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Cardiac resynchronization therapy (CRT) has been demonstrated to improve symptoms and survival in patients with left
ventricular (LV) systolic dysfunction and dyssynchrony. To achieve this goal, the LV lead should be positioned in a region of delayed
contraction. We hypothesized that pacing at the site of late electrical activation was also associated with long-term response to CRT.
We conducted a retrospective study on 72 CRT patients. For each patient, we determined the electrical delay (ED) from the onset
of QRS to the epicardial EGM and the ratio of ED to QRS duration (ED/QRS duration). After a followup of 30 ± 20 months, 47
patients responded to CRT. Responders had a significantly longer ED and greater ratio of ED/QRS duration than nonresponders.
An ED/QRS duration ≥0.38 predicted a response to CRT with 89% specificity and 53% sensitivity.

1. Introduction

Cardiac resynchronization therapy (CRT) has been validated
as an effective therapeutic approach for patients with drug-
refractory heart failure associated with left ventricular (LV)
dyssynchrony. In this population, CRT not only improves
heart failure symptoms and quality of life [1, 2] but also
leads to reverse remodeling [3] and reduces the risk of death
[4]. Despite this unquestionable efficacy, 30% of patients
do not appear to benefit from CRT, and substantial effort
has been made to better identify potential responders [5,
6]. Several reports have indicated that LV lead placement
at the site of latest mechanical contraction is a critical
determinant of CRT outcome [7, 8]. The identification of
these sites of greater dyssynchrony by echocardiography
has been suggested by several authors to be associated
with acute or long-term success of CRT. However, echo-
guided lead positioning requires sophisticated techniques
for assessment of LV dyssynchrony and selection of the site
of latest mechanical activation [7, 9, 10]. The use of these
techniques, during CRT, is challenging and may significantly
prolong the procedure duration. Furthermore, data from

the PROSPECT trial [11] illustrated the limited intra- and
interobserver reproducibility of these measurements.

Another method of identifying sites of latest activation is
the use of epicardial electrogram (EGM). Pacing at the site of
maximal electrical delay (ED) determined electrophysiologi-
cally [12] or by electroanatomical mapping [13, 14] has been
reported to result in greater acute hemodynamic response.
However, data on the long-term value of this technique are
very limited [12]. The goal of our study was to assess the
value of the ED for the prediction of the long-term response
and to determine the degree of conduction delay that was
more likely to be associated with positive outcome.

2. Methods

We conducted a retrospective single-centre study on patients
with a CRT device and in whom local epicardial EGM was
available at the time of the procedure.

2.1. Patients’ Selection. Patients were included in our study if
they had successful implantation of a CRT device for drug-
refractory congestive heart failure: NYHA functional class III
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Figure 1: Recording of the epicardial EGM at the tip of the LV lead.
a: QRS duration, b: electrical delay.

or IV, due to severe systolic LV dysfunction (LV ejection frac-
tion (LVEF) ≤35% and long QRS duration (≥120 ms)) [15]
and if epicardial EGMs were obtained during the procedure.
Patients with severe ischemic heart disease and extensive
myocardial scar (involving more than 4 LV segments) or
history of lateral or posterolateral myocardial infarction who
had a low likelihood of response were not considered for CRT
and, therefore, were not included in our study.

2.2. Implantation Technique. Technical aspects of lead and
device implantation were described in detail in previous
publications [16, 17]. Efforts were made to place the LV lead
in a lateral tributary of the coronary sinus. At the end of the
procedure and before the LV lead was connected to the CRT
device, simultaneous surface 12-lead ECG and epicardial
EGMs were continuously acquired with a filter bandwidth of
0.05 to 40 Hz and 30 to 500 Hz, respectively, and displayed
on a high-resolution video monitor at 100 mm/second
paper speed for inspection and subsequent review (Prucka
Engineering). The ED was measured from the onset of QRS
to the peak of sharpest deflection of the EGM (Figure 1). We
also determined the ratio of the ED to baseline QRS duration
(ED/QRS duration). During the study period, the LV lead
position was not modified on the basis of the ED. After the
implant, each patient had a chest X-ray in the anteroposterior
and left anterior oblique (LAO) views, and the final LV lead
position was recorded in the latter view.

2.3. Patients’ Followup. After implantation of the CRT
device, patients were followed prospectively in our institu-
tion at 1, 6, and 12 months and every year thereafter. The
following parameters were collected at baseline and each
visit: functional status defined by NYHA class, 6-minute
walked distance, and LV volumes by echocardiography: LV
end-systolic volume (LVESV) and LV end-diastolic volume
(LVEDV). LVEF was determined by echocardiography or
nuclear angiography. When LVEF was evaluated at baseline
by one of the 2 techniques, the same method was used at
long-term followup. Some parameters of LV dyssynchrony
were also assessed at baseline and followup, but results of
these parameters will not be reported in the present study,
since their value in selection of patients for CRT has not been

Table 1: Comparison of clinical characteristics in responders and
nonresponders.

Responders
N = 47

Nonresponders
N = 25

P

Age (years) 70± 7 72± 8 .36

NIDCM (%) 72 60 .29

SR at implant (%) 89 92 .72

NYHA class 3.3± 0.5 3.1± 0.7 .37

NYHA class

Class III (%) 69 73 .71

Class IV (%) 31 27

Baseline treatment

Beta-blocker (%) 67 65 .91

ACE inhibitor (%) 73 81 .48

ARA (%) 22 12 .35

Diuretics (%) 98 92 .55

Spironolactone 38 42 .71

Digoxin (%) 27 31 .71

Statin (%) 40 42 .85

Treatment at followup

Beta-blocker (%) 80 65 .17

ACE inhibitor (%) 78 65 .26

ARA (%) 29 23 .59

Diuretics (%) 98 100 1

Spironolactone 27 42 .18

Digoxin (%) 24 42 .12

Statin (%) 49 46 .82

Change of treatment
during followup (%)

89 89 1

6-minute walked
distance (m)

354± 126 348± 119 .88

Follow-up duration
(months)

32.1± 20.9 27.3± 19.1 .35

Δ NYHA class −1.6± 0.7 −0.2± 0.9 <.001

Abbreviations used: SR: sinus rhythm, NIDCM: nonischemic dilated
cardiomyopathy, NYHA class: New York Heart Association functional
class, ACE inhibitors: angiotensin converting enzyme inhibitors, ARA:
angiotensin receptor antagonist, Δ NYHA: difference of NYHA class
between followup and baseline.

validated by the PROSPECT trial [11]. Response to CRT was
defined by either improvement of functional status by at least
2 NYHA classes alone or by one NYHA class associated with
increased LVEF by at least 5% [18].

2.4. Statistical Analysis. Categorical data are expressed as
incidence, and noncategorical data are expressed as mean
± standard deviation. A comparison of categorical data was
performed using the Chi-square test, and noncategorical data
were compared by Student’s t-test. Linear regression analysis
was performed using the Pearson correlation coefficients.
Logistic regression analysis was used for identification of
independent predictors of long-term response to CRT. A P
value < .05 was considered statistically significant.
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3. Results

3.1. Baseline Characteristics. Our study population com-
prised 72 patients (47 men) who were implanted with a CRT
device and in whom epicardial EGM was available at the time
of the procedure. Mean age was 70 ± 8 years. Sixty-eight
percent of patients had nonischemic dilated cardiomyopathy.
Ninety percent were in sinus rhythm (SR) at the time of
implant. Spontaneous baseline QRS duration was 178 ±
29 ms. Almost all patients had left bundle branch block
(LBBB, N = 69). Only 3 patients had right bundle branch
block (RBBB). Mean LVEF prior to CRT was 23 ± 8%. Six-
minute walked distance was 351± 122 meters. Mean ED was
132 ± 36 ms, and the mean ratio of ED/QRS duration was
0.75± 0.17.

3.2. Long-Term Followup

3.2.1. Comparison of Baseline Characteristics between Respon-
ders and Nonresponders. After a mean followup of 30 ± 20
months, 47 patients were classified as responders and 25 as
nonresponders. A comparison of patients’ characteristics is
summarized in Tables 1 and 2. No significant difference was
observed between the 2 groups in baseline characteristics
including age, nature of underlying heart disease, prevalence
of SR at baseline, QRS duration, NYHA functional class, 6-
minute walked distance, followup duration, and medications
at baseline and followup. Optimization of medical therapy
was equally frequent in both groups of patients. Baseline
LVEF was higher in responders (25±8% versus 20±7%, P =
.01). As expected, responders had significant improvement of
their NYHA functional class and LVEF compared to baseline
(Δ NYHA class = −1.6 ± 0.7, P < .0001, Δ LVEF = +19 ±
12%, P < .0001), whereas in nonresponders, there was no
significant change of these same parameters at long-term
followup (Δ NYHA class = −0.2 ± 0.9, P = .63, Δ LVEF =
−0.6 ± 8%, P = .60). The difference between the 2 groups
was statistically significant (P < .001). Nonresponders had
significantly larger LVEDV and LVESV at baseline compared
to responders (Table 2). At followup, responders exhibited
significant reduction of their LV volumes (Δ LVEDV =
−55± 72 mL, P < .001, Δ LVESV = −68± 66 mL, P < .001).
In nonresponders, there was no significant change of LV
volumes compared to baseline (Δ LVEDV = +5±62 mL, P =
.73, Δ LVESV = +5± 58 mL, P = .69). Again, the difference
between the 2 groups was highly significant (P = .002 for Δ
LVEDV and P = .001 for Δ LVESV).

ED was significantly longer in responders (139 ± 35 ms
versus 119± 37 ms, P = .03). The ratio of ED/QRS duration
was also significantly greater in responders (0.79±0.16 versus
0.67± 0.18, P = .005).

3.2.2. Correlation between ED and Long-Term Outcome.
Linear regression analysis showed a weak but significant
positive correlation between ED and difference of LVEF
from baseline to followup (Δ LVEF) (r = +0.307, P =
.009) (Figure 2(a)) and also a weak but significant negative
correlation with change of NYHA class from baseline to
followup (Δ NYHA) (Figure 2(b)) (r = −0.310, P = .008).

We also found a significant positive correlation between the
ratio of ED/QRS duration and Δ LVEF (r = +0.232, P = .05)
(Figure 3(a)) and a significant negative correlation with Δ
NYHA (r = −0.283, P = .016) (Figure 3(b)).

Receiver operating characteristic analysis showed that
an ED ≥ 150 ms predicted a response to CRT with
80% specificity and 47% sensitivity (odds ratio (OR): 3.5,
confidence interval (CI): 1.1–11, P = .025). A ratio of
ED/QRS duration ≥0.83 was associated with a response to
CRT with 89% specificity and 53% sensitivity (OR: 8.3, CI:
2.2–31.7, P = .001).

Logistic regression analysis (Table 3) showed that, after
adjustment for baseline rhythm and underlying heart dis-
ease, independent predictors of positive outcome were
baseline LVEF and the ratio of ED/QRS duration.

3.2.3. Comparison of Correlation between ED (or Ratio of
ED/QRS Duration) and Response to CRT in Ischemic and
Nonischemic Cardiomyopathy. The value of ED to predict
response to CRT in patients with ischemic and nonischemic
cardiomyopathy was analyzed separately (Table 4). We did
not find a stronger correlation between ED and change of
LVEF or NYHA class during long-term followup in patients
with nonischemic dilated cardiomyopathy versus those with
ischemic heart disease. The same result was observed when
the correlation was examined with the ratio of ED/QRS
duration.

3.2.4. Correlation between ED (or Ratio of ED/QRS Duration)
and LV Lead Position in the LAO View. Figure 4 shows the
distribution of ED (Figure 4(a)) and the ratio of ED/QRS
duration (Figure 4(b)) based on the LV lead location in the
LAO view. Almost all patients had their LV lead positioned
between 1:30 and 5:00 o’clock. In 1 patient the LV lead was
left in the great cardiac vein and in 2 patients, the final LV
lead position was at 12:30. As shown in Figures 4(a) and 4(b),
longer EDs and greater ratios ED/QRS duration were more
likely to be located between 2:30 and 5:00 o’clock, but short
EDs and small ratios were also observed in the same locations
indicating that not all lateral sites were equal.

4. Discussion

The present study demonstrates the value of intraprocedural
epicardial EGM recording to direct placement of the LV lead
in regions of long ED in order to increase the likelihood
of long-term response to CRT. Although mechanical rather
than electrical resynchronization has been suggested to
be the primary determinant of hemodynamic benefit, we
hypothesized that these two components are closely linked.

Controversial data from the literature raise the question
whether positioning the LV lead should be guided by
echocardiography to determine the site of latest mechanical
contraction. Some of these reports indicate an enhanced
response rate in patients in whom there is concordance
between the position of the LV lead tip and the latest area
of contraction [7, 9, 10, 19], whereas other investigators
suggest that pacing at these sites is not always associated with
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Figure 2: Correlation between ED and Δ LVEF (a) and Δ NYHA class (b). Abbreviations: ED: electrical delay, Δ LVEF: difference of LVEF
between long-term followup and baseline, Δ NYHA: difference of NYHA class between long-term followup and baseline.
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Figure 3: Correlation between ratio of ED/QRS duration and Δ LVEF (a) and Δ NYHA class (b). Abbreviations: ED: electrical delay, Δ LVEF:
change in LVEF from baseline to long-term followup, Δ NYHA: change in NYHA class from baseline to long-term followup.
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Table 2: Comparison of echocardiography and electrical parameters in responders and nonresponders.

Responders Nonresponders P

Spontaneous QRS duration (ms) 177± 31 180± 26 .69

ED (ms) 139± 35 119± 37 .03

Ratio of ED/QRS duration 0.78± 0.15 0.68± 0.19 .02

LVEF (%) 25± 8 20± 7 .01

Baseline LVESV (mL) 182± 57 240± 63 <.001

Baseline LVEDV (mL) 269± 62 319± 75 .005

Δ LVEF (%) +19.5± 11.9 −0.8± 7.7 <.001

Δ LVESV (mL) −55± 72 +5± 62 .002

Δ LVESV (mL) −68± 66 +5± 58 .001

Abbreviations: ED: electrical delay, LVEF: left ventricular ejection fraction, Δ LVEF: difference of LVEF between followup and baseline, LVESV: left ventricular
end-systolic volume, LVEDV: left ventricular end-diastolic volume, Δ LVESV: difference of LVESV between followup and baseline, Δ LVESD: difference of
LVESV between followup and baseline.
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Figure 4: Distribution of ED (a) and ratios of ED/QRS duration (b) as a function of LV lead position in the LAO view. Abbreviations: ED:
electrical delay, LAO: left anterior oblique.

Table 3: Multivariate predictors of response to CRT.

OR (95% CI) P

SR at implant 1.3 0.2–10.1 .80

NIDCM 1.3 0.4–4.4 .69

LVEF 1.08 1.002–1.17 .045

Ratio of ED/QRS duration ≥0.83 6.8 1.7–27.5 .007

Abbreviations used: OR: odds ratio, CI: confidence interval, SR: sinus
rhythm, NIDCM: nonischemic dilated cardiomyopathy, LVEF: left ventric-
ular ejection fraction, ED: electrical delay.

acute or long-term response [20, 21]. On the other hand,
adequate assessment of LV dyssynchrony and, more precisely,

the site of latest mechanical activation requires sophisticated
techniques that may prolong the implantation time, and their
use is limited by high intra- and interobserver variability as
illustrated by the results of the PROSPECT trial [11], whereas
intraoperative assessment of ED is straightforward and can
be used as a surrogate method for selection of optimal LV
pacing sites.

Another method that can be used intraoperatively to
select optimal sites of LV pacing is intracardiac mapping. In
a human study conducted on 14 candidates for CRT, Tse et
al. [13] showed the greater hemodynamic improvement by
LV pacing in patients presenting with larger amount of LV
area with late endocardial activation time and preserved LV
myocardium measured by electroanatomical mapping.
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Table 4: Comparison of the value of ED in patients with ischemic
and nonischemic cardiomyopathy.

IDCM NIDCM

r P r P

ED versus Δ LVEF +0.39 .06 +0.20 .17

ED versus Δ NYHA −0.44 .03 −0.26 .07

Ratio of ED/QRS duration
versus Δ LVEF

+0.37 .08 +0.08 .57

Ratio of ED/QRS duration
versus Δ NYHA

−0.41 .05 −0.23 .11

Abbreviations: IDCM: ischemic dilated cardiomyopathy, NIDCM: nonis-
chemic dilated cardiomyopathy, ED: electrical delay, Δ LVEF: difference
of LVEF between follow-up and baseline, Δ NYHA: difference of NYHA
between follow-up and baseline, r: correlation coefficient determined by
regression analysis, P: P value.

Previously, Singh et al. [12] reported the value of the ED
to predict response to CRT defined by one-year mortality
and hospitalizations for heart failure. They found that a
reduced LV electrical delay less than 50% of the QRS
duration was associated with worse clinical outcome within
the entire patients’ population as well as when stratified into
ischemic and nonischemic subgroups. Our results confirm
these data at longer follow-up durations using a different
endpoint for response to CRT. As in the latter study, we
purposely expressed, in our multivariate analysis, the ED as
the percentage of the baseline QRS duration and not the
absolute value, in order to eliminate a potential impact of the
QRS duration on the predictive value of the local ED. Despite
this adjustment, this parameter remained an independent
predictor of positive outcome.

Our study population comprised patients with both
ischemic and nonischemic heart disease. This could have
influenced our results. Indeed, the presence of scar does not
preclude electrical capture of the myocardium, but this may
not translate into mechanical contraction and, therefore,
may not result in effective correction of LV dyssynchrony
in the presence of extensive myocardial infarction. This
hypothesis has been verified by several studies using different
imaging techniques of scar quantification: Bleeker et al. [22]
defined LV scar burden using contrast-enhanced MRI and
reported that patients who failed to respond to CRT were
more likely to have transmural scar in the posterolateral
region of the LV (an important target for lead placement).
Ypenburg et al. [23] assessed the importance of transmural
scar quantified by gated SPECT in the LV pacing target
region and showed that pacing at these sites was negatively
correlated to subsequent LV reverse remodeling. These
observations confirm some study reports where CRT results
in greater improvement of LVEF and reduction of LV
end-diastolic volume in patients with nonischemic dilated
cardiomyopathy compared to those with ischemic heart
disease and extensive transmural scar [24].

In our series, we took every precaution not to implant
CRT in patients with severe ischemic heart disease and exten-
sive myocardial scar (involving more than 4 LV segments)

or history of lateral or posterolateral myocardial infarction
who had a low likelihood of response. That may explain the
lack of significant difference in the prevalence of nonischemic
cardiomyopathy between responders and nonresponders.
Multivariate analysis of our results did not identify the
nonischemic nature of the cardiomyopathy as an indepen-
dent predictor of positive outcome. Furthermore, correlation
between ED and long-term response was analyzed separately
in patients with nonischemic cardiomyopathy and was not
superior in this subgroup of patients. On the other hand,
fibrosis might also be present in patients with nonischemic
dilated cardiomyopathy and may also decrease the efficacy of
LV pacing. MRI studies are required to quantify fibrosis in
patients with nonischemic heart disease at the sites of latest
mechanical contraction or greatest ED.

4.1. Lack of Correlation between ED and Sites of LV Pacing
on Chest X-Ray. Our study results indicate that there is no
correlation between ED and the location of the LV lead
documented in the LAO view. A wide range of values of ED
or ED/QRS duration are observed in the postero-lateral or
lateral locations which are known as important targets for
LV lead placement. This finding implies that not all LBBBs
are created equal: the ventricular conduction abnormality in
patients with LBBB and LV dysfunction is not a uniform
conduction system lesion [25]. Both endocardial and epi-
cardial electroanatomical mapping of LV activation disclose
significant variations during intrinsic conduction in both
ischemic and nonischemic cardiomyopathy [26–28]. In some
patients, wavefronts from multiple directions contribute to
overall LV activation. In others, activation spreads from the
anterior to the inferior wall, or the reverse. Alternatively,
LV epicardial activation starts from the septoapical region,
spreading laterally and ending at the lateral or posterolateral
base. Wavefront propagation is sometimes influenced by
areas of slow conduction or lines of conduction block, some
of which are fixed and correlate with areas of scar and
others shift to other locations during pacing maneuvers
due to their functional character. These variations, which
occur with similar QRS configurations on surface ECG, may
result from any combination of conduction tissue lesion,
scar and fibrosis, and slow cell-to-cell conduction. Therefore,
electroanatomical mapping or, more simply, local electrical
delay may refine LV lead placement to achieve the best effect.
Since the presumed mechanism for the efficacy of CRT is the
correction of conduction delay, response is more likely when
pacing is delivered at an area of greater LV conduction delay,
as suggested in our study.

4.2. Study Limitations. Although we found a significant
relationship between ED and long-term response to CRT, the
correlation was weak. Based on our results, long ED recorded
during spontaneous LBBB predicts reverse remodeling and
positive clinical outcome, with good specificity but low sen-
sitivity, which means that in the presence of ED ≥ 150 ms or
ED/QRS duration ≥0.83, the likelihood of positive outcome
is very high, but shorter EDs or lower ED/QRS durations do
not necessarily preclude long-term improvement following
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CRT. The mechanism of this finding is unclear and may result
from our recording technique that was performed from the
tip of the final LV lead position in a tributary of the CS
indicating activation of the epicardial and not endocardial
side of the left ventricle. Endocardial electroanatomical
mapping might have elucidated the complex mechanism of
positive response in some patients with short EDs measured
from the epicardial EGM recording. It is also unknown if
ED can vary at the same LV site with the level of patient’s
activity. On the other hand, in our study, we did not map the
whole LV to determine the site of maximal electrical delay.
With the use of electroanatomical mapping, we could have
identified areas of latest electrical activation where LV pacing
could have resulted in better outcome.

The definition of responders in our study was a pure
clinical endpoint when improvement of functional status was
important and a composite clinical and echocardiographic
endpoint when improvement of functional status was more
modest. The reason for this selection is that patients
were followed at regular intervals in our institution and
improvement of functional status by one NYHA class with
no improvement of LVEF might have resulted from the
optimization of medical therapy at each visit and not from
CRT. A plethora of endpoints for response to CRT have
emerged in the literature: some are merely clinical, defining
response as improvement of functional status by at least one
NYHA class [19, 29, 30] or including composite factors such
as peak VO2 [31, 32], quality of life score [33, 34], and 6-
minute walked distance [19, 31, 33, 35], others are based
on echocardiographic parameters including reduction of LV
end-systolic volume by at least 15% [35–37] or improvement
of LVEF by at least 5% [38, 39]. Even though our population
was highly selected (mostly LBBB, nonischemic heart disease,
long QRS duration), the proportion of responders in our
series was in the range of that previously reported in the
literature [5, 6]. With softer clinical endpoints (improvement
of function status by one NYHA class), we would have
expected a higher response rate. Another explanation for
our result is our longer follow-up duration. On the other
hand, in large CRT trials, although the cut-off value for QRS
duration was usually 120–130 ms, the actual average mean
QRS duration of included patients was in the range of values
reported in our study (>150 ms) [18].

The small number of our patients might have been
another limitation of the study. With larger number of
patients, a stronger correlation might have been found
between ED and response to CRT.

5. Conclusions

Selecting the LV lead position at the site of the delayed
electrical activation may provide an important criterion for
appropriate pacing site in patients with both ischemic and
nonischemic cardiomyopathy, with high specificity but low
sensitivity. Pacing at sites of increased ED is associated with
long-term benefit. Gross anatomic lateral location of the LV
lead is not always correlated with electrical delay and by itself
is not enough to predict chronic response to CRT.
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