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Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic in�ammatory process.
Meanwhile, this pro-in�ammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis
(RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the
risk of CHD in patients with RA. is review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship
between TNF-α antagonist and CHD in patients with RA.

1. Introduction

In recent years, the incidence of coronary heart disease
(CHD) has increased year by year, and its mortality rate has
already surpassed that of cancer [1]. e underlying
mechanism of CHD is atherosclerosis, and the oxidative
modi�cation of low-density lipoprotein cholesterol (LDL-C)
is the main cause of plaque formation [2]. At present, the
occurrence and development of CHD are generally con-
sidered as a chronic in�ammatory process and tumor ne-
crosis factor-alpha (TNF-α) has signi�cant e�ects on the
development of CHD [3]. It has been shown that TNF-α is
capable of damaging endothelium function, enhancing the
uptake of ox-LDL by macrophages, promoting angiogenesis,
and triggering the clinical coronary events [4–7]. As a pro-
in�ammatory cytokine, TNF-α is central to the in�amma-
tory process of autoimmune diseases such as rheumatoid
arthritis (RA) [8]. Patients with RA have higher risk of CHD
[9]. Meanwhile, TNF-α antagonists have been shown to be
e�ective in controlling in�ammatory activity and functional
impairment in RA [10]. ere is accumulating evidence
indicating that the use of TNF-α antagonists is associated
with a reduced risk of cardiovascular events in patients with

RA [11–19]. However, other studies have found TNF-α
antagonists to be associated with no change or increased
cardiovascular risk [20, 21]. In this review, we summarize the
recent advances of TNF-α in the pathogenesis of CHD and
discuss the impact of TNF-α antagonists on CHD in patients
with RA.

2. Overview of TNF-α

TNF-α is originally discovered during 1975 that could kill
mouse tumor cells, which is why we call it “tumor necrosis
factor” [22]. It belongs to the TNF superfamily of proteins
consisting of 157 amino acids and is mainly generated by
activated macrophages, T-lymphocytes, and natural killer
cells [23, 24], but several subsequent studies have shown that
it is also produced by nonimmune cells such as endothelial
cells, adipocytes, neurons, and myocardial cell [25–28].
TNF-α exists in two forms: transmembrane (tmTNF-α) or
soluble TNF-α (sTNF-α) [29]. tmTNF-α is expressed on the
surface of activated lymphocytes, macrophages, and other
cell types, and when processed by TNF-α-converting en-
zyme, it is released as the sTNF-α [30, 31]. e biological
activity of TNF-α is achieved through two receptors: TNF-α
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receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2) [32].
TNFR1 is expressed in most nucleated cells, and it is fully
activated by both tmTNF-α and sTNF-α [33]. TNFR2 is
expressed mainly in immune cells but also in myocardial cell
and is primarily activated by tmTNF-α in the context of cell-
to-cell interactions [34, 35]. TNF-α is involved in many
pathophysiological processes, such as inflammation, im-
munity, cell proliferation, apoptosis, and lipid metabolism
[36–38]. Abnormal secretion of TNF-α leads to various
diseases, such as RA [39], inflammatory bowel disease [40],
spondylarthritis [41], psoriasis [42], noninfectious uveitis
[43], and CHD [44].

3. TNF-α and CHD

3.1. TNF-α and Endothelial Cell. In vascular homeostasis,
vascular endothelial cells act as a barrier [45]. Disruption of
the barrier leads to inflammatory cell invasion, which
contributes to a variety of vascular diseases, including
atherosclerosis [46]. Research suggests that TNF-α disrupts
the intercellular connections of endothelial cells and en-
hances vascular permeability [4, 47]. A large number of
studies reveal that endothelial inflammation plays an im-
portant role in the progression of atherosclerosis [48]. TNF-
α activates endothelial cells and induces monocytes/mac-
rophages to express cytokines and chemokines, which may
lead to the progression of atherosclerosis [48]. In the de-
velopment of atherosclerosis, endothelial cell apoptosis plays
an important role in the regulation [4]. TNF-α induces
endothelial cell apoptosis by upregulating autophagy, which
is inhibited by arachidonic acid [49]. In addition to apo-
ptosis, endothelial cell senescence is positively associated
with the development of atherosclerosis [50], and exposure
to TNF-α promotes premature endothelial senescence [51].

3.2. TNF-α and Foam Cell. In the early stages of atheroscle-
rosis, monocytes migrate to the intima of coronary artery and
differentiate into macrophages [52]. When oxidized low-
density lipoprotein (ox-LDL) intake exceeds the metabolic
capacity of macrophages, macrophages transform into foam
cells [43]. Foam cells are involved in fatty streak formation, a
hallmark of the early stages of atherosclerosis [53]. .e study
confirms that TNF-α promotes monocyte adhesion to endo-
thelial cells, which is effectively blocked by adalimumab [54].
ox-LDL induces oxidative stress and increases TNF-α secretion
by macrophages via reducing the inhibition effect of miR-491-
5p on matrix metalloproteinase 9 [55]. Meanwhile, TNF-α
enhances the uptake of ox-LDL by macrophages in a con-
centration-dependentmanner [5]..ere is a vicious circle here,
where TNF-α promotes the uptake of ox-LDL bymacrophages,
and this in turn increases the release of TNF-α. In addition, the
formation of foam cells is also associated with impaired
cholesterol efflux from macrophages [56], TNF-α has been
shown to reduce cholesterol efflux by suppressing the ex-
pression of adenosine triphosphate (ATP)-binding membrane
cassette transporter A1 (ABCA1) and liver X receptor-α, and
infliximab exerts atheroprotective effect by eliminating the
reduction in foam cells induced by TNF-α [57].

3.3. TNF-α and Angiogenesis. Angiogenesis is an essential
process in a variety of physiological and pathological con-
ditions, including atherosclerosis and rheumatoid arthritis
[58]. It contains the differentiation, proliferation, migration,
and maturation of endothelial cells [59]. Vascular endo-
thelial growth factor (VEGF) is an important mediator of
angiogenesis [60], and VEGF augments vascular endothelial
cell proliferation, migration, and survival [60]. TNF-α
promotes VEGF expression and angiogenesis [6]. Besides,
TNF-α mediates the expression of chemerin in human
coronary endothelial cells under hypoxia and promotes the
early process of angiogenesis [61]. Studies have shown that
chemerin stimulates angiogenesis both in vitro and in vivo to
a similar extent as that of VEGF [62]. Chen et al. also find
that the angiogenic function of TNF-α is significantly en-
hanced with the overexpression of angiopoietins 1 and 2
[63]. In endothelial cell inflammatory responses, angio-
poietin sensitizes endothelial cells to TNF-α [64].

3.4. TNF-α and Vascular Smooth Muscle Cell. Abnormal
migration, extracellular matrix synthesis, and proliferation
of vascular smooth muscle cells (VSMCs) contribute to the
formation of atherosclerotic plaque [65]. TNF-α causes
VSMC proliferation and migration through multiple
pathways [66–71]. It contains upregulated expression of
lncRNA HIX003209, miR-21, lncRNA CAMK2D-associated
transcript-1, miR-375-3p, Raf-1/MAPK-dependent manner,
and the help of matrix metalloproteinase 2. Vascular cal-
cification is associated with CHD [72]. Adiponectin, secreted
by adipocytes, protects VSMCs from calcification induced
by beta-glycerophosphate by inhibiting the JAK kinase 2/
signal transduction and activator transcription 3 signaling
pathway and downregulating the expression of the tran-
scription factor osterix [73]. TNF-α impairs adiponectin
multimerization, consequently decreasing adiponectin se-
cretion by altered disulfide bond modification in endo-
plasmic reticulum [74]. Inflammation is implicated in
atherosclerosis along with the accumulation of leukocytes
and inflammatory mediators such as interleukin (IL)-1β and
IL-6, and TNF-α increases the levels of inflammatory factors
in VSMCs [75]. Abnormal oxidative stress in VSMCs plays
an important role in the occurrence and development of
vascular remodeling and promotes the development of
atherosclerosis [76]. .is oxidative stress in VSMCs is in-
duced by TNF-α, and overexpression of 17β-estradiol
abolishes this pathological process [77]. Atherosclerosis, an
age-related cardiovascular disease, is associated with cellular
senescence and senescence-associated secretory phenotype
in VSMCs [78]. TNF-α is one of the main inflammatory
signaling molecules involved in the senescence of VSMCs by
inducing the activity of senescence-associated β-galactosi-
dase (SA-β-gal) and telomerase [79]. .e specific mecha-
nism of TNF-α in CHD is shown in Figure 1.

3.5. TNF-α and Myocardial Infarction. After myocardial
infarction, a large amount of TNF-α is produced by ischemia
and hypoxia-activated cardiomyocytes and local mononu-
clear macrophages [80, 81]. At the same time, the
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concentrations of TNFR1 and TNFR2 are also significantly
increased [82]. STEMI patients with significantly elevated
levels of TNF-α are more likely to have subsequent ischemic
events, HF, and all cardiovascular events [7]. Since TNF-α
induces the release of soluble TNF-α receptors 1 and 2
(sTNFR1 and sTNFR2) into the circulation in STEMI pa-
tients, these patients with high circulating sTNFR1 or
sTNFR2 are at high risk of adverse clinical events [83].
Furthermore, TNF-α is also involved in adverse remodeling
after myocardial infarction [84].

4. TNF-α Antagonist and CHD in
Patients with RA

4.1. TNF-α Antagonist in RA. TNF-α antagonists are de-
veloped following the discovery that TNF-α plays a role in
the pathophysiology of RA [85]. Five different drugs based
on blocking TNF-α are available: infliximab, adalimumab,
etanercept, golimumab, and certolizumab pegol [86]. Over
the past few decades, numerous clinical trials have been
conducted on these compounds, which have shown excellent
and comparable efficacy in improving clinical, functional,
and radiological disease outcomes in patients with RA [87].
As the most frequently used biologics in RA [88], in addition
to some rare but serious systemic side effects, TNF-α an-
tagonists may also exert pharmacological effects beyond the
treatment of RA [14, 89, 90].

4.2. RA and CHD. Compared with the general population,
patients with RA have 1.5–2 times increased risk of myo-
cardial infarction and CHD [9,91]. .e study has shown that
the risk of cardiovascular disease (CVD)may increase before
RA is diagnosed [92]. Patients with RA are often accom-
panied by disability, but CVD is the leading cause of death
[93]. Studies show that the risk of CVD associated with RA is
similar to diabetes [94]. Notably, the atherosclerotic burden
in RA correlates with the disease severity at baseline [95] and
RA activity over time may contribute to the risk of CVD
[96]. Systemic inflammation is an important contributor to
increased cardiovascular risk in patients with RA [20, 97].
TNF-α plays an important role in this pathological process

[98]. Patients with RA are systemically predisposed to high
levels of TNF-α [99]. It is generally accepted that RA and
atherosclerosis are autoinflammatory diseases involving
multiple inflammatory cytokines, with many common ge-
netic predispositions and environmental factors [100].

4.3. TNF-α Antagonist and Endothelial Cell. Impaired en-
dothelial cell function has been demonstrated in patients
with RA and may contribute to the progression of athero-
sclerosis in these patients [101, 102]. As a cornerstone of RA
treatment, a study shows that TNF-α antagonists improve
endothelial function in patients with RA [103]. As a TNF-α
antagonist, adalimumab is one of the leading therapies for
RA [104]. It limits the inflammation of vascular by pre-
venting endothelial activation, endothelial monocyte ad-
hesion, and endothelial leakage [54]. Certolizumab pegol,
another TNF-α antagonist, has also been shown to attenuate
the pro-inflammatory state of endothelial cells [105]. An-
other study on certolizumab pegol indicates that leukocyte
adhesion and angiogenesis induced by TNF-α could be
suppressed by certolizumab pegol [106]. Endothelial pro-
genitor cells have the ability to differentiate into endothelial
cells in situ and limit the formation of atherosclerotic plaque,
and short-term treatment of RA with TNF-α antagonists is
associated with an increase in circulating endothelial pro-
genitor cells [107]. Elevated levels of some soluble adhesion
molecules, such as vascular cell adhesion molecule-1, are
associated with endothelial dysfunction and the develop-
ment of atherosclerosis [108], and administration with a
TNF-α antagonist, certolizumab pegol, also has a positive
effect on reducing the expression of some adhesion mole-
cules [109].

4.4. TNF-α Antagonist and Lipid Profile. Risk factors for
CHD include elevated plasma low-density lipoprotein cho-
lesterol (LDL-C) and decreased high-density lipoprotein
cholesterol (HDL-C) [110]. Dyslipidemia, considered as a
secondary impact of chronic inflammatory state, has been
found in patients with RA [111]. Treatment with TNF-α
antagonists induces elevated serum HDL-C levels in patients
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Figure 1: Specific mechanism of TNF-α in CHD.
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with RA [112, 113]..ismay be due to the fact that during the
inflammatory process, the expression of cytokines such as
TNF-α reduces the level of circulating HDL-C and TNF-α
antagonists have the ability to control disease activity [114].
Results from other literature studies are conflicting, they have
not found that TNF-α antagonists affect the levels of HDL-C
in patients with RA [115–117], and this may be attributable to
the differences in study populations, study duration, thera-
peutic drugs, and lack of adjustment for covariables such as
age and comorbidities. A study by Hassan et al. follows up for
104 weeks, and the result shows no significant changes in the
HDL-C and LDL-C values following the use of TNF-α an-
tagonist [118]. Notably, LDL-C decreases significantly
throughout the study in patients treated with statins. Con-
comitant treatment with TNF-α antagonist and statins may
reduce the cardiovascular risk in patients with RA in addition
to treating the inflammatory component. TNF-α antagonist
not only affects the concentration of HDL-C but also en-
hances the antioxidant capacity of HDL-C and improves its
anti-atherosclerotic ability [119]. .is may explain that in
patients with RA, the incidence of cardiovascular events
decreases without higher HDL-C concentrations when
treated with TNF-α antagonists.

4.5. TNF-αAntagonist andCHDEvents. In patients with RA,
the increased burden of CHD, particularly acute myocardial
infarction (AMI), is independent of traditional CVD risk
factors, and it is partly attributable to chronic systemic
inflammation [120]. .e use of TNF-α antagonists in RA
reduces the risk of CHD events, such as MI, cardiac death,
and unstable angina, and these risks are further reduced with
long-term use [14], but another study shows that compared
with receiving conventional modified antirheumatic drugs,
the AMI rate is not reduced in RA treated with TNF-α
antagonists, and reduction in this risk presupposes a re-
sponse to TNF-α antagonists [17]. .is finding supports that
suppression of inflammation may reduce cardiovascular
risk. Circulating TNFR1 levels are associated with mortality
risk in AMI [121]. TNFR2 plays an important role in
myocardial survival and homeostasis by suppressing apo-
ptosis and necroptosis [122]. Cardioprotective effects of
TNF-α antagonists may be related to the inhibition of
TNFR1 [123]. However, inhibition of TNFR2, a car-
dioprotective receptor, by TNF-α antagonists exceeds that of
TNFR1, resulting in increased cardiovascular morbidity
[99]. .e contrast in the risk of CVD can be explained by the
difference in doses administered, causing different degrees of
inhibition in TNFR2. Besides, the reduction in the risk of
CHD events by TNF-α antagonists may be associated with
the inappropriate use of glucocorticoids in control patients
[19]. .e risk of hypertension, diabetes, weight gain, and
metabolic syndrome are increased with the use of gluco-
corticoids [124–126]. Meanwhile, these complications in-
crease the risk of CHD in patients with RA.

4.6. TNF-α Antagonist and Others. RA is an independent
risk factor for the development of CHD [127], and this can
be explained by a prothrombotic state with abnormalities

in the coagulation, fibrinolytic systems, and platelet re-
activity [128]. .e study provides evidence that the in-
hibition of fibrinolysis in patients with RA is reduced by
TNF-α antagonist [129]. .is helps to reduce the risk of
thrombosis systematically. In patients with RA, traditional
CVD risk factors such as diabetes, hypertension, and
hyperlipidemia do not fully account for the increase in
atherosclerosis [130]. Insulin resistance increases in pa-
tients with RA and is associated with accelerated coronary
atherosclerosis [131], and TNF-α antagonists have been
shown to improve insulin sensitivity and reduce insulin
resistance in patients with RA [132]. Coronary artery
calcification is part of the atherosclerotic process and is
proportional to the risk of cardiovascular events [133]. It
is worth noting that coronary calcium scores are signif-
icantly elevated in RA with inflammatory anemia [134],
and TNF-α antagonists improve inflammatory anemia in
patients with RA [135].

5. Conclusion and Perspective

In conclusion, patients with RA have a significant increase in
CHD morbidity and mortality than patients without RA.
Inflammation is the common link between CHD and RA.
TNF-α is involved as an important inflammatory cytokine.
Growing evidence suggests that there is a protective asso-
ciation between TNF-α antagonists and CHD in RA.

From endothelial cell dysfunction to myocardial in-
farction, TNF-α is widely involved in the occurrence and
development of CHD [46, 136, 137]. As a chronic inflam-
matory disease, TNF-α-involved vascular inflammation
plays an important role in the progression of CHD [138]. In
local inflammation, TNF-α is released by inflammatory cells,
endothelial cells, and cardiomyocytes [23–28]. It then me-
diates endothelial dysfunction, foam cell formation, an-
giogenesis, smooth muscle proliferation, and thrombosis [6,
46, 56, 66].

.e incidence of CVD is significantly elevated in patients
with RA, and it is the leading cause of death in patients with
RA [139]. In addition to improving clinical, functional, and
radiological disease outcomes in patients with RA [87],
TNF-α antagonists, the most frequently used biologics in RA
[88], improve endothelial function [103], lipid metabolism
[112, 113], and the risk of CHD events [14].

Finally, as biologics become more prominent in the
treatment of RA, future research should focus on deter-
mining whether TNF-α antagonists may directly exert
cardioprotective effects through some unknownmechanism.
Considering the pathogenic role of TNF-α in various stages
of CHD, TNF-α antagonists may play a positive role in the
treatment of CHD in the future.
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