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Objective. �ere can be extreme variability between individual responses to exercise training, and the identi�cation of genetic
variants associated with individual variabilities in exercise-related traits could guide individualized exercise programs. We aimed
to screen the exercise-related gene sensitivity of patients with acute myocardial infarction after PCI by establishing the gene
spectrum of aerobic exercise and cardiopulmonary function sensitivity, test the e�ect of individualized precision exercise therapy,
and provide evidence for the establishment of a precision medicine program for clinical research.Methods. Aerobic exercise- and
cardiopulmonary function-related genes and single-nucleotide polymorphisms (SNPs) were obtained by data mining utilizing a
major publicly available biomedical repository, the NCBI PubMed database. Biological samples from all participants underwent
DNA testing. We performed SNP detection using Samtools. A total of 122 patients who underwent PCI were enrolled in the study.
We screened the �rst 24 cases with a high mutation frequency for aerobic exercise- and cardiopulmonary function-related genes
and the last 24 cases with a low mutation frequency and separated them into two groups for the exercise intervention experiment.
Results. In both the lowmutation frequency group and the highmutation frequency group, after 8 weeks of exercise intervention, 6
MWT distance, 6 MWT%, VO2/kg at peak, and VO2/kg at AT were signi�cantly improved, and the e�ect in the high mutation
frequency group was signi�cantly higher than that in the low mutation frequency group (6 MWTdistance: 468 vs. 439, P � 0.003;
6MWT%: 85 vs. 77, P � 0.002, VO2/kg at peak: 14.7 vs. 13.3, P � 0.002; VO2/kg at AT: 11.9 vs. 13.3, P � 0.003). Conclusions.�ere
is extreme variability between individual responses to exercise training. �e identi�cation of genetic variants associated with
individual variabilities in exercise-related traits could guide individualized exercise programs. We found that the subjects with a
high mutation frequency in aerobic exercise and cardiopulmonary function-related genes achieved more cardiorespiratory �tness
bene�ts in the aerobic exercise rehabilitation program and provided evidence for the establishment of a precision medicine
program for clinical research.

1. Introduction

Cardiovascular disease is becoming the most common cause of
mortality, especially in high-income countries [1]. According to
the annual report on cardiovascular health and diseases in
China, the prevalence of the cardiovascular disease among
Chinese residents has gradually increased, and the prevalence

of coronary heart disease among people over 60 years old has
reached 27.8% [2]. Since 2005, the mortality of patients with
acute myocardial infarction has increased rapidly [2]. Percu-
taneous coronary intervention (PCI) is an e�ective treatment to
reduce mortality, myocardial infarction, and hospitalization
rate of people with the acute coronary syndrome in the
treatment of acute myocardial infarction [3, 4].
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Although PCI has become the most important revas-
cularization treatment for patients with coronary heart
disease, PCI and drug therapy alone cannot continuously
and effectively improve the prognosis of patients [5]. It is
necessary to prevent the development of coronary heart
disease, reduce the recurrence rate and mortality of car-
diovascular events, prolong life, and improve the quality of
life after discharge [5, 6]. Currently, many international
clinical guidelines recommend that patients join an exercise
rehabilitation program after PCI [7, 8]. Research shows that
exercise rehabilitation can significantly reduce all-cause
mortality, cardiovascular disease-related mortality, reho-
spitalization rate, and the incidence of revascularization,
reduce related dysfunction and emotional abnormalities,
and increase the quality of life of patients [5, 9]. While
exercise is recommended by essentially every major medical
organization, it is also recognized that there can be extreme
variability between individual responses to exercise training
[10].

/e idea of personalized medicine has been gaining
significant interest since the sequencing of the human ge-
nome, and the identification of specific sport- and exercise-
related genes is expected to be used for precision sports
medicine to provide tailor-made training as well as to select
optimal sports and/or other exercise activities for each in-
dividual [10–12]. Research has found that sprinters with the
RR+RX genotype of the alpha-actinin-3 (ACTN3) gene had
significantly faster personal best times for the 100m race
than those with the XX genotype [13]. /us, the identifi-
cation of genetic variants associated with individual vari-
abilities in exercise-related traits could guide individualized
exercise programs, which is one of the goals of precision
medicine [11, 14, 15]. /erefore, we aimed to screen the
exercise-related gene sensitivity of patients with acute
myocardial infarction after PCI by establishing the gene
spectrum of aerobic exercise and cardiopulmonary function
sensitivity, test the effect of individualized precision exercise
therapy, and provide evidence for the establishment of a
precision medicine program for clinical research.

2. Methods

2.1.DataMiningof theGeneSet. We utilized a major publicly
available biomedical repository, the NCBI PubMed database,
for data mining. Search strategies were combined as follows:
(“athletic performance” OR “physical performance” OR
“elite athlete” OR “athletic status” OR “endurance perfor-
mance” OR “aerobic exercise” OR “strength training”) AND
(genes OR gene OR loci OR locus). Database searching
retrieved a total of 951 studies. Information on a total of 111
exercise-related SNPs and 76 exercise-related genes was
obtained after analysis by a text mining program (see Table
S1). Our text mining program consisted of five steps: (1)
Document searching and formatting, in which keywords
were used to search documents and organize documents into
XML format. (2) Gene mentions tagging using ABNER
software to describe and locate genes [16]. (3) Conjunction
resolution, in which the description of extracted genes, such
as the “STAT3/5 gene,” was resolved into the STAT3 gene

and STAT5 gene. (4) Gene name normalization based on the
Entrez database; because the names of genes in the free text
were confusing, it was necessary to unify the gene de-
scriptions in the article into official gene symbols to facilitate
analysis and comparison. /e gene symbol was based on the
Entrez gene database of the NCBI. (5) Statistical analysis, in
which the frequency of each gene was determined. /e
higher the frequency of the gene, the greater the possibility
that the gene was related to the disease. /e total number of
documents in the PubMed database was defined as N. /e
frequency of independent occurrence of genes and corre-
sponding diseases in the PubMed literature database was
recorded as m and n, respectively. Supposing that the
number of simultaneous occurrences of gene disease is k, we
can calculate the probability of more than k power co-ci-
tations under completely random conditions through
hypergeometric distribution, as follows:

p � 1 − 
k−1

i�0
p(i|n, m, N), (1)

and

p(i|n, m, N) �
n!(N − n)!m!(N − m)!

(n − i)!i!(n − m)!(N − n − m + i)!N!
. (2)

/rough the classification of aerobic exercise- and
cardiopulmonary function-related genes involved in this
exercise program, 36 aerobic exercise- and cardiopulmonary
function-related genes and 45 related SNPs were obtained
(see Figure 1).

/e red color indicates that the SNP appears, and grey
indicates that it does not appear.

2.2. Subjects and Groups. Patients were recruited from
DAQINGOilfield General Hospital. In the inclusion criteria,
patients were recruited from Daqing Oilfield General
Hospital. /e inclusion criteria were as follows: (1) all pa-
tients were treated with PCI for the first time and whose
Killip class was I-II; (2) all patients were treated within 6
hours after the onset of disease, and (3) clinical data and
imaging data during the treatment period were complete,
and there were no missing data. /e exclusion criteria were
as follows: (1) exercise-induced syncope or ventricular ar-
rhythmias; (2) inability to exercise and walk owing to
comorbidities; (3) suffering from end-stage diseases such as
malignancies; (4) severe complications such as pulmonary
edema, severe arrhythmia, or cardiogenic shock; and (5)
suffering from mental illness or family history of mental
illness. All percutaneous coronary interventions were per-
formed by the same team [17]. A total of 122 patients who
underwent PCI after acute myocardial infarction were en-
rolled in the study. Informed written consent was obtained
from all participants. Biological samples from all partici-
pants underwent DNA testing. /e DNA of the 122 subjects
was extracted using a Universal Cylindrical Genome Ex-
traction Kit (KangWei Century, CW2298M). Agarose gel
electrophoresis was used to analyze the degree of DNA
degradation and the presence of impurity bands and RNA
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and protein contamination in the 122 subjects./e quality of
the DNA was determined by a NanoDrop ND-2000 ultra-
micro spectrophotometer. Biological samples were gene
sequenced using the Illumina HiSeq PE150. Quality control
(QC) analyses were performed on sequenced Reads. Map-
ping reads to a reference after QC. /e sequencing results
were compared with the reference genome using BWA
software which mainly uses the location comparison be-
tween a large number of short fragments after second-
generation sequencing and the reference genome. We
performed SNP genotyping through SAMtools software [18,
19]. /e regional distribution statistics of 45 aerobic exer-
cise- and cardiopulmonary function-related SNP loci of the
122 samples are shown in Table 1.

We drew a panorama of 45 SNP genotypes from 122
samples, screened the first 24 cases with high mutation
frequency and the last 24 cases with lowmutation frequency,
and divided them into two groups for the exercise inter-
vention experiment, as shown in Figure 2. /ere were no
statistically significant differences between the 2 groups of
patients regarding general data such as age, sex, body mass
index (BMI), Killip classification, coronary lesions, and
comorbidities such as hypertension or diabetes (P> 0.05);
the groups were comparable.

2.3. Procedures. A total of 122 patients who underwent PCI
after acute myocardial infarction were enrolled in the study,
and the first 24 cases with a high mutation frequency in
aerobic exercise and cardiopulmonary function-related
genes and the last 24 cases with a low mutation frequency
were screened into two groups for the exercise intervention
experiment. /e flow chart is shown in Figure 3. After PCI
treatment, all patients underwent blood pressure regulation,
sedation, and other treatments, and symptomatic care, such
as oxygen and medication administration, was also deliv-
ered. /ese two groups were given an exercise prescription
and guidance from the same team. Each exercise period
consisted of warm-up exercises for 5min (20–40% of VO2
max), followed by moderate-intensity continuous aerobic
exercise (50–60% of VO2max), light exercise for 40min, and
a 5-min cooldown; the regimen had a Borg rating of 11–13.
/e exercise was performed for 50 minutes each time, 4
times/week, for a total of 8 weeks. /e exercise was advised
to be halted if any of the following occurred: (1) chest pain,
dyspnoea, or dizziness during or after exercise; (2) heart rate

fluctuation>30 beats/min; (3) blood pressure>200/
100mmHg or systolic blood pressure increase>30mmHg or
decrease>10mmHg; (4) electrocardiogram monitoring
during exercise showed ST-segment depression ≥0.1mV or
elevation ≥0.2mV; or (5) severe arrhythmia during or after
exercise. /is study was approved by the DAQING Oilfield
General Hospital ethics committee.

2.4. Outcome Measures. Cardiopulmonary exercise testing
with respiratory gas analysis was performed using the in-
dividualized ramp protocol recommended by the American
Heart Association [20]. /e specific protocol was as follows:
0W: rest for 1min; 0W: warm-up for 2min; treadmill in-
tensity started at 5W. /ereafter, according to the exercise
ability of the subjects, the intensity was increased by
15–25W per minute until the subjects reached the outcome
measures at 8–12 minutes. Calibration was performed before
each testing period. Peak O2 utilization (VO2 peak) was
defined as the highest VO2 value (without reaching an
oxygen uptake steady-state plateau), achieved at individual
maximum load during incremental exercise testing [20].
During CPET, data on the subjects’ static electrocardiogram
and static lung function (vital capacity/maximum ventila-
tion) were individually collected. /e indications for ter-
mination of CPET in our study were following the scientific
statement from the American Heart Association [21]. /e 6-
minute walk test (6 MWT) was used in this study. /e
procedures and indications for termination of the 6 MWT
were performed according to the recommendations of the
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Figure 1: Heatmap of 111 SNP.

Table 1: Regional distribution of 45 SNP loci.

Func.refGene1 Number
Exonic2 16
ncRNA_intronic3 2
Intronic4 15
UTR35 3
UTR56 5
Downstream7 1
Intergenic8 3
Total9 45
1/e functional region where the mutation site is located; 2exonic region;
3noncoding RNA intron region; 4inner subregion; 53′ UTR area; 65′ UTR
area;71 KB region downstream of transcription termination site; 8gene
spacer region;9 Total SNP.
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American/oracic Society [22]. /e participants walked for
6 minutes along an indoor 30-m corridor, and the distance
walked was recorded for analysis.

2.5. Statistical Analyses. Continuous variables are
expressed as the mean ± SD or median and were compared
using a two-sided independent samples t test. Frequency
data were compared between the groups using the chi-
square test. A value of p< 0.05 was considered statistically
significant. Statistical analysis was performed using R
version 4.0.5.

3. Results

/e average age of the high mutation frequency group was
52.76± 7.74 years, and that of the low mutation frequency
group was 50.76± 9.34 years. /ere was no significant dif-
ference in sex, age, or exercise ability indices, including the 6
MWT, VO2/kg at peak, and VO2/kg at AT, between the low
mutation frequency group and the high mutation frequency
group, as shown in Table 2.

After 8 weeks of exercise training, the 6-minute walk test
distance (468 vs. 439, P � 0.003), 6 MWT% (85 vs. 77,
P � 0.002), VO2/kg at peak (14.7 vs. 13.3, P � 0.002), and
VO2/kg at AT (11.9 vs. 13.3, P � 0.003) in the high mutation

frequency group were significantly higher than those in the
low mutation frequency group, as shown in Table 3.

/rough the independent samples t-test analysis of the
results in the group, it was found that the 6-minute walk test
distance (388 vs. 468, P< 0.01), 6 MWT% (68 vs. 85,
P< 0.01), VO2/kg at peak (12.1 vs. 14.7, P< 0.01) and VO2/
kg at AT (9.1 vs. 11.9, P< 0.01) in the high mutation fre-
quency group after 8 weeks of training were significantly
higher than those before training, as shown in Table 4.

/rough the independent samples t-test analysis of the
results in the group, it was found that the 6-minute walk test
distance (385 vs. 439, P< 0.01), 6MWT% (67 vs. 77,
P< 0.01), VO2/kg at peak (12.4 vs. 13.3, P< 0.01), and VO2/
kg at AT (9.3 vs. 10.1, P< 0.01) in the low mutation fre-
quency group after 8 weeks of training were significantly
higher than those before training, as shown in Table 5.

In both the low mutation frequency group and the high
mutation frequency group, after 8 weeks of exercise inter-
vention, 6MWT distance (low mutation frequency group:
385 vs. 439, P< 0.01; high mutation frequency group: 388 vs.
468, P< 0.01) and 6MWT% (low mutation frequency group:
67 vs. 77, P< 0.01; high mutation frequency group: 68 vs. 85,
P< 0.01) were significantly improved, and the effect in the
high mutation frequency group was significantly higher than
that in the low mutation frequency group (6 MWTdistance:
468 vs. 439, P � 0.003; 6 MWT%: 85 vs. 77, P � 0.002), as
shown in Figure 4.
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Figure 2: Panorama of 45 SNP gene mutations in subjects.
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122 patients were enrolled

Baseline assessment and DNA testing

Group according to the results of gene test

High Mutation Frequency Group
�e first 24 cases with high mutation frequency

Low Mutation Frequency Group
�e last 24 cases with high mutation frequency

Cardiopulmonary exercise test before exercise

Exercise prescription and 
guidance from same team

CPET was performed again a�er 8 weeks of exercise training

Intervention effect evaluation and data analysis

Figure 3: Intervention flow chart.

Table 2: Comparison of baseline indexes between the high mutation frequency group and the low mutation frequency group.

High mutation frequency group (n� 24) Low mutation frequency group (n� 24) P value
Age (Y) 52.76± 7.74 50.76± 9.34 0.41
Gender 0.63
Male % 88 92
Female % 12 8
6 MWT (m) 388 385 0.16
6 MWT% 68 67 0.77
VO2/kg PEAK (ml/kg/min) 12.1 12.4 0.68
VO2/kg AT (ml/kg/min) 9.1 9.3 0.91
6 MWT: 6-minute walk test. AT: anaerobic threshold.

Table 3: Comparison of exercise ability indices after 8 weeks of exercise intervention.

High mutation frequency group (n� 24) Low mutation frequency group (n� 24) P value
6 MWT (m) 468 439 0.003
6 MWT% 85 77 0.002
VO2/kg PEAK (ml/kg/min) 14.7 13.3 0.002
VO2/kg AT (ml/kg/min) 11.9 10.1 0.003

Table 4: Comparison of indices in the high mutation frequency group before and after the 8-week exercise intervention.

High mutation Frequency group before (n� 24) High mutation Frequency group after (n� 24) P value
6MWT (m) 388 468 <0.01
6MWT% 68 85 <0.01
VO2/kg PEAK (ml/kg/min) 12.1 14.7 <0.01
VO2/kg AT (ml/kg/min) 9.1 11.9 <0.01
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After 8 weeks of exercise training, VO2/kg at peak (low
mutation frequency group: 12.4 vs. 13.3, P< 0.01; high
mutation frequency group: 12.1 vs. 14.7, P< 0.01) and VO2/
kg at AT (low mutation frequency group: 9.3 vs. 10.1,

P< 0.01; high mutation frequency group: 9.1 vs. 11.9,
P< 0.01) were significantly improved in both the low mu-
tation frequency group and the high mutation frequency
group, and the effect in the high mutation frequency group

Table 5: Comparison of indices in the low mutation frequency group before and after the 8-week exercise intervention.

Low mutation frequency group before (n� 24) Low mutation frequency group after (n� 24) P value
6 MWT (m) 385 439 <0.01
6 MWT% 67 77 <0.01
VO2/kg PEAK (ml/kg/min) 12.4 13.3 <0.01
VO2/kg AT (ml/kg/min) 9.3 10.1 <0.01
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Figure 4: 6MWT distance and 6MWT% before and after the 8-week exercise intervention.
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was significantly higher than that in the low mutation fre-
quency group (VO2/kg at peak: 14.7 vs. 13.3, P � 0.002; VO2/
kg at AT: 11.9 vs. 13.3, P � 0.003), as shown in Figure 5.

4. Discussion

As previous studies have suggested, genetic modifiers have
been identified from the study of affected patient pop-
ulations to identify common genomic variations. In preci-
sion medicine, these findings could provide the most useful
results in terms of applicability in the clinic [10]. Findings
from numerous investigations demonstrate extraordinary

interindividual variability in response to a standard dose of
exercise [23], and the issue of individual response to
treatment is one of the most important in exercise medicine.
In our study, we tried to select patients with more mutations
in aerobic exercise and cardiopulmonary function sensitivity
genes through gene mutation detection to carry out an
aerobic exercise intervention to detect whether they would
obtain more benefits compared with a low mutation fre-
quency group, which is consistent with some previous
studies [11, 14]. Previous twin and familial studies suggest
that there is moderate heritability of “sport and exercise-
related traits” [22], thus, the identification of genetic variants

(ml/kg/min) VO2/kg Peak

(ml/kg/min) VO2/kg AT

High Mutation
Frequency group

Low Mutation
Frequency group

High Mutation
Frequency group

a�er 8 weeks

Low Mutation
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High Mutation
Frequency group

a�er 8 weeks

Low Mutation
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Figure 5: VO2/kg at peak and VO2/kg at AT before and after the 8-week exercise intervention.
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determining variabilities in sport and exercise-related traits
may offer significant benefits to athletes and the general
population [10,11]. We found that the group with a high
mutation frequency for aerobic exercise- and cardiopul-
monary function-related genes gleaned more benefits from
the 8-week aerobic exercise rehabilitation program (MWT
distance: 468 vs. 439, P � 0.003; 6MWT%: 85 vs. 77,
P � 0.002, VO2/kg at peak: 14.7 vs. 13.3, P � 0.002; VO2/kg
at AT: 11.9 vs. 13.3, P � 0.003).

Research has found considerable interindividual re-
sponses to a single-dose exercise program for maximal
oxygen uptake (VO2 max), which is achieved at the indi-
vidual maximum load during incremental exercise testing
[23]. /e concept of genetic variation being associated with
trainability has been extensively studied in relation to peak
VO2, potentially explaining up to 50% of the variability in
the change in peak VO2 after endurance training [24, 25].
Many previous large-scale trials and meta-analyses used the
6MWT and peak VO2 to demonstrate the physical and
physiological benefits of routine cardiac rehabilitation [5, 26,
27]. VO2 max describes the maximum ability of a whole
organism to transport oxygen from the air to the tissues and
especially the exercising skeletal muscles [24, 28]. /e
maximal amount of O2 per unit of time that can be delivered
to peripheral organs, including skeletal muscle, where it is
used to sustain muscular contraction at peak exercise, is
considered the gold standard measure of cardiorespiratory
fitness [29, 30]. Peak or maximum cardiac output and total
body hemoglobin mass seem to predominate as determi-
nants of max VO2. Cardiorespiratory fitness is closely as-
sociated with all-cause mortality and cardiovascular
mortality. /us, we will further carry out exercise inter-
vention projects for cardiovascular disease patients to reduce
the incidence and mortality of heart failure.

In addition, human athletic performance has long been
assumed to be polygenic. In addition to single-nucleotide
variants in the gene regions, other types of genomic vari-
ation, such as structural variation and variants in noncoding
RNA, may also contribute to the complexity of the athletic
phenotype [31, 32]. Given that exercise is polygenic within a
given organ and affects multiple organ systems, there are
likely other undetermined adaptations that do respond to
exercise [33]. Studies have suggested that subjects show
improvements in oxidative enzyme activities in muscles
even in the group that did not show an increase in VO2 max
in response to aerobic exercise [34]. /e evaluation indi-
cators included in our study are limited; thus, failure to
improve one specific phenotype is not reason enough to
cease or fail to recommend or prescribe exercise because
VO2 max does not increase. We will screen to carry out
exercise therapy and interventions efficiently and accurately
for cardiovascular disease patients. In addition to clinical
efficacy and safety, the costs and cost-effectiveness of cardiac
rehabilitation need to be considered with the growing cost
pressures on healthcare systems across the world [35].
Previous studies concluded that cardiac rehabilitation was
cost-effective compared with no cardiac rehabilitation (in-
cremental cost-effectiveness ratios (ICERs) ranged from
US$1,065 to US$71,755 per quality-adjusted life-year

(QALY)), and exercise intervention in cardiac rehabilitation
appears to cost-effective, though uncertainty was high [36].
/us, optimal tailored medical therapies for the individual
based on the individual’s complete clinical and risk profiles
which include their genomic information may revolutionize
healthcare by substantially enhancing the efficacy of treat-
ment with a promise to significantly reduce the costs as-
sociated with healthcare provision [37].

On the other hand, although a large number of studies
have been conducted to identify sport- and exercise-related
genes, the findings are mostly inconclusive because of a lack
of replication, which is caused by the small sample sizes [11,
38]. Similarly, the sample size in our study is limited.
Common SNPs associated with polygenic traits (including
sport- and exercise-related traits) generally show a modest
OR of 1.1–1.5 [39], and each physiological marker of per-
formance is a complex trait regulated by a network of genes
and pathways [11, 40]. A study suggests that a sample size of
less than 1000 is still insufficient despite a well-standardized
intervention protocol and precise phenotyping [11], there-
fore, both a large sample size and precise phenotyping are
necessary to reduce the SE and increase statistical power to
detect a significant SNP-trait association [11]. In addition,
although the variability in individual training responses to
improved maximal aerobic capacity after exercise-based
cardiovascular rehabilitation exists in both healthy subjects
and patients with established cardiovascular disease [41], but
the interaction between gene variants and disease-modifying
factors adds to the complexity, it is unclear whether genomic
predictors of training response are the same in healthy and
at-risk or diseased populations, and this study lacks the
comparison of cardiac rehabilitation effect between normal
people and patients with acute myocardial infarction after
PCI. In the future, we will plan further exercise intervention
projects combined with large-scale gene testing and
screening to carry out exercise therapy and interventions
efficiently and accurately for cardiovascular disease patients,
reduce the incidence and mortality of heart failure, and
provide evidence for clinical research.

5. Conclusions

Cardiovascular disease is a major public health problem
worldwide. PCI is an effective treatment to reduce mortality,
myocardial infarction, and hospitalization rate of the acute
coronary syndrome in the treatment of acute myocardial
infarction. While exercise is recommended by essentially
every major medical organization, it is also recognized that
there can be extreme variability between individual re-
sponses to exercise training. We found that the intervention
group with a high mutation frequency in aerobic exercise-
and cardiopulmonary function-related genes achieved more
benefits in the 8-week aerobic exercise rehabilitation pro-
gram. /us, we will plan further exercise intervention
projects combined with large-scale gene testing and
screening to carry out exercise therapy and interventions
efficiently and accurately for cardiovascular disease patients,
reduce the incidence and mortality of heart failure, and
provide evidence for clinical research.
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