tumors [14, 28, 29]. However, not all NSCLC
patients, especially the EGFR-mutant population, are un-
suitable for ICIs treatment.

EGFR-TKIs are the preferred choice for EGFR-mutant
NSCLC [30, 31], but whether these patients could beneft
from ICIs treatment remains unknown. Recently, clinicians
and researchers focused on the precision and in-
dividualized ICIs treatment for these patients [32–34]. Due
to the complexity of the tumor immune microenviron-
ment, it is likely insufcient to predict the response to ICIs
treatment in NSCLC based on PD-L1 or TMB alone. In fact,
the mechanism underlying immunotherapeutic efects on
EGFR-mutant NSCLC is unclear. Dong et al. reported that
EGFR-mutant patients were characterized by the
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immunosuppressive status, leading to decreased PD-L1+/
CD8+ TILs compared with EGFR-WT NSCLC patients
[35]. Tu et al. found that T-cell activity may play a role in
response to ICIs treatment and T-cell infltration was ab-
sent in these patients [36]. In addition, increased immu-
nosuppressive cell types and decreased expression of
immune checkpoint proteins generated an immune-silent
environment in EGFR-mutant NSCLC [37]. Together,
immune environment in EGFR-mutant tumors is possibly
a key factor to determine which population could beneft
from ICIs treatment.

One study reported that ICIs as monotherapy or in
combination with chemotherapy can be used as the frst-line
treatment of advanced EGFR-mutant NSCLC [38]. Mean-
while, numerous case reports have shown that ICIs treat-
ment appears to be benefcial for EGFR-mutant NSCLC
patients after EGFR-TKIs resistance [39, 40]. Due to the
heterogeneity of tumors, genomic changes are insufcient to
serve as biomarkers for ICIs treatment. To date, no bio-
marker is available to select the patients suitable for ICIs
treatment from EGFR-mutant population. Tus, it is es-
sential to identify novel biomarkers to accurately select the
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lung cancer patients who will beneft from ICIs treatment for
EGFR-mutant NSCLC.

In the current work, we performed bioinformatic
analysis to explore potential immunity-related markers
which could have an efect on the immunotherapeutic ef-
fcacy in EGFR-mutant population. YAP1 was found to be
a possible novel negative biomarker to select the patients
who could respond to ICIs treatment. Furthermore, we
divided these patients into two immune subtypes. In our
results, compared with YAP1_Low patients, YAP1_High
subpopulation had a poorer prognosis in EGFR-mutant
NSCLC patients from TCGA LUAD. However, we found
that the OS of the YAP1_High group was numerically
shorter than that of the YAP1_Low group in GSE11969 and
GSE72094.Tis is mainly attributed to the small sample size.
If the sample size is enlarged, the OS diference will probably
become more obvious. Tumor microenvironment (TME) is
an essential factor that may afect immunotherapeutic ef-
fcacy. YAP1_high tumor with EGFR mutation had a lower
activated immune cell infltration such as NK cells, CD8+
T cells, and helper T cells than YAP1_low tumor. Terefore,

the insensitivity to ICIs treatment of the EGFR-mutant
NSCLC patients with a high YAP1 expression is possibly
due to a low infltration of immune cells in the TME. Im-
portantly, we verifed that the OS and PFS after ICIs
treatment were shorter in the YAP1_High group than in the
YAP1_Low group in EGFR-mutant NSCLC patients from
Ren’s research [26] (NCT03513666), but not in EGFR-WT
NSCLC patients from GSE13522. To our best knowledge,
this is the frst study to report that YAP1 is associated with
immune subtypes in EGFR-mutant NSCLC and is a novel
negative biomarker of ICIs treatment.

Additionally, our previous work has demonstrated that
YAP1 plays an important role in self-renewal of cancer stem
cells and its activity is negatively correlated with patient
outcome [21]. A recent study found that interferon-c in-
duced tumor resistance to anti-PD-1 immunotherapy by
promoting YAP1 phase separation [41]. All these reports
strengthened the credibility of the results of our research.

Interestingly, from the TCGA database containing 6
types of tumors, the pooled analysis showed that YAP1
expression was signifcantly negatively correlated with OS
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Figure 4: YAP1 is associated with negative tumor microenvironment in EGFR-mutant NSCLC. Spearman’s analysis showed infltration of
22 immune cell types in NSCLC (a) and EGFR-mutant NSCLC (b) using CIBERSORT in TCGA LUAD. (c) Te correlation between YAP1
expression and immune cells. (d) Te mutations per coding region were evaluated in the two subtypes. (e) Te tumor mutation burden
(TMB) expression in the YAP1_High and YAP1_Low groups. YAP1 was negatively correlated with PD-L1 (CD274) in EGFR-mutant TCGA
LUAD (f) and GSE31210 (g).
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after ICIs treatment. In the future, further studies will be
needed to elucidate the mechanism.

Despite a small sample size due to the limitation that
EGFR-mutant patients are not recommended to receive ICIs
treatment, our fndings are still meaningful and interesting
and might provide some hints for further studies and po-
tential directions for development of ICIs treatment for
EGFR-mutant NSCLC.

5. Conclusions

Taken together, YAP1 mediates immunosuppressive mi-
croenvironment and poor prognosis in EGFR-mutant
NSCLC population. YAP1 serves as a novel negative bio-
marker for ICIs treatment in NSCLC. Further studies on
YAP1 might be promising and signifcant to individualized
and precision ICIs treatment for NSCLC.
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