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Chronic obstructive pulmonary disease (COPD) is one of the top causes of morbidity and mortality worldwide. Although for
many years its accurate diagnosis has been a focus of intense research, it is still challenging. Due to its simplicity, portability, and
low cost, spirometry has been established as the main tool to detect this condition, but its fawed performance makes it an
imperfect COPD diagnosis gold standard. Tis review aims to provide an up-to-date literature overview of recent studies re-
garding COPD diagnosis; we seek to identify their limitations and establish perspectives for spirometric diagnosis of COPD in the
XXI century by combining deep clinical knowledge of the disease with advanced computer analysis techniques.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is charac-
terized by respiratory symptoms and airfow limitation gen-
erated by airway and alveolar alterations. COPD is an umbrella
term including chronic bronchitis and emphysema (Figure 1).
Functional deviations are triggered by exposure to noxious
particles or gases, mainly, smoke from cigarette or biomass
combustion. Despite being preventable, it is currently the third
leading cause of morbidity and mortality worldwide [2]. In
2019 only, 3.28million deaths were caused by COPD [3].

COPD can be diagnosed by several pulmonary function
tests (PFTs), but spirometry is the most widely used tool due
to its low cost and simplicity. Figure 2 shows the usual result
of a spirometry: two graphs and a summary table of mea-
surements made on the curves included on such graphs [5].
Te most important spirometric measurements to detect
COPD are the ratio between forced expiratory volume in the
frst second (FEV1) and forced vital capacity (FVC), both

measured during a forced expiration/inspiration manoeuvre
after applying a bronchodilator.

According to the Global Initiative for Chronic Ob-
structive Lung Disease (GOLD), if the FEV1/FVC ratio is
below 0.7 (70%), the subject is deemed to have COPD.
Recommendations from the American Toracic Society
(ATS) and the European Respiratory Society (ERS) include
the use of the statistically derived lower limit of normal
(LLN) as an alternative to the fxed FEV1/FVC threshold of
0.7 [6], since the LLN includes the efect of normal ageing in
the diagnostic process (Figure 3). Tis graph shows the 70%
threshold for reference, the general behaviour of the LLN,
and the predicted value according to age, although these
parameters also depend on height and sex.

A major efect of having these two case defnitions for
COPD is a disparity in prevalence estimation. According to
Adeloye et al. [8], the global prevalence of COPD in 2019 was
10.3% when using the fxed threshold, and 7.6% according to
the LLN defnition.
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As a tool for establishing the diagnostic performance of
a test, a table known as the confusion matrix (also called the
diagnostic 2× 2 table) can be built to classify the diagnosis
results (Table 1).

A confusionmatrix shows how an index test classifes the
subjects in comparison with the truth as defned by a ref-
erence test or gold standard. Te matrix includes the fol-
lowing four boxes:
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Figure 1: Chronic obstructive pulmonary disease (taken from [1]).
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Figure 2: Usual report of a standard spirometry. (a) Flow-volume curve. (b) Volume-time curve. Adapted from [4].
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(i) True positives (TP): patients correctly identifed as
having the disease by the index test

(ii) False positives (FP): patients incorrectly identifed
as having the disease by the index test

(iii) False negatives (FN): patients incorrectly identifed
as disease-free by the index test

(iv) True negatives (TN): patients correctly identifed as
disease-free by the index test

Furthermore, based on the classifcation shown in this
matrix, a few diagnostic metrics can be defned and cal-
culated as follows:

(i) Accuracy: ability of the test to correctly classify the
subject ((TP+TN)/(TP +TN+FP+FN))

(ii) Sensitivity or recall: ability of the test to correctly
detect diseased subjects (TP/(TP + FN))

(iii) Specifcity: ability of the test to correctly detect
disease-free subjects (TN/(FP +TN))

(iv) Positive predictive value: probability that a subject
with a positive test result does have the disease (TP/
(TP+ FP))

(v) Negative predictive value: probability that a subject
with a negative test result does not have the disease
(TN/(FN+TN))

Te test performance is often assessed on the basis of
these metrics, and they are also used to contrast diferent
diagnostic methods.

Diagnosis is generally based on measuring one or a few
variables on the subject. In order to propose a new method,
the setting of a threshold value for the discriminatory
variable is required. Such variables should discriminate

between the population with the disease and the disease-free
population. However, it is unusual to fnd a criterion to
perfectly separate both populations since the measured
variable in both populations may overlap (Figure 4). Such
overlapping means that the threshold value could either
favour more false positives or more false negatives, which
implies a trade-of between sensitivity and specifcity.

Identifying a subject as a false positive or a false
negative has important consequences. A false positive
COPD diagnosis can lead to a potentially harmful
treatment, and it could also hinder the identifcation and
treatment of other potential diseases generating what-
ever respiratory symptoms in the patient’s clinical pic-
ture. On the other hand, a false-negative diagnosis could
make the patient miss the opportunity to receive timely
COPD treatment, which may imply that disease pro-
gression may not be managed at an early stage [10].
Bearing this in mind and considering the stage in the
diagnostic process, a more sensitive (usually preferred
for screening) or a more specifc test (better for con-
frmatory testing) may be used.

To evaluate the diagnostic capabilities of spirometry,
repeatability and reproducibility are important parameters
to consider. Te GOLD, the ATS, and the ERS established
certain standards [2, 11] to ensure that a test reaches an
appropriate level of quality, and any study involving spi-
rometry should always examine the conditions in which the
test was performed [12]. In this case, statistical techniques
such as the method agreement analysis [13], intraclass
correlation coefcient (ICC) [14], and Bland–Altman plots
[15] have proven to be very useful.

Even though the adequate use of spirometry is well
described [11], there are some issues regarding its diagnostic
accuracy. It is well known that traditional spirometric
measures lack sensitivity to detect mild disease. Several
reasons may explain such underperformance: frst, airfow
obstruction diagnosis currently relies on the use of fxed
values in the fow-volume curve which are insensitive to
small airway disease (where COPD has its early onset) [16].
Secondly, spirometry requires a forced manoeuvre de-
pendent on the patient’s efort, which may be variable, and it
may be difcult for some patients [17]. Tis translates into
poor reproducibility. And thirdly, any patient with FEV1/
FVC ratio below the 95% confdence interval of normal is
assumed to be diseased.

Tis review seeks to provide an overarching perspective
of COPD diagnosis, summarise recent COPD diagnostic
accuracy studies to understand current hurdles, and identify
where there is room for improvement.

1.1. Traditional Spirometric Measures. One of the most
debatable concepts in COPD diagnosis is whether to use the
fxed 0.7 value versus using the LLN as a threshold for the
postbronchodilator (post-BD) FEV1/FVC ratio. Eforts have
beenmade to resolve this issue. For instance, Miller et al. [17]
compared the clinical characteristics of patients recently
diagnosed with COPD by the fxed ratio method and those
diagnosed by the lower limit of normal. Tey found that the
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Figure 3: Change of predicted value and LLN of FEV1/FVC with
age (taken from [7]).

Table 1: Confusion matrix.
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fxed ratio identifes more subjects with less respiratory
symptoms and more cardiac clinical characteristics.

Furthermore, the following studies have compared the
diagnostic accuracy of FEV1/FVC< LLN versus that of
FEV1/FVC< 0.7 in diferent countries. Andreeva et al. [18]
compared COPD prevalence in two major cities in Russia
using both thresholds as criteria for diagnosing COPD.Tey
included patients with reversible airway obstruction and, if
FEV1/FVC< 0.7 is taken as the gold standard, then FEV1/
FVC< LLN would have had a sensitivity of 0.69, a specifcity
of 0.99, and an accuracy of 0.98.

Te same comparison was performed in several Cana-
dian cities [19]. If FEV1/FVC< 0.7 is taken as gold standard,
then FEV1/FVC< LLN would have achieved an accuracy of
0.94, with relatively low sensitivity (0.64) but perfect
specifcity [2].

A similar study was carried out in Tailand, where
a misidentifcation prevalence of 5.6% with most subjects in
the “underestimated” subgroup was found, meaning that
they were identifed as false positives when using FEV1/
FVC< LLN as the index test and FEV1/FVC< 0.7 as gold
standard. Te subjects in this “underestimated” group
showed signifcant clinical conditions including chronic
respiratory symptoms, so they should not have been con-
sidered false positives [20].

Similarly, a study in the Netherlands compared the di-
agnostic performance of the fxed value versus the LLN with
a clinical COPD diagnosis. Tey found that, while the fxed
value was more sensitive than the LLN (0.73 vs. 0.47), it was
also less specifc (0.95 vs. 0.99) [21].

All the abovementioned studies reported results of
spirometric measures after applying a dose of bronchodi-
lators (BD). Nonetheless, some studies have tried to defne
the impact of not using this medication in spirometric di-
agnostic accuracy. For instance, Kronborg et al. [10] report
that an increase from 64% to 79% in the diagnostic accuracy
of FEV1/FVC pre-B2 can be achieved by changing the
threshold from 0.7 to 0.66, using FEV1/FVC post-B2 <0.7 as
a reference.

On the other hand, completing the forced expiratory
manoeuvre can be difcult for some patients for diferent
reasons [22], including the severity of their symptoms or
cognitive capacity which impact the FVC measurement
quality. Consequently, several studies used spirometric

measures at a fxed time point. Particularly, the forced ex-
piratory volume at 6 seconds (FEV6) has been extensively
investigated as a replacement for FVC.

For example, in China, Pan et al. [23] determined the
diagnostic accuracy of FEV1/FEV6< 0.73 post-BD vs. FEV1/
FVC< 0.7 post-BD, which turned out to have an accuracy of
0.95, a sensitivity of 0.952, and a specifcity of 0.945.

Along the same lines, Chung et al. [24] sought to defne
the best threshold for FEV1/FEV6 pre-B2 to replace FEV1/
FVC pre-B2 to detect airway obstruction in a Korean
population of 14,978 subjects. A criterion of FEV1/
FEV6< 0.75 pre-B2 achieved a sensitivity of 0.94, a speci-
fcity of 0.95, and an overall accuracy of 0.95.

Furthermore, Wang et al. [25] defned the best threshold
for FEV1/FEV6 and compared its diagnostic accuracy
against FEV1/FVC< 0.70 to detect airway obstruction. Tis
study found that a threshold of 0.75 for FEV1/FEV6 has an
accuracy of 0.98, a sensitivity of 0.97, and a specifcity of 0.99.

Regarding other spirometric parameters, Ioachimescu
et al. [26] proposed an estimation of FVC based on forced
expiratory volume at 3 seconds (FEV3) and the diagnostic
accuracy of FEV1/FVC3< LLN, with FEV1/FVC< LLN as
the reference test, yielded an accuracy of 0.90, with a sen-
sitivity of 0.94 and a specifcity of 0.89.

1.2. Nontraditional Spirometric Measures. As mentioned
before, traditional spirometric measures are based on spe-
cifc fxed values which do not seem to take advantage of the
wealth of the information the expiratory fow-volume curve
has to ofer. Some researchers have focused on the de-
scription of diferent measures of the shape of the fow-
volume curve.

For instance, Bhatt et al. [16] introduced theD parameter
(measured in the “volume vs. time” curve) and the transition
point and transition distance (measured in the fow-volume
curve) and reported its COPD diagnostic accuracy as 0.84,
when compared with computed tomography (CT). Te
measurements proposed in this paper are shown in Figure 5.

In addition, Oh et al. [27] proposed the “fow decay,”
a measure defned as the slope of volume versus the natural
logarithm of the reciprocal of the fow (ln (1/fow)) in
midexhalation, to quantify dynamic airway resistance. Tis
measure was found to have an accuracy of 0.94, a sensitivity
of 0.95, and a specifcity of 0.92 when compared with FEV1/
FVC< LLN and plethysmography (Figure 6).

Li et al. [28] introduced a new parameter, termed the
AUC3/AT3, which is the area under the descending limb of
the expiratory fow-volume curve before the end of the frst
3 seconds (AUC3) divided by the area of the triangle before
the end of the frst 3 seconds (AT3), with an accuracy,
sensitivity, and specifcity of 0.86, 0.87, and 0.86, re-
spectively, vs. the FEV1/FVC< LLN (Figure 7).

Te utility of the area under the expiratory fow-volume
curve (AEX) has sparked interest in several researchers due
to its apparent ability to detect respiratory abnormalities.

Several studies [29–31] have been performed regarding
the AEX’s ability to diagnose respiratory impairment. Ioa-
chimescu et al. [29] found that AEX has a good
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Figure 4: Establishing a threshold for a diagnostic test [9].
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discriminating capacity between obstruction, restriction,
mixed defects, and small airway disease. Later, Ioachimescu
and Stoller [30] assessed the diagnostic accuracy and utility
of several geometric approximations of AEX based on
standard instantaneous fows; they obtained correlations
ranging between 0.95 and 0.99 with the actual value of AEX
(Figure 8). Ioachimescu and Stoller [31] also evaluated the
capability of the square root of one of those approximated
values, AEX, to detect and classify bronchodilator re-
sponsiveness into fve categories: negative, minimal, mild,
moderate, and marked, suggesting that this measure could
become useful for stratifying dysfunction in obstructive lung
disease.

Furthermore, the concavity of the expiratory fow-
volume curve can also be analysed from the spirometric
curves. Nozoe et al. [32] proposed that the concavity/con-
vexity level of the fow-volume curve during spontaneous
breathing can be an appropriate replacement for the tra-
ditional forced expiratory manoeuvre in older patients. Tey
found that the percent-of-predicted FEV1 had an area under
the curve (AUC-ROC) of 0.92, a sensitivity of 0.93, and

a specifcity of 0.93 as a predictor of the spontaneous ex-
piratory fow-volume curve. In this study, a rectangle de-
fned by the maximum spontaneous expiratory fow and the
beginning of the inspiration was calculated, using the area
below the curve within the rectangle for diagnosis (Figure 9).

Also,Mochizuki et al. [33] presented a newmetric for the
maximal expiratory fow-volume curve (MEFV) concavity
and proposed a new index, the obstructive index, to quantify
the extent of emphysema in COPD, asthma-COPD overlap
(ACO), and asthma. Tis new index, defned as the ratio of
forced vital capacity to the diference in volume between the
two points where the MEFV curve hits half the value of the
peak expiratory fow, had a signifcant association with the
CTmeasurement of low-attenuation volume (LAV%), which
indicates that it could successfully refect the extent of
emphysema (Figure 10).

Central concavity and peripheral concavity (Figure 11)
are other examples of alternative measures, which are
calculated based on the forced expiratory fow at 50% and
75% of the forced vital capacity, respectively. Johns et al.
[34] found a moderately strong correlation between
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concavity, FEV1/FVC ratio, and midfow rate. Tey also
found that concavity was more specifc for clinical
symptoms of COPD.

1.3. Machine-Learning Techniques. Lately, artifcial in-
telligence has been used in diferent felds to improve the
performance of diverse systems by trying to emulate the way
human intelligence works. Machine learning is a sub-
category of artifcial intelligence, and it is based on the
principle that a computer can learn to perform a task
(usually classifcation or regression) based on examples or
experience, and not by being specifcally programmed for

the task. Deep learning is a machine learning technique that
takes advantage of using a vast volume of information
to learn.

For example, Das et al. [35] developed a convolutional
neural network (CNN) to verify if a fow-volume trace fulfls
the ATS/ERS quality control criteria for spirometry. CNN
showed an accuracy of 87% for acceptability and 92% for
usability in contrast to classifcations made by respiratory
technicians.

In the case of diagnostic performance for COPD, ma-
chine learning has been tested to provide a faster and more
accurate diagnostic interpretation of PFTs since it can
recognize patterns in high-dimensional feature spaces [36].

Combining their study of AEX with machine learning,
Ioachimescu and Stoller [37] proposed the square root of
AEX as an alternative spirometric parameter to diferentiate
between normal, obstructive, restrictive, andmixed patterns.
Tey used machine learning in a model that combined best-
split partition and artifcial neural networks.

Also, three versions of residual networkswere independently
trained to performCOPDdiagnosis using random subsets of CT
scans collected from the PanCan study, which enrolled ex-
smokers and current smokers at high risk of lung cancer
[38]. Tese networks were evaluated by using threefold cross-
validation experiments. Te best performing networks achieved
an accuracy of 0.889 (SD 0.017), calculated by the area under the
curve (AUC).Moreover, Bodduluri et al. [39] also used CTscans
and deep learning to analyse spirometry and they found that
ANN and random forests do a better job at phenotyping COPD
than the traditional spirometric measurements.
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Jafari et al. [40] designed a system to detect normal and
abnormal pulmonary functions using spirometry data and
multilayer perceptron neural networks (MLPNNs), which
classifed respiratory patterns into normal, obstructive, re-
strictive, and mixed patterns, based on the fow-volume
curve. Tis system achieved an accuracy of 0.98, a sensitiv-
ity of 0.98, and a specifcity of 0.99 across all categories. In
a similar study [41], two neural networks were concatenated
in such a way that the frst classifed the sample as normal or
abnormal and the second classifed abnormal samples into
restrictive or obstructive patterns, reporting accuracies,
sensitivities, and specifcities above 0.90 for all three
patterns.

Finally, machine learning has been used not only in
diagnosis but also in day-to-day applications to improve the
quality of life of COPD patients.

For instance, Swaminathan et al. [42] used a machine
learning-based strategy for early detection of COPD exac-
erbations and subsequent triage.Te goal of this study was to
identify exacerbations in a timely manner and to evaluate
their severity to ofer an action plan for the patient. Tis
strategy was compared with the evaluation made by a group
of physicians, and it showed good performance in predicting
the need for emergency care.

In another study, Cheng et al. [43] proposed a system to
classify the lung function based on movement sensors in
phones by using support vector machines. Tis study ana-
lysed walking patterns captured by their phone sensors and
created a machine-learning model that perfectly classifed
their pulmonary function into GOLD I/II/III categories.

2. Discussion

Ideally, to obtain a COPD diagnosis with certainty, a CT
would be the gold-standard. Vimala et al. [44] established

a correlation between quantitative and qualitative parame-
ters of high-resolution CT and pulmonary function tests,
showing that CT has a key role not only in diagnosis but also
in COPD severity defnition.

However, CT is not always available, and spirometry is
the most used method, at least during the frst stages of
diagnosis. Te most frequently used spirometric measure is
the FEV1/FVC ratio with a fxed ratio of 0.7 as the threshold
[22]. Tis value is easy to calculate and remember in
a clinical setting and it works reasonably well in the average
patient with suspected COPD. Yet, it is well known that this
fxed threshold leads to overdiagnosis of older subjects and
underdiagnosis of younger subjects because the pulmonary
function declines with ageing.

Terefore, when dealing with patients either younger or
older than the average, LLN works better. In ideal condi-
tions, the defnition of LLN should be obtained by deriving
local population-specifc equations. However, studies to
develop such equations for every population have not been
conducted due to logistics and costs. Most studies that use
LLN to diagnose COPD or to establish COPD prevalence use
known equations (mostly obtained in developed countries,
for specifc ethnicities) as their reference, which may lead to
a decreased diagnostic accuracy. Terefore, an efort should
be made globally to develop appropriate LLN equations.

Bhatt and Wood [45] performed a thorough review
regarding the controversy around fxed value vs. LLN when
dealing with ageing subjects and two important issues were
found. First, most studies trying to justify LLN as a better
COPD classifcation tool did not use postbronchodilation,
which means that the GOLD recommendations were not
fulflled. Secondly, they found that subjects with FEV1/FVC
ratio under 0.7 but over LLN had a higher risk of mortality
and hospitalizations due to exacerbations. However, a more
recent study [46] found that using FEV1/FVC under 0.7 was
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not signifcantly diferent neither more accurate than other
fxed or LLN thresholds in predicting COPD-related hos-
pitalizations or mortality.

In addition, the fxed threshold (0.7) and the LLN for
FEV1/FVC have diferent sensitivities and specifcities. Tis
should always be considered in the diferent stages of COPD
diagnosis because they should not be considered in-
terchangeable when used for screening vs. confrmatory
testing [47].

Some studies try to exploit data obtained from studies
with diferent goals (e.g., CT data obtained when screening
for cancer) or aim at studying spirometric measures without
applying bronchodilators. Terefore, these studies do not
test bronchodilator response (BDR), which could be an
inappropriate practice because, theoretically, not using BDR
makes it difcult to diferentiate between asthma and COPD
and goes against GOLD recommendations for COPD
diagnosis.

Interestingly, Janson et al. [48] questioned the use of
bronchodilator response in diagnosing COPD due to the
limited ability to diferentiate asthma from COPD. Also,
Fortis et al. [49] studied the impact of bronchodilator re-
sponse in adverse outcomes measures (such as exacerbations
and mortality) and concluded that when BDR is evident in
both FEV1 and FVC, the clinical picture is associated with
less emphysema, more frequent and severe exacerbations,
and lower mortality, suggesting a COPD phenotype with
asthma-like features.

Moreover, not all studies check for spirometric re-
peatability and reproducibility and if they do, they do not
always report doing so. Repeatable measurements are critical
to guarantee the reliability of the diagnostic test and, when
unmet, there is no point in defning the test’s diagnostic
accuracy. Besides, repeatability is essential for machine-
learning models since the models’ accuracy will be as
good as that of the data used to train them. If there is no
quality verifcation, the achieved models cannot be deemed
reliable. Furthermore, machine-learning algorithms would
likely beneft from having repeated measurements to
learn from.

In addition, since the FEV1/FVC ratio is well known
to be an imperfect diagnostic test (whether using fxed or
LLN values) [50], it should not be used as a unique
criterion to diagnose COPD, nor should it be used as
a single gold standard for new diagnostic tests. Whenever
possible, all available clinical information should be used
to evaluate the diagnostic accuracy of any new method.
Tis is particularly important when training machine-
learning models with supervised techniques since the
new model will only be as good as the gold standard used
to train it.

In fact, some studies suggest that, due to the hetero-
geneous nature of disease presentation, it is wise to consider
its diferent manifestations beyond spirometry. Lowe et al.
[51] segregated current and former smokers into 8 groups,
depending on the presence of one or more of the 4 char-
acteristics: exposure (cigarette smoke only), respiratory
symptoms (dyspnoea and/or chronic bronchitis), chest CT
abnormalities (emphysema, gas trapping, and/or airway wall

thickening), and abnormal spirometry, to show how each
characteristic contributes to the disease progression and
mortality. Adding these nonspirometric characteristics to
a machine-learning technique can be easily implemented,
which would result in new and perhaps more efcient di-
agnostic methods.

Recently, the very defnition of COPD has been reviewed
and a new naming system has been proposed, based on the
origin of COPD [52]. Tis new classifcation includes 7
defnitions: genetic COPD, COPD due to abnormal lung
development, COPD due to infections, COPD and asthma,
environmental COPD (which has two subcategories: ciga-
rette smoking and biomass and pollution exposure), COPD
of unknown causes, and COPD of mixed causes. Tis study
alone may change the way we diagnose COPD considering
the diferent manifestations the disease may have based on
its causes.

On a fnal note, it is remarkable that neural networks are
the most frequently used method when applying machine-
learning techniques to diagnose COPD. Neural networks are
known to be a very powerful tool, but they have a major
disadvantage: they are black boxes, meaning that the
problem is solved without really understanding the process
and the reasoning behind the solution. Perhaps, simpler
approaches, which are easier to understand, can be tested to
see if their performance is powerful enough to improve the
timely diagnosis of COPD.

3. Conclusion

COPD is a highly prevalent disease with a signifcant burden
that seriously decreases a patient’s quality of life, and its
diagnosis remains a challenge despite so many studies being
performed on this topic.Te heterogeneity of the disease and
its multiple origins and presentations make diagnosis
a multidimensional problem. Leveraging advanced
machine-learning techniques, along with the deep clinical
knowledge of the issue, may be the key for tackling the
problem and fnding more suitable solutions, which should
aid in achieving a more efcient diagnosis of COPD.
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