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Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues.
Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an “alarmin” upon binding to its
specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment.
To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system,
digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft
rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have
begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart trans-
plantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by
which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.

1. Experimental Heart Transplantation

In the field of heart transplantation in recent decades, much
progress has been made in elucidating the mechanisms of
cardiac graft rejection. Allograft rejection is now considered one
of the most common causes of graft failure after cardiac
transplantation [1, 2]. Currently, both acute and chronic re-
jection following heart transplantation are generally believed to
result from aT helper 1 ()1) cell-dominated immune response,
which is characterized by the massive production of several
certain types of proinflammatory cytokines, including tumor
necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interferon-c
(IFN-c) [3–5].)ese cytokines havemultiple effects on immune
cells and the immune response, and their overproduction
promotes graft destruction and dysfunction by mechanisms
such as inducing the expression of costimulatory molecules,
major histocompatibility complex- (MHC-) II, and chemokines
in the graft; facilitating the induction of alloantigen-specific
cytotoxicity; activating graft-infiltrating macrophages and
macrophage-mediated effector mechanisms; and inducing

alloantibody class switching to complement-fixing immuno-
globulin G (IgG)2a [6–12]. Moreover, transplant-induced
alloreactive )1 cells enhance delayed-type hypersensitivity and
activate B cells to produce alloreactive antibodies [13]. On the
contrary, the )2 type response and type 2 cytokines, for ex-
ample, IL-4 and IL-5, have been implicated in graft tolerance
during the progress of allograft rejection [14, 15]. Studies in-
volving the adoptive transfer of ) cell lines revealed different
effects of )1 and )2 cells in transplant rejection. Notably,
rejection was slightly delayed in mice treated with )2 cells
compared with that inmice treated with)1 cells [16, 17].)us,
to prolong allograft survival and maintain the physiological
functioning of the graft, a shift in the posttransplantation )1/
)2 balance in response to donor-derived signals is particularly
vital to prolonging allograft survival. However, it must be noted
that )2 cytokines also have been found to activate eosinophils,
which are thought to mediate allograft rejection [18].

Recently, following the discovery of a new T-cell subset,
)17, investigations into the correlation between )17 cells
(or the corresponding specific cytokine, IL-17) and allograft
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rejection, especially cardiac allograft rejection, have been
reported with the results revealing the detrimental roles of
)17 cells and IL-17 [19–22]. Moreover, regulatory T cells
(Tregs) have been found to play pivotal roles in the induction
of allograft tolerance. To date, studies of Tregs in trans-
plantation have focused on non-antigen-specific thymus-
derived naı̈ve CD4+CD25+FOXP3+ T cells, which are fresh
or activated by IL-2 only or IL-2 plus anti-CD3 antibody
[23, 24]. )ese cells express the transcription factor FOXP3,
which inhibits IL-2 transcription, and promote the induc-
tion of transplant tolerance [25, 26], typically via cell con-
tact-dependent and cell contact-independent mechanisms,
ranging from cytokine release, receptor endocytosis, and
purinergic signaling to cell cytotoxic mechanisms [27–29].
)us, they have a wide range of inhibitory effects on immune
responses, including inhibition of the proliferation and
activation of CD4+ and CD8+ T cells, suppression of B-cell
responses, and regulation of macrophage and natural killer
cell functions [30].

In agreement with these observations, additional studies
have reported that the balances of Tregs/)17 and )1/)2
are crucial for allograft survival [31–33]. Moreover, it has
been reported that both )1 and )2 cytokines, including
IFN-c and IL-5, have the ability to promote the survival of
alloantigen-specific CD4+T regulatory cells [34, 35]. How-
ever, another typical )2 cytokine, IL-4, has been found to
not maintain alloantigen-specific CD4+CD25+ Tregs [36].
)ese observations revealed interactions between Tregs and
) cells, which indicated that the corresponding mecha-
nisms are rather complicated.

Unfortunately, the desperate shortage of acceptable
donors for transplantation persists, particularly for cardiac
donors [37], and concordant organ xenotransplantation has
been considered a new solution based on several studies that
have emerged recently. However, only a few studies have
focused on the underlying mechanisms of immune rejection
following xenotransplantation. )e mouse-to-rat, rat-to-
mouse, hamster-to-rat, monkey-to-baboon, pig-to-monkey,
and pig-to baboon experimental xenotransplantation
models have been applied in these studies to investigate the
rejection mechanisms for concordant cardiac xeno-
transplantation [38–51]. Concordant xenotransplantation
can almost overcome acute vascular rejection due to dif-
ferences between species, and with the use of certain types of
immunosuppressive agents or treatments, xenograft survival
can be extended from several days to as long as 300 days
[40, 42, 43, 45, 47]. Despite these promising results, the
underlying mechanisms of rejection remain to be
demonstrated.

2. Overview of IL-33

Since its identification as a member of the IL-1 family in
2005 [52], IL-33 has been found to play key roles in both
innate and adaptive immunity [53]. IL-33 is constitutively
expressed in the nuclei of various cell types in humans and
mice in steady state, including epithelial, endothelial, and
fibroblast-like cells [54, 55]. Notably, when these cells are
destroyed (cell death by injury, necrosis, or apoptosis) and

the intact membranes are breached, the IL-33 “stored” in the
nucleus is passively released [56]. Accordingly, IL-33 has
been termed an alarmin or damage-associated molecular
pattern (DAMP), similarly to high mobility group box 1
(HMGB1) and IL-1α [57].

)e released bioactive IL-33 initiates its downstream
signaling by binding to its specific receptor ST2. Two
isoforms of ST2 are produced via alternative splicing, the
soluble form (sST2) and membrane-bound form (ST2)
[58]. sST2 is a decoy receptor for IL-33 that can bind IL-33
without initiating the intracellular signaling [59]. Trans-
membrane ST2, also designated ST2L, was first found to be
selectively and stably expressed by )2 cells, and upon
binding to IL-33, ST2L mediates )2 cell functions such as
the expression of the cytokines IL-4, IL-5, and IL-13
[9, 52, 60]. In addition, resident immune cells, including
mast cells, Tregs, and group 2 innate lymphoid cells
(ILC2s), were also found to constitutively express ST2L
[61–69]. IL-33 acts through these major target cells by
binding to ST2L on the cell surface and is intensively in-
volved in various diseases. Examples of IL-33 activity in-
clude the exacerbation of experimental autoimmune liver
injury [70], amelioration of experimental inflammatory
bowel disease [71], and induction of allograft tolerance
[9, 72, 73].

3. IL-33 and Allograft Ischemia-Reperfusion
(IR) Injury

As an “alarmin” that is released from cell nuclei following
cell death by necrosis or apoptosis, IL-33 has been shown to
induce protective effects in neighboring cells [74, 75].
During the process of solid organ transplantation, the cold
preservation of organs and reperfusion afterwards is of
central importance in the success of the transplantation and
cell death can easily occur during this process [76]. Research
has shown that IR injury is often closely related to an in-
creased incidence of cardiac graft rejections [77]. However,
additional studies have reported a protective role of IL-33 in
IR injury of solid organs [78–81]. Moreover, the beneficial
effects of IL-33 released in the process of cardiac IR and IR-
induced myocardial injury have also been demonstrated
[82–84]. IL-33 expression at both the mRNA and protein
levels was found to be increased during myocardial IR [84].
Encouragingly, after IR injury, IL-33 treatment significantly
reduced the myocardial infarct size and the expression of
biomarkers of myocardial damage including cardiac tro-
ponin I (cTnI), lactate dehydrogenase (LDH), and creatine
kinase (CK); markedly inhibited I/R-induced apoptosis of
myocardiocytes; and reduced the inflammatory response in
myocardial I/R by decreasing the expression of the proin-
flammatory cytokine HMGB1, which plays a deleterious role
in myocardial IR [75, 85, 86] and upregulates the expression
of classic )1 proinflammatory cytokines (tumor necrosis
factor-α (TNF-α) and IL-6) [75, 84]. As further confirmation
of these effects of IL-33 and ST2L binding, the anti-in-
flammatory and antiapoptotic effects of IL-33 were found to
be suppressed in ST2(-/-) mice [83] or upon inhibition of the
p38 MAPK signaling pathway, which is a known IL-33/ST2
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downstream signaling pathway in IR injury [84, 87]. Based
on evidence that IL-33 activates the p38 MAPK signaling
pathway to inhibit TNF-α and IL-6 expression in the
myocardium [88], that in the context of liver IR injury, IL-33
upregulates the expression of antiapoptotic proteins by
activating the p38 MAPK signaling pathway [78], and that
the p38 MAPK signaling pathway is involved in HMGB1
release [89, 90], it can be presumed that in heart IR injury,
IL-33 activates p38 MAPK signaling to inhibit the release of
HMGB1 and then leads to downstream anti-inflammatory
effects including the decreased production of cytokines such
as TNF-α and IL-6.

4. IL-33 and Cardiac Allograft Transplantation

Acute and chronic rejection caused by an immune response
towards alloantigens is a major and serious limitation in the
clinical success of cardiac allograft transplantation. In
clinical trials, sST2, the decoy receptor of IL-33, was re-
ported to be a marker for acute rejection after cardiac
allotransplantation, as its serum level was found to elevate
during acute rejection, compared to the prerejection pe-
riod, and to decrease again after treatment for acute re-
jection [91]. Moreover, studies of experimental cardiac
allograft transplantation in a mouse heterotopic heart
transplantation model have reported the therapeutic ca-
pacity of IL-33 for inhibiting the progression of acute and
chronic rejection and prolonging graft survival [9, 72, 73].
Among those studies, Yin et al. were the first to report the
beneficial effects of IL-33 for promoting cardiac allograft
survival [9]. )ey specifically investigated the ability of IL-
33 to shift the type of T-cell response during the process of
alloreaction. )ey first found that graft survival was sig-
nificantly extended (from 7.2 ± 1.2 days to 21.7± 1.6 days)
with the administration of exogenous recombinant IL-33 to
the recipient mice daily from before the day of trans-
plantation to day 7 after surgery [9]. )en, based on the
demonstration of ST2L expression on)2 cells but not )1
cells, they further observed that IL-33 treatment in vitro
induced the production of IL-5 and IL-13 in)2 cells, while
also decreasing IFN-c production by )1 cells [9]. In vivo
tests showed similar effects on the mRNA and protein levels
of cytokines, with recipient splenic IL-4 (a prototypic )2
cytokine) expression being obviously increased and IFN-c
(a prototypic )1 cytokine) expression being reduced upon
IL-33 treatment [9]. Moreover, along with IL-4 upregu-
lation, recipient mice treated with IL-33 had greater IgG1
and IgM concentrations in the sera but lower IgG2a ex-
pression [9]. )us, it was concluded that IL-33 can facilitate
cardiac allograft tolerance by shifting the )1/)2 balance
to promote)2 immune deviation and)2-polarized naı̈ve
T-cell cytokine production [9].

A study by Turnquist et al. later demonstrated the
capacity of IL-33 to induce the generation of suppressive
cell groups in cardiac allograft rejection [72]. )ey also
confirmed the prolongation of graft survival with IL-33
treatment based on the observation that IL-33 delivery into
the recipients tripled the graft survival time (mean survival
time of 29 days versus 9 days in control groups) [72]. In

further experiments, they found that the beneficial effects
of IL-33 treatment are based on the expansion of several
suppressive or regulatory cell groups, including
CD4+Foxp3+ Tregs, and especially ST2+ Tregs, poorly
stimulatory CD11b+ cells, and more importantly,
CD11b+Gr-1int myeloid-derived suppressor cells (MDSCs)
[72]. MDSCs are a cell group consisting of immature
myeloid cells and myeloid progenitor cells that has the
potent ability to suppress T-cell responses [92–94].
Moreover, they also found that a single dose of IL-33
therapy reduced serum IL-12p40/p70 expression and in-
creased the circulating levels of IL-5 and IL-13 [17], which
partially agree with the in vitro observations of Yin et al.
Notably, experiments in ST2-/- mice demonstrated con-
sistent results and confirmed that the therapeutic benefit of
IL-33 is dependent on the recipient expression of ST2 [72].
)us, based on the collective results of these studies, it can
be concluded that IL-33 possesses immunoregulatory
properties in acute allograft rejection by supporting type 2
T-cell responses and expanding immunosuppressive cell
groups including MDSCs and Tregs.

While the above studies focused on acute cardiac al-
lograft rejection, Brunner et al. investigated the impact of
IL-33 on the chronic response using a chronic cardiac
rejection model [73]. Similarly, they found that IL-33 had
beneficial effects on prolonging allograft survival during
chronic cardiac rejection [73], and their studies revealed
that the protective effects of IL-33 were based on multiple
mechanisms. )ese included the capacity of IL-33 to in-
duce the accumulation of immunosuppressive Tregs and
MDSCs in the spleen and within the graft; to increase the
production of IL-5, IL-10, and IL-13; to reduce the
number of B220+CD19+B cells as well as alloantibody
expression; and to decrease production of the proin-
flammatory cytokine IL-17A [73]. All these observations
proved the benefit of IL-33 therapy in ameliorating
chronic cardiac rejection, which is consistent with the
conclusion that IL-33 has protective effects against the
acute alloresponse.

It is worth mentioning that sST2, the decoy receptor of
IL-33, has been found to play a role in the progression of
clinical heart transplantation rejection. First, based on
clinical observations, Pascual-Figal et al. identified sST2 as
a marker of acute cardiac allograft rejection in patients, as
the concentrations of sST2 varied according the presence of
acute rejection and showed a predictive ability, when
considered in combination with N-terminal pro-B-type
natriuretic peptide (NT-proBNP) expression, for bio-
chemical identification of rejection [91]. Following that
report, a similar investigation drew an opposite conclusion
that sST2 has limited ability to predict acute allograft re-
jection in heart transplantation patients [95], but more
recent studies have confirmed that elevated serum levels of
sST2 correlate with incidence of pediatric heart trans-
plantation rejection [96] and increased risk for antibody-
mediated alloreaction [97]. )erefore, these observations
supporting the relationship between sST2 and acute heart
transplantation rejection provide further evidence of the
role of IL-33 signaling in allograft transplantation.
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5. IL-33 and Concordant
Cardiac Xenotransplantation

Acute humoral xenograft rejection (AHXR) occurs within 3
days after transplantation in the mouse-to-rat and hamster-
to-rat heart transplantation models. Previous studies have
shown that IL-33 plays a deleterious role associated with the
activation and production of )2 type cytokines and al-
ternatively activated macrophage (AAM) polarization in
many diseases [13, 14]. To date, very few studies have in-
vestigated the protective or deleterious roles of IL-33 in
concordant transplantation. One study using a mouse-to-rat
cardiac xenotransplantation model [43] found that treat-
ment with a combination of IL-33 and half-dose leflunomide
(Lef) prolonged the survival of the xenograft, indicating that
IL-33 may also have protective effects on xenografts. Further
research revealed the underlying tolerogenic mechanisms
which involved the inhibition of T-cell proliferation, the
reduction of )1 type cytokine IFN-c production, and an
increase in the number of CD4+Foxp3+ Tregs in the re-
cipient response [43]. It is worth noting that the adminis-
tration of IL-33 alone could not induce effective tolerance of
the xenograft; this effect was only achieved with the com-
bination of IL-33 and Lef, which differs from the results
obtained in allograft models [43]. Nevertheless, the research
indicates that IL-33 may also play a beneficial role in pro-
tecting against xenograft rejection.

In contrast to its effects on allograft transplantation, IL-
33 treatment alone has no effect on xenograft survival. )us,
at present, AHXR can only be suppressed with treatment
with a B-lymphocyte inhibitor.

6. Conclusions and Perspectives

)isminireview summarizes the functions of IL-33 as well as
the underlying molecular mechanisms in protecting against
heart allograft and xenograft rejection. Briefly, IL-33 is
originally stored in nucleus and passively released by ne-
crotic or apoptotic cells upon IR injury during the early stage
after transplantation.)e released IL-33 binds to its receptor
ST2 on)2 cells, leading to increased production of)2 type
cytokines and an upset in the balance of )1/)2 responses.
)1 cell functions and production of )1 type cytokines are
inhibited, whereas )2 responses are enhanced. )e result is
the amelioration of graft rejection. Meanwhile, suppressive
cell groups including MDSCs and Tregs expressing ST2 are
induced by IL-33 release, further facilitating the tolerogenic
state to the graft. Overall, IL-33 possesses beneficial effects
throughout the complete process of heart transplantation by
reducing IR injury and ameliorating graft rejection.

Although the presented data suggest that IL-33 is a
promising target for the prevention and intervention of
cardiac graft rejection, the underlying mechanisms espe-
cially the signaling pathways deserve further investigation.
With regard to the clinical implications, the research to date
indicates that combined use of IL-33 and an immunosup-
pressant may achieve better therapeutic tolerant effects than
the use of IL-33 alone. Furthermore, for possible clinical
xenotransplantation in the future, IL-33 may also have

protective effects via the inhibition of the immune response
against the xenograft. However, as IL-33 has multiple effects
in a wide range of tissues and cells and promotes the)2 cell
response, the potential for IL-33 therapy to aggravate )2-
induced diseases has not been clearly studied yet. Before IL-
33 can be applied clinically to promote transplant tolerance
and prolong graft survival, this possibility must be deeply
investigated.
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[41] X.-g. Zhang, Y. Lü, B. Wang et al., “Cytokine production
during the inhibition of acute vascular rejection in a con-
cordant hamster-to-rat cardiac xenotransplantation model,”
Chinese Medical Journal, vol. 120, no. 2, pp. 145–149, 2007.

Cardiology Research and Practice 5



[42] Z.-X. Jiao, Y. Leng, J.-J. Xia et al., “As2O3 combined with
leflunomide prolongs heart xenograft survival via suppressing
the response of )1, )2, and B cells in a rat model,” Xen-
otransplantation, vol. 23, no. 3, pp. 237–248, 2016.

[43] C. Dai, F.-N. Lu, N. Jin et al., “Recombinant IL-33 prolongs
leflunomide-mediated graft survival by reducing IFN-c and
expanding CD4+Foxp3+ T cells in concordant heart trans-
plantation,” Laboratory Investigation, vol. 96, no. 8,
pp. 820–829, 2016.

[44] B. Wang, L. Yi, H. Li, and C. E. Pan, “A new cardiac con-
cordant xenotransplantation model,” Transplantation Pro-
ceedings, vol. 37, no. 10, pp. 4620–4622, 2005.

[45] N. P. Singh, L. Guo, X. Que, and H. Shirwan, “Blockade of
indirect recognition mediated by CD4+ T cells leads to pro-
longed cardiac xenograft survival,” Xenotransplantation,
vol. 11, no. 1, pp. 33–42, 2004.
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