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Coronary heart disease (CHD) is the most common and serious illness in the world and has been researched for many years.
However, there are still no real effective ways to prevent and save patients with this disease. When patients present with
myocardial infarction, the most important step is to recover ischemic prefusion, which usually is accomplished by coronary artery
bypass surgery, coronary artery intervention (PCI), or coronary artery bypass grafting (CABG)./ese are invasive procedures, and
patients with extensive lesions cannot tolerate surgery. It is, therefore, extremely urgent to search for a noninvasive way to save
ischemic myocardium. After suffering from ischemia, cardiac or skeletal muscle can partly recover blood flow through an-
giogenesis (de novo capillary) induced by hypoxia, arteriogenesis, or collateral growth (opening and remodeling of arterioles)
triggered by dramatical increase of fluid shear stress (FSS). Evidence has shown that both of them are regulated by various crossed
pathways, such as hypoxia-related pathways, cellular metabolism remodeling, inflammatory cells invasion and infiltration, or
hemodynamical changes within the vascular wall, but still they do not find effective target for regulating revascularization at
present. 5′-Adenosine monophosphate-activated protein kinase (AMPK), as a kinase, is not only an energy modulator but also a
sensor of cellular oxygen-reduction substances, and many researches have suggested that AMPK plays an essential role in
revascularization but the mechanism is not completely understood. Usually, AMPK can be activated by ADP or AMP, upstream
kinases or other cytokines, and pharmacological agents, and then it phosphorylates key molecules that are involved in energy
metabolism, autophagy, anti-inflammation, oxidative stress, and aging process to keep cellular homeostasis and finally keeps cell
normal activity and function. /is review makes a summary on the subunits, activation and downstream targets of AMPK, the
mechanism of revascularization, the effects of AMPK in endothelial cells, angiogenesis, and arteriogenesis along with
some prospects.

1. Introduction

Coronary heart disease (CHD) is the main cause of death
globally; it is estimated that 17.9 million people died of
cardiovascular diseases (CVDs) in 2016, representing 31% of
all global deaths. /e basic pathophysiology process is
atherosclerosis, which tends to create plaque and block
vascular cavity, resulting in myocardial ischemia, hypoxia or
necrosis. Presently, the therapies for CHD mainly include
coronary artery intervention (PCI) or coronary artery bypass
grafting (CABG) [1]. However, postsurgical restenosis and
low operative tolerance of aging and patients with extensive
lesions limit its efficacy in CHD./erefore, it is important to
search for other alternative methods. Ischemic zones can

actually recover blood perfusion by recruiting new vessels or
expanding and remodeling produce arterioles; this process is
also called revascularization and includes angiogenesis and
arteriogenesis [2]. /e mechanism of these processes has
been widely studied. Angiogenesis is induced by hypoxia and
involves three cells: tip cells, stalk cells, and phalanx cells
[3–5], while the main stimulus of arteriogenesis is fluid shear
stress (FSS), which is sensed by endothelial cells and con-
sequently attracts leukocytes and promotes the phenotype
transformation of vascular smooth muscle cells (VSMCs)
[6–9]. Signal pathways of these two ways both include
vascular endothelial growth factor (VEGF) pathway and
nitric oxide- (NO-) dependent pathway [10–14] and both of
them can be regulated by a highly conserved eukaryotic
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kinase, 5′adenosine monophosphate-activated protein ki-
nase (AMPK) [15–17]; SNF1 and SnRK1 are its orthologues
in yeast and several plants [18].

AMPK, a heterotrimeric complex combined by α, β, c

subunits, is activated by upstream kinases and regulated by
the ratio of ADP/ATP or AMP/ATP or posttranslational
modifications including phosphorylation and ubiq-
uitylation, which exerts vital roles in maintaining energy
homeostasis, protecting endothelial cellular function, reg-
ulating cellular autophagy, oxidative stress, and aging [19].
AMPK is ubiquitously expressed in a lot of tissues and cells,
such as the endothelial cells (ECs), skeletal muscle, liver, and
brain [20]. /e roles of AMPK in revascularization have
been widely researched, and it seems that the findings are
varying in different conditions. In ischemia or hypoxia,
AMPK activation facilitates angiogenesis but in tumor
microenvironment inhibits it. Similarly, some findings show
that AMPK promotes arteriogenesis by regulating inflam-
mation but others suggest AMPK play a negative role in
collateral circulation [15, 17].

2. AMPK

2.1. Subunits of AMPK. AMPK, a heterotrimeric protein
complex, includes α subunit (encoded by protein kinase
AMP-activated-α (PRKAA)) [21], β (PRKAB) [22], and c

(PRKAG) [23]. /ese isoforms play distinct roles in the
AMPK stability and activity, but all three are essential for full
activity. α (two isoforms) are catalytic subunits; β subunit
(two isoforms) and c subunit (three isoforms) contain the
regulatory site, which could be combined by 12 various ways
[24].

Both α subunits are similar in that their N termini have
traditional serine/threonine kinase domains (α-KD) as well
as the conserved threonine residue (α1 /r183 and α2
/r172), which are key phosphorylated sites [25]. /e fol-
lowing are the inhibitory domains (α-AID), which nega-
tively regulate AMPK./e C termini of AMPK is C-terminal
domain (α-CTD) with nuclear export sequence (NES),
whose crystal structure has not been resolved. Between
α-AID and α-CTD is “α linker,” which is locked around the c

subunit (Figure 1). /ese two isoforms have various sub-
cellular locational pattern; α1 isoform majorly appears to
distribute in the cytoplasm or to associate with the plasma
membrane of carotid body type 1 cells. However, α2 prefers
locating in the nuclei of some cell types, such as skeletal
muscle [26]. /ey have specificity of tissue distribution; for
instance, AMPKα1 isoform is in the adipose tissue [27] while
skeletal muscle expresses much higher AMPKα2 [28]. In-
terestingly, ECs have both of these isoforms, although
AMPKα1 predominates at a much higher level than
AMPKα2 [29].

Most of the parts of β subunits are highly conserved
except the first 65 residues of NH2-terminus. AMPKβ1 is
nearly expressed in all cell types while β2 is mainly dis-
tributed in muscle. From N-terminus to C-terminus, β
subunits have myristoylated N-terminal regions, carbohy-
drate-binding modules (β-CBM), β-linker regions, and the
C-terminal domains (β-CTD) (Figure 1) [22, 30]. /e crystal

structures of β-CBM and β-CTD are completely resolved but
the structures of N-terminal regions and β-linker are still
unclear. Significantly, there is compelling evidence that
N-terminal myristoylation of β subunits plays an indis-
pensable role in AMPK lysosomal localization and activation
in an AMP/ADP/ATP-independent manner in the process
of glucose depletion [31, 32]. And N-myristoylation of
AMPK β subunits also controls Tcell inflammatory function
[33, 34]. Hardie et al. have demonstrated that glycogen
inhibits AMPK activation by binding the β-CBM of AMPK,
which suggest that AMPK equilibrates cellular energy by
sensing not only the change of AMP/ATP or ADP/ATP but
also glycogen [35]. β-CTD interacts with c N-terminal re-
gions, which let AMPK become an intact complex to exert its
normal function [36].

Although c subunits have different lengths (c1 331< c3
489< c2 569 residues), each one shares the same COOH-
terminal having about 300 residues, a variable N-terminal
domain that interacts with β-CTD and four tandem repeats
of a motif termed CBS repeat (Figure 1) [18]. Excepting
CBS2 which is an unoccupied site, CBS1, CBS3, and CBS4
could be bound by AMP or ATP by different affinities, CBS1
site binds ATP with higher affinity, but CBS3 site has higher
affinity for AMP, and CBS4 is believed to be a non-
changeable site; that is, it binds AMP irreversibly [37, 38].
Furthermore, different isoforms of c subunits also have
distinct affinity with AMP, such as c3 which is the least
sensitive [39]. Like α and β subunits, c subunits also have
tissue distribution specificity; c1 subunit is widely expressed
in all tissues, whereas c2 and c3 isoforms are mainly
abundant in skeletal muscle [40].

In conclusion, both α1 and α2 subunits have a crucial
site in /r183 and /r172, whose phosphorylation is
necessary for AMPK maximal activation. /e β subunits
could act as a scaffold, which makes AMPK complex
locate on lysosomes, except for having phosphorylation,
myristoylation, and carbohydrate-binding sites [18]. /e c

subunits bind the nucleotides by three sites, which are
structural basis for this energy sensor. Most importantly,
the catalytic features of α subunit and regulatory activity
of β and c subunits are all integrant for AMPK correct and
normal activation.
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Figure 1: /e structure of AMPK subunits: AMPK have three
subunits, including α, β, c. α is catalytic while β and c are regu-
latory. Both α1 and α2 subunits have a crucial site in /r183 and
/r172, whose phosphorylation is necessary for AMPK maximal
activation. /e β subunits could act as a scaffold, which makes the
AMPK complex located on lysosomes, an exception from having
phosphorylation, myristoylation, and carbohydrate-binding sites.
/e c subunits bind the nucleotides by three sites, which are the
structural basis for this energy sensor.
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2.2.ActivationofAMPK. AMPK is activated mainly by three
complementary mechanisms: (1) allosteric activation
[41–43]; (2) phosphorylation of α1 /r183 or α2 /r172
[25]; and (3) inhibiting dephosphorylation of /r183 or
/r172 [44].

Mammalian AMPK is sensitive to the changes of AMP/
ATP or ADP/ATP./erefore, any cellular metabolic process
that reduced ATP levels or increased AMP/ADP can activate
AMPK, such as hypoxia, glucose decrease, mitochondrial
oxidative stress, or metabolic inhibition of ATP synthesis
[20, 45]. However, Lin and Hardie et al. found that AMPK
can be activated through an additional AMP-/ADP-inde-
pendent mechanism in response to glucose reduction both
in vivo and in vitro [31]. /ey demonstrated that different
compartmentalized pools of AMPK are activated through
distinct ways, which depends on the extent of elevation of
cellular AMP [46]. Low increases in AMP activate AMPK
only via the AMP-independent, AXIN-based manner in
lysosomes, which is regulated by fructose-1,6-bisphosphate
(FBP) levels. When FBP decreases, adolase is released and
then interacts with vacuolar-type H+ -ATPase (V-ATPase),
Ragulator, and AMPK-AXIN-LKB1 and finally becomes a
complex and activates AMPK. Mild concentrations of AMP
also enlarge this to activate cytosolic AMPK by an AXIN-
dependent pathway. By comparison, severe glucose star-
vation activates all pools of AMPK in the AMP-/ADP-de-
pendent manner rather than AXIN. Researches
demonstrated a space-time basis for hierarchical activation
of AMPK in various compartments in the process of dif-
fering the extents of energy stress [47]. But the question of
how the FBP-free status of adolase binds vacuolar-type
H+ -ATPase (V-ATPase) has not been illuminated. Excit-
edly, Lin and Hardie et al. recently suggested that transient
receptor potential cation channels (TRPVs), in low glucose,
relay the adolase to the reconfiguration of v-ATPase, acti-
vating AMPK [48]. Although α subunit is catalytic, more and
more evidence finds that regulatory β and c subunits also are
essential for AMPK optimum function. For example,
N-myristoylation of β subunits is necessary for lysosome
location of AMPK complex [31].

Besides allosteric activation, upstream two major AMPK
kinases, which are liver kinase B1 (LKB1) [48], also known as
serine/threonine kinase 11 (STK11) or renal carcinoma
antigen NY-REN-19, and the Ca2+/calmodulin-dependent
protein kinase kinase β (CaMKKβ) [49] can regulate
AMPKα activity through a phosphorylated manner. Re-
searches reveal phosphorylation of the α subunit can depend
on, or independently of, its LKB1 activity. CaMKKβ is ac-
tivated by intracellular concentration of Ca2+ [50, 51]. /us,
stimuli that magnify this, such as bradykinin [52] and
thrombin [53], also phosphorylate AMPKα subunit in an
AMP-/ADP-independent way owing to increased CaMKKβ
activity. It is worth mentioning that ubiquitination modi-
fication also regulates AMPKα activation. Zhenkun Lou
et al. have found that AMPKα1 or AMPKα2 ubiquitination
blocks its phosphorylation by LKB1, which could be rescued
by the deubiquitinase ubiquitin specific peptidase 10
(USP10) [54]. Other researchers also have shown that
AMPKα2 is ubiquitinated by ubiquitin-conjugating enzyme

E2O (UBE2O) in a mouse model of breast cancer, which
activates the mammalian target of rapamycin-hypoxia in-
ducible factor 1-α (mTOR-HIF1-α) pathway and triggers
cancer growth [55]. Similarly, AMPKα1 is also ubiquitinated
and degraded by MAGE-A3/6-TRIM28 E3 ubiquitin ligase
complex [56].

Briefly, in the case of replete energy, that is, low AMP/
ATP or ADP/ATP, phosphatases can keep AMPKα1/r183
or α2/r172 in an unphosphorylated state by accessing to it.
However, when energy decreases, CBS of the AMPK c

subunit is occupied by AMP or ADP, which prohibits the
phosphatases from dephosphorylating /r183 or /r172,
therefore increasing AMPK activity. It is worth mentioning
that unlike AMP, ADP has no conspicuous allosteric effect
on AMPK [44, 57].

2.3. Downstream Targets of AMPK. Downstream targets of
AMPK mainly include molecules involving glucose, lipid,
protein metabolism or inflammation, oxidative stress, and
aging process.

During lipid metabolism, once being activated, AMPK as
a serine/threonine kinase phosphorylates some crucial
molecules that regulate lipidmetabolism, such as acetyl-CoA
carboxylase (ACC) [58], 3-hydroxy-3-methyl-glutaryl-co-
enzyme A reductase (HMG-CoA reductase) [42], and sterol
regulatory element-binding protein 1c (SREBP1c) [59].
Except for the above-mentioned molecules, evidence has
shown that AMPK reduces hepatic steatosis in high-fat,
high-sucrose (HFHS) diet-fed mice by interacting with and
mediates phosphorylation of insulin-induced gene (Insig), a
novel effector of AMPK, which plays a critical role in reg-
ulating intracellular cholesterol equilibrium [60]. Further-
more, activated AMPK also stimulates skeletal muscle to
uptake glucose by phosphorylating Rab-GTPase-activating
protein TBC1 domain family member 4 (TBC1D4), which
ultimately induces fusion of glucose transporter type 4
(GLUT-4) vesicles with the plasma membrane [61], and
phosphorylates 6-phosphofructo-2-kinase (PFK-2) [62],
glycogen, and glycogen synthase to promote glycolysis and
inhibit glycogen synthesis. In addition, AMPK suppresses
the energy-intensive protein biosynthesis process by phos-
phorylating tuberous sclerosis complex 2 (TSC2) which
regulates activity of mammalian target of rapamycin com-
plex 1(mTORC1) promoting protein synthesis [20, 63].
AMPK regulates autophagy by directly and indirectly acti-
vating Unc-51 like autophagy activating kinase (ULK1)
[64, 65] and mitochondrial biogenesis by regulating per-
oxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α) which in turn promotes gene transcrip-
tion in the mitochondria [66, 67]. AMPK participates in the
cellular redox regulation and anti-inflammation response.
Hong Li et al. have depicted that the Cys130 and Cys174 of
AMPKα is oxidized during energy stress, which could be
inhibited by /ioredoxin1 (Trx1) and protects AMPK ac-
tivation in ischemia [68, 69]. In some inflammatory disease,
AMPK also impacts a positive role, such as allergic diseases
[68], monosodium urate (MSU) crystal-induced inflam-
mation [70], and synovitis [33]. /e process of aging,
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involving inflammation, oxidative stress, metabolic disorder,
and decrease of autophagic clearance, is of course using
AMPK as a supervisor that orchestras all the pathways in
order to resist bad effects of senescence [71]. For instance,
skeletal muscle AMPK knockdown-aged mice show hypo-
glycemia and hyperketosis during fasting [72].

3. The Mechanism of Revascularization

After the initiation of ischemia, cardiac or skeletal muscle
undergoes a series of molecules and hemodynamical
changes triggered by hypoxia-related pathways [10], inva-
sion and infiltration inflammatory cells [73, 74], and cellular
metabolism remodeling [75, 76], to promote capillary
neogenesis (angiogenesis), or arterioles remodeling (arte-
riogenesis or collateral circulation), and then eventually to
restore blood perfusion of ischemic zones.

Angiogenesis is induced by hypoxia via HIF1-α, which
depicts the formation of new capillaries by sprouting or
splitting from preexistent vessels, which is different from
vasculogenesis [3, 5]. /e latter is a process of endothelial
cells from mesoderm cell precursors which form primitive
tubules during the embryonic phase [10, 77, 78]. /e process
of angiogenesis is completed mainly by three EC subtypes.
(1) Firstly, “tip cells” featured migratory capability sense
proangiogenic stimuli, such as VEGF, fibroblast growth
factor (FGF), and led the newly forming vessel to sprout
towards the source of the proangiogenic stimuli. (2) During
the migration of the tip cells, proliferative “stalk cells”
lengthen neovessels. When neighbouring vessels’ sprouts
meet and their tip cells fuse, an interconnected, closed, and
functional lumen allowing blood flow is formed. (3) Next,
the quiescent “phalanx cells” mature neovessels featured by a
typical cobblestone shape. (4) Finally, in order to form a
tighter vessel for proper stability and barrier function,
pericytes secrete platelet-derived growth factor-B (PDGF-B)
and subsequently recruit VSMC expressing PDGF receptor β
[79, 80]. Recently, the roles of metabolism remodeling of
endothelial cells in angiogenesis are attached by many re-
searchers. For example, Katrien and Yiming Xu et al. have
found that endothelial 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase, isoform 3, (PFKFB3) plays a critical role
in vessel sprouting and angiogenesis [81, 82].

Arteriogenesis or collateral growth, being different from
angiogenesis, is a process that the existing interconnected
vascular branches between adjacent blood vessels expand
and remodel triggered by FSS, which is induced by increased
flow across the collateral bed; when the main coronary artery
is occluded, the downstream pressure decreases, resulting in
an increased pressure drop and flow velocity across col-
laterals [83–85]. /e basic pathophysiological courses of
arteriogenesis contain the following. (1) Endothelial cells
sense elevated FSS, which is the initiated step of arterio-
genesis formation, by some molecules including Trpv4 [86],
actin-binding rho activating protein (Abra) [87], and then
change morphology and express multiple genes mainly
participating in attracting circulatory blood cells and pro-
moting cells adhesion, such as selectins, chemokine (C-C
motif) ligand 2 (CCL2), intercellular adhesion molecules

(ICAM), vascular cell adhesion molecules (VCAM-1), and
VEGF. (2) /e second one is inflammatory cell invasion and
infiltration; for example, Florian P. Limbourg et al. suggest
that endothelium matures macrophage and controls mac-
rophage differentiation via Notch signaling, which in turn
promotes arteriole growth [88], and neutrophils signal is
enhanced at early ischemic phase [89]. (3) /e third is
VSMC proliferation, migration, and phenotypic transfor-
mation [6, 7]. Although a considerable number of researches
using multifarious animal models have uncovered the sig-
naling pathways of arteriogenesis involving the VEGF,
PDGF, NO, and rho-pathway [87, 90], clinical trials are
somehow disappointing [91].

4. AMPK in Endothelial Cells

ECs, mostly remaining quiescent throughout adult life,
retain the capacity to rapidly form new blood vessels in
response to injury or in pathological conditions such as
hypoxia, ischemic, and hemodynamic changes. /ey then
can respond with suitable regulatory and control processes
to maintain cellular or systematic homeostasis. Such re-
sponses contain secretion of angiogenic factors promoting
proliferation, migration of ECs, differentiation of endo-
thelial progenitor cells (EPCs), or remodeling of endothelial
metabolism.

It is widely believed that ECs prefer generating ATP
through oxidative phosphorylation to produce more energy
(the ratio of ATP yielded by oxidative phosphorylation and
glycolysis is 30 : 2 or 32 : 2). In fact, ECs have a lower mi-
tochondrial content and depend primarily on glycolysis [92].
Although the level of ATP per glucose generated is relatively
low, high glycolytic flux can generate more ATP at a faster
rate than oxidative phosphorylation when glucose is suffi-
cient and is positioned to shunt glucose into glycolysis side
branches to synthesize macromolecule such as the hexos-
amine and pentose phosphate. More advantages of aerobic
glycolysis in ECs may include (1) generating less reactive
oxygen species (ROS) by decreasing aerobic oxidation, (2)
preserving maximal amounts of oxygen to supply peri-
vascular cells, (3) making ECs adapt hypoxic environment
they will grow into, and (4) producing lactate which is a
proangiogenic signaling molecule [80, 93–95]. Except for
glucose, another fuel source for ECs is fatty acids. Given the
fact that it modestly contributes total ATPs in ECs, the exact
role of fatty acids in ECs is elusive at present and needs more
attention in the future. For example, Ulrike et al. show that
fatty acid synthase knockdown (FASNKD) in ECs impedes
vessel sprouting by reducing proliferation [76]. AMPK, as an
energy and embolism gauge, can also phosphorylate key
rate-limiting enzymes of the above-mentioned anabolism
pathways in ECs, and as such the relationship between the
AMPK and the ECsmetabolism in angiogenesis still needs to
be lucubrated.

For amino acid metabolism, arginine is most broadly
studied for its conversion to citrulline and NO. /e latter is
the essential signaling molecule for endothelial function,
which is synthesized by endothelial NO synthase (eNOS).
eNOS expression and activity are carefully regulated by
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multiple interconnected mechanisms at the transcriptional
(binding of transcription factors, DNA methylation),
posttranscriptional (primary transcript modifications,
mRNA stability, and nucleocytoplasmatic transport), and
posttranslational levels (phosphorylation, fatty acid acyla-
tion, and protein-protein interactions) [96]. Modification of
phosphorylation is vital for eNOS activity. In this moment,
AMPK is the only kinase identified that can probably
phosphorylate eNOS on more than one site, that is, Ser1177
and Ser633 in the reductase domain and inhibitory /r495
site in the CaM-binding domain of the enzyme. A body of
researches have reported AMPK dependent eNOS phos-
phorylation (on Ser1177) can proceed the following diverse
endothelial cell stimulation, such as peroxisome pro-
liferator-activated receptors (PPAR) agonists, AICAR,
metformin, VEGF, and adiponectin. It is worth noting that
the effects are usually weaker and much less arresting than
other stimulation, like thrombin, hypoxia, and shear stress,
which also lead to AMPK activation [97, 98].

5. AMPK in Angiogenesis

/e roles of AMPK in angiogenesis have not been clarified
and somehow are contradictory. A considerable amount of
evidence has shown that AMPK exerts its positive impact on
angiogenesis mainly in the metabolic syndrome, ischemia
diseases, and hypoxia. /at mainly includes four parts. (1) It
guarantees energy supply of endothelial cells. (2) AMPK
regulates EPCs differentiation, ECs proliferation, and mi-
gration [99, 100]. (3) AMPK, acting as an upstream kinase,
phosphorylates eNOS to produce NO, facilitating vascular
vasodilation and angiogenesis [101]. (4) Activation of AMPK
under hypoxic conditions promotes autophagy, which
somehow enhances VEGF expression [102]. Some earlier
studies report that AMPKα1 impedes anoxia-induced ap-
optosis [103, 104] and protects against diabetes mellitus-
induced vascular injury by improving EPCs function and
promoting reendothelialization through upregulation of
heme oxygenase-1 and stromal cell-derived factor 1 (SDF1)
[105, 106], and dominant negative AMPK mutants inhibit
both ECs migration and differentiation in vitro under
hypoxia and in vivo angiogenesis [103]. In addition, evi-
dence has demonstrated that LKB1/AMPK improve blood
perfusion by inducing angiogenesis in hind limbs ischemic
model of mice [102, 107] (Figure 2). At present, protective
roles of AMPK in angiogenesis or on ECs or EPCs under
some adverse condition, such as anoxia, stroke, senescence,
and oxidative stress, have been validated [20, 108], and it also
can be stimulated by cytokines or pharmacological agents
such as VEGF [109], AICAR [109], metformin [100], ber-
berine [110, 111], and adiponectin [112].

However, other researches have also revealed the passive
effects of AMPK on angiogenesis. Evidence has demon-
strated that AMPK exerts protective roles on retinopathy.
Activated AMPK protects retinal vasculature from edema,
hemorrhage, and final retinal detachment by decreasing
oxidative stress and inflammation, improving circulation in
narrow arterioles, inhibiting angiogenesis [113–116]. Studies
have shown that metformin inhibits laser-induced choroidal

neovascularization by activating AMPK [117]. Similarly,
AMPK, being activated by berberine, can inhibit modified
LDL-induced injury of Müller cell [118], which is the major
glia of the retina; they are maintaining the blood-retinal
barriers (BRBs). In addition, a variety of researches have
shown that AMPK activation by many pharmacological
activators, such as compound C, metformin, AICAR, cur-
cumin, and simvastatin, inhibits tumor invasion and me-
tastasis via the blockage of angiogenesis [119–122].
Furthermore, antifungal drug itraconazole targets mito-
chondrial protein voltage-dependent anion channel 1
(VDAC1) to suppress angiogenesis by modulating the
AMPK/mTOR signaling axis in endothelial cells [123]. In-
terestingly, there are some studies which have shown that
AMPK activation by some agents may play a positive role in
tumor growth, even including metformin [124, 125].

Whether AMPK activation promotes angiogenesis or
inhibits it depends on different cellular microenvironment.
Generally, activation of AMPK in ischemic or hypoxic
conditions facilitates angiogenesis but in tumor microen-
vironment inhibits it, which is attributed to different
pathway activation. For example, under ischemic or hypoxic
condition, AMPK activation has a positive effect on auto-
phagy by inhibiting mTOR and phosphorylating autophagy
modulators [126]. Autophagy somehow stabilizes HIF-1α,
which regulates VEGF and other angiogenic molecules, and
promotes angiogenesis [127]. /e signal pathway of mTOR-
HIF-1α-VEGF is activated in cancer cells; metformin or
other AMPK activators can impede them, inhibiting an-
giogenesis [128].

6. AMPK in Arteriogenesis

So far, there is not much evidence on the role of AMPK in
arteriogenesis and the ones that exist are inconsistent. One
line of evidence shows that AMPKα1(–/–) can impair adult
arteriogenesis in that it reduces accumulation of macro-
phages in ischemic hindlimb and inhibits the expression of
growth factors in macrophages [15]. However, another has
shown that mitochondrial oxidative stress impedes coronary
collateral growth in lean rats in response to repetitive is-
chemia through activating AMPK and consequently
inhibiting mTOR signaling, which is necessary for new
protein synthesis and phenotypic switching of endothelial
cells [17]. /ese two cases hint that the effects of AMPK in
arteriogenesis under different physiological or pathological
circumstances need to be developed further. Researches have
shown that FSS, as a key factor which promotes opening and
remodeling of collateral circulation, could influence activity
of AMPK. For example,Wei Yi et al. have found that FSS can
impede the survival and increase the apoptosis of bone
marrow mesenchymal stem cells (BMSCs), which partly is
attributed to the decrease of AMPK phosphorylation
[129, 130]. What is more, exercise, also as an important
element for arteriogenesis [131], has been found to play a
positive role in AMPK activation. Young has verified that, in
physiological condition, rat cardiac AMPK activity increases
progressively with exercise intensity [132]. More impor-
tantly, Ferguson has also found that interval and continuous

Cardiology Research and Practice 5



sprint cycling promotes phosphorylation of human skeletal
muscle AMPK α/r172 [133] (Figure 2).

7. Prospect

AMPK, as a key modulator of cellular energy, metabolism,
and oxidative-redox homeostasis, plays a complicated reg-
ulatory role in the ECs.When AMPK is activated by elevated
ratio of AMP/ATP or ADP/ATP, ROS, cytokines, or agents,
the kinase will promote catalysis pathways, such as glycol-
ysis, inhibit analysis pathways, such as glycogen or protein
synthesis, and regulate inflammatory process and oxidative
stress, through phosphorylation of some crucial enzymes
such as eNOS, FASN, ACC, PFK-2, mTORC1, and ULK1.
Although AMPK also participates in regulating revascu-
larization, the effect of AMPK is contradictory. Generally,
activated AMPK promotes angiogenesis in ischemia whereas
inhibiting angiogenesis under retinopathy or tumor mi-
croenvironment. /e role of AMPK during arteriogenesis
also is double-faced, which is attributed to different intra-
cellular or extracellular circumstances. Global knockout of
AMPKα1 and macrophage-specific knockout mice, which
are subjected to hindlimb ischemia brought about by
femoral artery ligation, impairs adult arteriogenesis so that it
reduces perfusion to the lower limb. However, if cells suffer
mitochondrial oxidative stress, activated AMPK does not
promote collateral growth; on the contrary, it suppresses
arteriole opening or remodeling. As mentioned previously,
although up until this moment there is no enough evidence
that has shown the definite role of AMPK in arteriogenesis;
given that both FSS and exercise also regulate AMPK
phosphorylation, it is still worthy of exploring AMPK
function in collateral circulation. What is more, AMPK, as a
heterotrimeric protein complex, so far, has hadmany studies
focus on the function of AMPK phosphorylation, while the
role of other posttranslational modifications in

revascularization need to be illuminated, such as ubiq-
uitination, acetylization, and glycosylation. Different iso-
forms of AMPK may influence this process.
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FBP: Fructose 1,6-bisphosphate (FBP)
FBPase-2: 6-Phosphofructo-2-kinase
FGF: Fibroblast growth factor
FSS: Fluid shear stress
GLUT-4: Glucose transporter type 4
HIF1-α: Hypoxia inducible factor 1-α
HMG-CoA
reductase:

3-Hydroxy-3-methyl-glutaryl-coenzyme
A reductase

HNF4: Hepatocyte nuclear factor 4
ICAM: Intercellular adhesion molecules
Insig: Insulin-induced gene
LKB1: Liver kinase B1
MSU: Monosodium urate
mTORC1: Rapamycin complex 1
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Figure 2: /e roles of AMPK in revascularization. After vessels are occluded, remote tissues suffer ischemia and hypoxia, the blood
perfusion of collateral arterioles increases, and the FSS is elevated. FSS and hypoxia activate AMPK by different or the same ways.
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NO: Nitric oxide
PCI: Coronary artery intervention
PDGF: Platelet-derived growth factor
PFKFB3: Fructose-2,6-bisphosphatase, isoform 3
PGC-1α: Peroxisome proliferator-activated

receptor gamma coactivator 1-alpha
PPAR: Peroxisome proliferator-activated

receptors
ROS: Reactive oxygen species
SDF1: Stromal cell-derived factor 1
SREBP1c: Sterol regulatory element-binding protein

1c
STK11: Serine/threonine kinase 11
TBC1D4: TBC1 domain family member 4
TRPVs: Transient receptor potential cation

channels
Trx1: /ioredoxin1
TSC2: Tuberous sclerosis complex 2
UBE2O: Ubiquitin-conjugating enzyme E2O
ULK1: Unc-51 like autophagy activating kinase
USP10: deubiquitinase ubiquitin specific

peptidase 10
V-ATPase: Vacuolar-type H+ -ATPase
VCAM-1: Vascular cell adhesion molecules
VDAC1: Voltage-dependent anion channel 1
VEGF: Vascular endothelial growth factor
VSMCs: Vascular smooth muscle cells.
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