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Background. Cardiomyopathy encompasses a broad spectrum of diseases afecting myocardial tissue, characterized clinically by
abnormalities in cardiac structure, heart failure, and/or arrhythmias. Clinically heterogeneous, major types include dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RM), ischemic cardiomyopathy
(ICM), among which DCM is more prevalent, while ICM exhibits higher incidence and mortality rates. Myocardial injury during
cardiomyopathy progression may lead to myocardial fbrosis. Failure to intervene early and inhibit the process of myocardial
fbrosis may culminate in heart failure. Cardiac fbroblasts constitute crucial cellular components determining the extent and
quality of myocardial fbrosis, with various subpopulations exerting diverse roles in cardiomyopathy progression. Despite this,
understanding of the cellular plasticity and transcriptional regulatory networks of cardiac fbroblasts in cardiomyopathy remains
limited. Terefore, in this study, we conducted comprehensive single-cell analysis of cardiac fbroblasts in cardiomyopathy to
explore diferences in cellular plasticity and transcriptional regulatory networks among fbroblast subpopulations, with the aim of
providing as many useful references as possible for the diagnosis, prognosis, and treatment of cardiomyopathy. Materials and
Methods. Cells with mitochondrial gene expression comprising >20% of total expressed genes were excluded. Diferential ex-
pression genes (DEGs) and stemness genes within cardiac fbroblast subpopulations were subjected to Gene Ontology (GO)
analysis of biological processes (BP) and AUCell analysis. Monocle software was employed to analyze the pseudo-temporal
trajectory of cardiac fbroblasts in cardiomyopathy. Additionally, the Python package SCENICwas utilized to assess enrichment of
transcription factors and activity of regulators within cardiac fbroblast subpopulations in cardiomyopathy. Results. Following
batch efect correction, 179,927 cells were clustered into 32 clusters, designated as T_NK cells, endothelial cells, myeloid cells,
fbroblasts, pericytes, SMCs, CMs, proliferating cells, EndoCs, and EPCs. Among them, 8148 fbroblasts were further subdivided
into 4 subpopulations, namely C0 THBS4+ Fibroblasts, C1 LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts, and C3
AGT+Fibroblasts. Results from GO_BP and AUCell analyses suggest that C3 AGT+Fibroblasts may be associated with immune
response activation, protein transport, and myocardial contractile function, correlating with disease progression in cardio-
myopathy. Transcription factor enrichment analysis indicates that FOS is the most signifcant TF in C3 AGT+Fibroblasts, also
associated with the M1 module, possibly implicated in protein hydrolysis, intracellular DNA replication, and cell proliferation.
Moreover, correlation analysis of transcriptional regulatory activity between fbroblast subpopulations reveals a more pronounced
heterogeneity within C3 AGT+Fibroblasts in cardiomyopathy. Conclusion. C3 AGT+Fibroblasts exhibit increased sensitivity
towards adverse outcomes in cardiomyopathy, such as myocardial fbrosis and impaired cardiac contractile function, compared to

Hindawi
Cardiology Research and Practice
Volume 2024, Article ID 3131633, 22 pages
https://doi.org/10.1155/2024/3131633

https://orcid.org/0009-0009-4688-6402
https://orcid.org/0000-0001-5587-8855
https://orcid.org/0000-0001-7428-8754
https://orcid.org/0009-0002-8554-4121
mailto:71002050@sdutcm.edu.cn
mailto:zdwangzhen2004@163.com
https://creativecommons.org/licenses/by/4.0/


other cardiac fbroblast subpopulations. Te diferential cellular plasticity and transcriptional regulatory activity between C3
AGT+Fibroblasts and other subgroups ofer new perspectives for targeting fbroblast subpopulation activity to treat cardio-
myopathy. Additionally, stemness genes EPAS1 and MYC, along with the regulator FOS, may play roles in modulating the
biological processes of cardiac fbroblasts in cardiomyopathy.

1. Introduction

Cardiomyopathies are a large group of diseases that involve
myocardial tissue and are characterized clinically by
structural abnormalities of the heart, heart failure, and/or
arrhythmias. Tere is great clinical heterogeneity and di-
versity. Cardiomyopathy is primarily classifed into ischemic
cardiomyopathy and non-ischemic cardiomyopathy. Dis-
tinguishing between ischemic and non-ischemic cardio-
myopathy is often pivotal in cardiac management [1].
Cardiomyopathy was classifed byWHO in 1995 into dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy
(HCM), restrictive cardiomyopathy (RM), ischemic car-
diomyopathy (ICM), etc [2]. DCM is characterized by
difuse systolic dysfunction of the left ventricle and dilatation
of left ventricular chambers [3], and it is the most common
form of cardiac disease in heart failure and sudden cardiac
death. one of the most common causes of sudden cardiac
death [4]. As DCM is a genetically heterogeneous disease [5],
familial DCM (FDCM) inheritance is predominantly based
on an autosomal dominant pattern of inheritance [6]. In
addition to this, there is also acquired DCM due to nutri-
tional defciencies, infections, alcohol, and administration of
cardiotoxic drugs [7, 8]. RM has a variety of etiologic factors,
such as endocardial processes, infltrative processes, radia-
tion, drug exposure, and mutations in the myonodal ap-
paratus, which increase myocardial stifness and impaired
relaxation, leading to pulmonary hypertension and heart
failure [9]. RM is not as common as DCM, so research on
RM is often overlooked, and the lack of efective treatment
leads to the worst prognosis for RCM [10]. ICM is a common
cardiovascular disease caused by chronic myocardial is-
chemia [11], and it is the most prevalent cause of heart
failure in developed countries. Despite the optimization of
the management of coronary artery disease and the devel-
opment of percutaneous coronary intervention (PCI), which
has improved the survival of patients with acute myocardial
infarction (AMI), the morbidity and mortality rates of ICM
are still high and remain a public health burden [12, 13].

Te process of cardiomyopathy inevitably involves
myocardial injury, which may lead to myocardial fbrosis,
especially DCM, ultimately predisposing the heart to ar-
rhythmias and heart failure [14]. A study employing bio-
informatics analysis identifed key hub genes and associated
molecules potentially highly correlated with dilated car-
diomyopathy (DCM), among which four hub genes
(COL3A1, COL1A2, LUM, and THBS4) showed signifcant
enrichment in the fbrosis pathway [15]. In addition, cardiac
remodeling, including myocardial fbrosis and likewise
pathophysiological manifestations such as cardiac hyper-
trophy and angiogenesis, is a way of altering myocardial
structure in order to compensate for cardiac insufciency,

which has been signifcantly associated with the develop-
ment of heart failure [16]. However, despite all current
clarity that inhibition of cardiac fbrosis remains a key
therapeutic direction to stop the transition from cardio-
myopathy to heart failure, no study has yet demonstrated the
discovery of efectivemolecular targets [17]. Cardiomyocytes
are not the only cell population associated with the heart; the
heart also consists of endothelial cells, smooth muscle cells,
and cardiac fbroblasts, among others [18, 19]. Cardiac f-
broblasts are the key cellular component that determines the
extent and quality of myocardial fbrosis. Fibroblasts include
diferent subtypes based on embryonic origin, tissue loca-
tion, and function, and it has been shown that their activity is
controlled to some extent by pro-infammatory cytokines
(such as TNF-α, IL-1, IL-17), which promote phenotypic
switching and altered extracellular matrix (ECM) pro-
duction [20–22]. At the same time, activated fbroblasts
generate a positive feedback loop that produces chemokines
that attract infammatory cells, further increasing in-
fammation and potentially enhancing the fbrotic process
[21]. Cardiac fbroblasts play various roles in the damaged
heart [23], however, their specifc function in cardiomy-
opathy is unknown. Hirofumi et al. demonstrated that
cardiac fbroblasts play a pathogenic role in idiopathic RM
[24]. Mizuki et al. demonstrated that cardiac fbroblasts from
patients with idiopathic RM impaired the diastolic function
of healthy cardiomyocytes [25].

And various transcriptional regulators and signaling
pathways are involved in the pathogenesis of cardiac
remodeling [26]. However, there are fewer studies targeting
transcriptional regulatory factors among fbroblast subtypes
associated with cardiomyopathy and their activities.
Meanwhile, the expression of stemness genes and metabolic
pathways in cardiomyopathy-associated fbroblast subtypes
may be closely related to the progression of cardiomyopathy.

Terefore, in this study, we attempted to visualize car-
diomyopathic fbroblasts by scRNA-seq, to gain insight into the
heterogeneity of cardiomyopathic fbroblasts, and to analyze
fbroblast transcriptional regulator activities. To provide a ref-
erence for future possibilities to stop the progression of car-
diomyopathy to heart failure and the outcome of myocardial
fbrosis from cardiac fbroblasts as an entry point.

2. Materials and Methods

2.1. Single-Cell Source Data Acquisition and Processing.
Te scRNA-seq data from cardiomyopathy fbroblasts were
downloaded from GSE145154 via the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).
Te 10X genomics data for each sample were subsequently
loaded into R software (4.1.3) using the Seurat software
package (v4.1.1). Te DoubletFinder program (v2.0.3) was
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used to remove potentially bimodal cells [27], flter low-
quality cells, and control the cell quality to the following
ranges: 300<nFeature< 7500, 500<nCount< 100000, cells
meeting the above ranges will be retained and used in the
next step of the data analysis, and the expression of mito-
chondrial genes in a cell is less than 20% of the total number.
In this study, we excluded low-quality cells with less than 500
or more than 6000 identifed genes. Because we used data
from publicly accessible databases, this study did not require
ethical approval.

2.2. Clustering and Cell Type Identifcation by scRNA-seq.
To perform the natural logarithmic transformation, we used
the log(x+ 1) method to calculate the gene expression in
each cell as a fraction of genes multiplied by 10,000. the
normalized expression matrix was subsequently used to
identify the top 2,000 highly variable genes (HVGs), which
were then normalized [28]. Tese genes were subsequently
analyzed in PCA.We used harmony’s method to remove the
batch efect between samples and selected the top 30 PCs for
downscaling and clustering. After the dimensionality re-
duction clustering the results were projected onto a 2D map
using the UMAP method for the next step of cell type
identifcation [29, 30]. We obtained the cell markers of the
relevant cells by referring to previous literature as well as
according to the CellMarker database (https://xteam.xbio.
top/CellMarker/), annotated the cell clusters by cell markers,
identifed diferent cell types, and observed the distribution
and proportion of diferent cell types. In addition, in order to
further investigate the heterogeneity of cardiomyopathy
fbroblasts, we then reclustered the cardiomyopathy fbro-
blasts and subsequently labeled each cardiomyopathy f-
broblast subpopulation according to its unique genes.

2.3. EnrichmentAnalysis ofDiferentially ExpressedGenes and
AUCell Analysis. We used the “FindAllMarkers” function
based on theWilcoxon rank-sum test with default parameters
to distinguish diferentially expressed genes (DEGs), as well as
diferentially stemness genes, in each cell type of cardiomy-
opathy and each subpopulation of fbroblasts. Genes
expressed in more than 25% of cells in clusters with logFC
values greater than 0.25 were also selected. To further un-
derstand the function of each cell type, we performed en-
richment analysis of DEGs genes for each cell type and
fbroblast subpopulation in cardiomyopathy using cluster-
Profler [31, 32]. Te pathways for each cell type were derived
from the gene ontology (GO) biological process (BP) [33–37].

AUCell [38] is a method for identifying cells with active
genes in single-cell RNA-seq data. the input to AUCell is
a gene set, and the output is the “activity” of that gene set in
each cell type.

2.4. Pseudo-Temporal Ordering of Fibroblast Subpopulations.
We used the Monocle2 software toolkit (version 2.22.0) to
analyze pseudotemporal trajectories of cardiomyopathy f-
broblasts. By using pseudo-temporal profles of scRNA-seq

data, Monocle was able to identify cellular changes that
occur during diferentiation of cardiomyopathy fbroblasts.
DDRTree technology was used to perform FindVaira-
bleFeatures and downscaling. Arrange cardiomyopathy f-
broblasts according to pseudotime and observe the
development of each subpopulation of cells under pseu-
dotemporal trajectories.

2.5. SCENICAnalysis. SCENIC is a tool that utilizes scRNA-
seq data to reconstruct gene regulatory networks while being
able to identify stable cell states. In this study, we used the
pySCENIC (version 0.10.0) package in Python (version 3.7)
and its default parameters to generate a matrix of AUCell
values to assess transcription factor enrichment and regu-
lator activity [39].

3. Results

3.1. Cell Type and Heterogeneity in Cardiomyopathy.
After correction by batch results, we grouped 179,927 high-
quality cells into 32 cell clusters (Figure 1(a)). And the
retained high-quality cells after screening were classifed
into 11 cell types by specifc marker genes, which were
T_NK cells, ECs, myeloid cells, fbroblasts, Pericytes,
SMCs, CMs, proliferating cells, EndoCs, EPCs
(Figure 1(b)). Next, we showed the distribution of diferent
groups and cell cycles of cardiomyopathies in UMAP di-
agrams (Figures 1(c) and 1(d)). According to the violin
diagram in Figure 1(e), we learned that proliferating cells
had the highest G2M score and S score, and all other cell
types were lower. And for nCount_RNA, EPCs had the
highest, followed by proliferating cells, Fibroblasts and
EndoCs. Similarly, EPCs had the highest nFeature_RNA,
followed by proliferating cells, fbroblasts, and EndoCs. To
fully characterize the various cell types of cardiomyopathy,
we relied on the diferential expression of specifc difer-
ential genes for each cell type, and the Top5 marker genes
for the various cell types were demonstrated with a heat
map (Figure 1(f )). In more detail, we further presented the
diferential genes specifcally expressed by the 11 cell types
at their respective diferent cell cycles, as shown in the
bubble diagram in Figure 1(g). Te results are largely
consistent with the heatmap. Subsequently, we visualized
the expression distribution of Top5 marker genes highly
expressed in cardiomyopathic fbroblasts more visually by
UMAP plots (Figure 1(h)). According to GO_BP analysis,
the main enrichment results of 11 cell types were shown in
bubble plots (Figure 1(i)), in which fbroblasts were mainly
enriched in vasculature development, tube development,
blood vessel development, circulatory system development,
tube morphogenesis, anatomical structure formation in-
volved in morphogenesis, System process etc. Sub-
sequently, we individually enriched all diferential genes
among fbroblasts, and the enrichment network diagram
showed that the pathways enriched for diferential genes in
fbroblasts were activation of immune response, peptidase
inhibitor activity, collagen trimer, cholesterol transport
(Figure 1(j)).
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Figure 1: Continued.
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3.2. Annotation and Enrichment Analysis of Cardiomyopathy
Fibroblast Subpopulations. We selected fbroblasts from
cardiomyopathies for analysis and obtained 8148 high-quality
fbroblasts after quality control and removal of batch efects,
and frst classifed them into 4 cell clusters (Figure 2(a)).
Subsequently, we visualized the distribution of the 4 groups of
cardiomyopathies and diferent cell cycles in fbroblasts using
UMAP plots (Figures 2(b) and 2(c)). Based on the diferential
expression of specifc diferential genes (THBS4, LINC01133,
FGF7, AGT), we classifed fbroblasts into 4 subgroups, the
distribution of which is shown in Figure 2(d). Te highest
percentage of N was found in C1 LINC01133+ Fibroblasts
and C2 FGF7+ Fibroblasts, the higher percentage of ICM and
N in C0 THBS4+ Fibroblasts, the highest percentage of N in
C1 LINC01133+ Fibroblasts, and the highest percentage of N
in C2 FGF7+ Fibroblasts had the highest percentage of N, and
the percentage of ICM and DCM was higher in C3
AGT+Fibroblasts (Figure 2(e)). To further investigate the
heterogeneity of cardiomyopathic fbroblasts, we analyzed the
4 fbroblast subpopulations using monocle, and the results
were depicted by UMAP plots and violin plots (Figure 2(f)).
Te UMAP plots demonstrated the distribution of pseudo-
times in the 4 fbroblast subpopulations. As shown by the
violin plots, C2 FGF7+ Fibroblasts were located at the onset of
pseudotime and had the lowest degree of diferentiation, and
C3 AGT+Fibroblasts were located at the end of pseudotime
and had the highest degree of diferentiation. Meanwhile, C3

AGT+Fibroblasts had the highest percentage of G2M phase,
active DNA replication and division, and high cell pro-
liferation intensity. Terefore, C3 AGT+Fibroblasts may be
associated with the progression of cardiomyopathy de-
terioration. For the accuracy of cardiomyopathy fbroblast
identifcation, we showed the diferential genes expressed by
the 4 fbroblast subpopulations at their respective diferent
cell cycles in bubble plots (Figure 2(g)). And the expression of
Top5 marker genes of the 4 fbroblast subpopulations was
depicted by heatmap, and the results were largely consistent
with the bubble plots (Figure 2(h)). We selected the Top5
marker genes of C3 AGT+Fibroblasts and visually depicted
their distribution among subpopulations by UMAP plot
(Figure 2(i)). To clarify that fve genes AGT, TAGLN, ACTA2,
SPARC, ELN were specifcally highly expressed in C3
AGT+Fibroblasts, it was demonstrated by violin plots
(Figure 2(j)).Te results of CO_BP enrichment analysis of the
four fbroblast subpopulations were shown by bubble plots
(Figure 2(k)), in which C3 AGT+Fibroblasts were mainly
enriched in cytoplasmic translation, peptide biosynthetic
process, actin flament-based process, translation, muscle
contraction, peptide metabolic. Similarly, we enriched all the
diferential genes of C3 AGT+Fibroblasts, and we learned
from the enrichment network diagram that the pathway in
which the diferential genes of C3 AGT+Fibroblasts were
mainly enriched was multicellular organism development
(Figure 2(l)).

(i) (j)

Figure 1: Cell type identifcation and enrichment analysis of cardiomyopathy. (a) 179927 high-quality cells were categorized into 32 clusters
and the distribution of the 32 clusters was demonstrated using UMAP plots. (b) UMAP plot showed the distribution of 11 cell types. (c)
UMAP plot demonstrated the distribution of 4 groups in 11 cell types. (d) UMAP plot demonstrated the distribution of diferent cell cycles
in 11 cell types. (e) Violin plot demonstrated G2M. Score, S.Score, nCount RNA, nFeature RNA in 11 cell types. (f ) Heatmap showed the
diferential expression of Top5 maker genes for 11 cell types. (g) Bubble plot demonstrated the diferential expression of maker genes for
each of the 11 cell types when they are in diferent cell cycles. (h) UMAP plot demonstrated the diferential expression distribution of Top5
maker genes in cardiomyopathy fbroblasts. (i) Bubble plot demonstrated the GO_BP enrichment results of 11 cell types. (j) Enrichment
network graph demonstrated the enrichment of all diferential genes among subpopulations of cardiomyopathy fbroblasts.
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Figure 2: Continued.
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3.3. Te Degree of Activity of Oxidative Phosphorylation
Metabolic Pathway between Fibroblasts Was Signifcant.
To further investigate the metabolism of cardiomyopathic
fbroblasts and increase the possibility of understanding the
progression associated with cardiomyopathy. We presented

the AUCell score values of the Top20 metabolism-related
pathway of the 4 fbroblast subpopulations in a heat map
(Figure 3(a)). Similarly, we also put the AUCell score values
of Top20 Metabolism-Related Pathways for diferent groups
and diferent cell cycles on display (Figures 3(b) and 3(c)),

(i)

(j)

(k) (l)

Figure 2: Identifcation and enrichment analysis of cardiomyopathy fbroblast subpopulations. (a) Te 8148 fbroblasts were divided into 4
clusters and the distribution of the 4 clusters was demonstrated using UMAP plot. (b) UMAP plot showed the distribution of the 4 groups in
all fbroblasts. (c) UMAP plot demonstrated the distribution of diferent cell cycles in all fbroblasts. (d) All fbroblasts were categorized into
4 cellular subgroups based on specifc marker genes, and the distribution was demonstrated using UMAP plots. (e) UMAP shots showed the
proportion of each group in the four fbroblast subsets. (f ) UMAP plots and violin plots demonstrated the results of the proposed time series
of fbroblast subpopulations. (g) Bubble plots demonstrated the diferential expression of maker genes when each of the four fbroblast
subpopulations is in diferent cell cycles. (h) Heatmap showed the diferential expression of Top5 maker genes for each of the 4 fbroblast
subpopulations. (i) UMAP plot demonstrated the expression distribution of Top5 maker genes in C3 AGT+Fibroblasts. (j) Violin plot
demonstrated the expression comparison of Top5 maker genes of C3 AGT+Fibroblast. (k) Bubble plot demonstrated the GO_BP en-
richment results of 4 fbroblast subpopulations. (l) Enrichment network graph demonstrated the enrichment of all diferential genes within
C3 AGT+Fibroblast.
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Figure 3: Continued.
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and the metabolism-related pathways with the highest
AUCell scores were all oxidative phosphorylation. To vi-
sualize the distribution of oxidative phosphorylation among
fbroblasts, we presented a UMAP plot (Figure 3(d)). From
this, we learned the distribution of AUCell scores of oxi-
dative phosphorylation across 4 fbroblast subpopulations, 4
groups and diferent cell cycle. Next, we used violin plots to
precisely compare the expression levels of oxidative phos-
phorylation. Tus, we found that it was higher in C1
LINC01133+ Fibroblasts and C3 AGT+Fibroblasts
(Figure 3(e)), a bit higher in ICM and N (Figure 3(f)), and
higher in G1 phase and S phase (Figure 3(g)). Tis result was
consistent with the heat map results.

3.4. Glycolysis/Gluconeogenesis Is Equally Signifcant in C3
AGT+Fibroblasts. We again presented the AUCell score
values of Top5 Metabolism-Related Pathway for the four
fbroblast subpopulations in a heat map (Figure 4(a)). We
found that Glycolysis/Gluconeogenesis was more signifcant
in C3 AGT+Fibroblasts, except for Oxidative phosphory-
lation. Similarly, we used bubble plots to show oxidative
phosphorylation, metabolism of xenobiotics by cytochrome
P450, glycolysis/gluconeogenesis, glutathione metabolism,
drug metabolism-cytochrome P450 expression in four f-
broblast subpopulations (Figure 4(b)). Te results were
consistent with the heat map that glycolysis/gluconeogenesis
was the metabolic pathway ranked as the second most highly
expressed in C3 AGT+Fibroblasts. To visualize the distri-
bution of glycolysis/gluconeogenesis among fbroblasts, we
demonstrated it with a UMAP plot (Figure 4(c)). From this,
we learned the distribution of AUCell scores of glycolysis/
gluconeogenesis among four fbroblast subpopulations, four
groups and diferent cell cycle. Ten, we used violin plots to
precisely compare the expression levels of glycolysis/glu-
coneogenesis. Tus we found that it was higher in C1

LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts, C3
AGT+Fibroblasts (Figure 4(d)), a little bit higher in N and
RM (Figure 4(e)), and higher in G1 phase and S phase
(Figure 4(f )). Tis result is consistent with the heat map
results.

3.5. Diferential Expression of Stemness Genes in Fibroblast
Subpopulations. We investigated the stemness gene ex-
pression of fbroblast subpopulations to understand the
stemness characteristics of cardiomyopathic fbroblasts and
the retardation or escape of cellular senescence, and thus
provide some possible gene targets for stopping the con-
tinuous progression of cardiomyopathy. Terefore, we frst
demonstrated the top marker stemness genes of the 4 f-
broblast subpopulations with heatmaps (Figure 5(a)). Te
Z-score of CTNNB1, EZH2 was higher in C0 THBS4+ Fi-
broblasts, and the Z-score of CD34, KLF4, TWIST1 was
higher in C1 LINC01133 + Fibroblasts, Z-score of HIF1A,
MYC, CD44 was higher in C2 FGF7+ Fibroblasts, and
Z-score of LGR5, PROM1, BMI1, ABCG2, EPAS1 was
higher in C3 AGT+Fibroblasts. Subsequent bubble plots
depicting average expression and percent expressed of dif-
ferentially expressed stemness genes in the four fbroblast
subpopulations revealed that CD34 and KLF4 were highly
expressed in C1 LINC01133+ Fibroblasts, MYC in C2
FGF7+ Fibroblasts expression, EPAS1 was highly expressed
in C3 AGT+Fibroblasts, and CTNNB1 was high average
expression but low percent expressed in C0 THBS4+ Fi-
broblasts (Figure 5(b)). We depicted the distribution of the
expression of the four stemness genes (CD34, KLF4, MYC,
EPAS1), which were highly expressed in fbroblast sub-
populations, among fbroblast subpopulations by UMAP
plots (Figure 5(c)). Meanwhile, the diferences in the ex-
pression levels of CD34, KLF4, MYC, EPAS1 among the four
fbroblast subpopulations were compared using Bar graphs,
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Figure 3: Metabolic pathways associated with cardiomyopathy fbroblast subpopulations. (a) Heatmap demonstrated the AUCell scores of
Top20 metabolism-related pathways for 4 fbroblast subpopulations. (b) Heatmap demonstrated the AUCell scores of Top20 metabolism-
related pathways for four groups. (c) Heatmap demonstrated the AUCell scores of Top20 metabolism-related pathway for diferent cell
cycles. (d) UMAP plot and faceted graph demonstrated the distribution of Oxidative phosphorylation in 4 fbroblast subpopulations, 4
groups and diferent cell cycles with high and low AUCell scores. (e) Violin plots demonstrated the diference in the expression level of
Oxidative phosphorylation in the 4 fbroblast subpopulations. (f ) Violin plot showed the diference in the expression level of Oxidative
phosphorylation in 4 groups. (g) Violin plot demonstrated the expression level diferences of Oxidative phosphorylation in diferent cell
cycles. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001, ns indicates no statistical diference.
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Figure 4: Continued.
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the results of which were consistent with the heatmap and
bubble plot results described above (Figure 5(e)). In addition
to the gene expression amounts, we also depicted the density
distribution of the four stemness genes in the four fbroblast
subpopulation species using UMAP plots (Figure 5(d)). By
combining the distribution of fbroblast subpopulations in
Figure 2(d), CD34 was denser in C0 THBS4+ Fibroblasts and
C1 LINC01133+ Fibroblasts, KLF4 was denser in C1
LINC01133+ Fibroblasts, MYC was denser in C1
LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts and C3
AGT+Fibroblasts were all denser, and EPAS1 was denser in
C0 THBS4+ Fibroblasts and C3 AGT+Fibroblasts.

3.6. Diferential Expression of Stem Genes in Cardiomyopathy
Groups. We also noted the same diferential expression of
stemness genes across diferent types of cardiomyopathies,
with the heatmap showing the top marker genes diferentially
expressed by the 4 diferent types of cardiomyopathies and
their Z-scores (Figure 6(a)). Among them, the Z-scores of
PROM1 and NANOG were higher in DCM, the Z-score of
TWIST1 was higher in ICM, the Z-scores of NOTCH1,
HIF1A, EPAS1, MYC and CD44 were higher in N, and the Z-
scores of KDM5B, CD34 and ABCG2 were higher in RM.
Next, we similarly used bubble plots to show the average
expression and percent expressed of the diferentially
expressed stemness genes in the four groups (Figure 6(b)).
Average expression and percent expressed of CD34 were both
higher in RM, and EPAS1 and MYC’s average expression and
percent expressed were both higher in N. Terefore, we se-
lected the highly expressed CD34, EPAS1 and MYC for
further analysis and demonstrated the distribution of their
expression with UMAP plots (Figure 6(c)). And we compared
the expression diferences of CD34, EPAS1, MYC in the four
groups with Bar graph, and learned that CD34 was expressed
at higher levels in RM, and EPAS1 andMYCwere expressed at
higher levels in N (Figure 6(e)), and the results were consistent

with Figure 5(b). Finally, in combination with the distribution
of fbroblast subpopulations in Figure 2(d), CD34 was more
densely expressed in C0 THBS4+ Fibroblasts and C1
LINC01133+ Fibroblasts, EPAS1 was more densely expressed
in C0 THBS4+ Fibroblasts and C3 AGT+Fibroblasts, and
MYC was more densely expressed in C1 LINC01133+ Fi-
broblasts, MYC was denser in C2 FGF7+ Fibroblasts and C3
AGT+Fibroblasts (Figure 6(d)).

3.7. Gene Regulatory Network Analysis of Cardiomyopathy
Fibroblast Subpopulations. To identify core TFs detectable
in cardiomyopathy fbroblast subpopulations, we performed
SCENIC analysis. PySCENIC was used to infer the gene
regulatory networks of all cardiomyopathy fbroblast sub-
populations. Based on the fndings of cell type-specifc
regulatory activity, the most active TFs in each of the 4
cardiomyopathy fbroblast subpopulations, including
NR3C1 (C0 THBS4+ Fibroblasts), KLF4 (C1 LINC01133+
Fibroblasts), FOSB (C2 FGF7+ Fibroblasts), FOS (C3
AGT+Fibroblasts) (Figure 7). Heatmaps were used to
demonstrate the diferential expression of Top5 TFs in the
four fbroblast subpopulations (Figure 7(a)). To visualize the
gene expression more, we also used Bar graphs (Figure 7(b)).
Regulators in cardiomyopathy fbroblast subpopulations
were ranked according to specifcity score (RSS). In UMAP,
cardiomyopathy fbroblast subpopulations are highlighted
(red dots), along with the UMAP-based binarized regulator
activity score (RAS) for the major regulators of cardiomy-
opathy fbroblast subpopulations (Z-score normalized for all
samples and converted to 0 and 1 using 2.5 as the cutof
value) (orange dots) (Figures 7(c)–7(f)).

3.8. Gene Regulatory Network Analysis of Cardiomyopathy
Groups. Similarly, we performed SCENIC analysis in order
to identify core TFs detectable in diferent groups of

(f)

Figure 4: Glycolysis/glycolysis metabolic pathway. (a) Heatmap demonstrated the AUCell scores of Top5 metabolism-related pathways for
four fbroblast subpopulations. (b) Bubble plot demonstrated the expression of the 5 metabolism pathways in the 4 fbroblast sub-
populations. (c) UMAP plots and faceted plots demonstrated the distribution of high and lowAUCell scores of glycolysis/gluconeogenesis in
4 fbroblast subpopulations, 4 groups and diferent cell cycles. (d) Violin plot showed the diference in expression levels of glycolysis/
gluconeogenesis in 4 fbroblast subpopulations. (e) Violin plot showed the diference in expression levels of glycolysis/gluconeogenesis in 4
groups. (f ) Violin plots demonstrated the expression level diferences of glycolysis/gluconeogenesis in diferent cell cycles. ∗p< 0.05,
∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001, ns indicates no statistical diference.
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Figure 5: Visualization of stemness genes in cardiomyopathy fbroblast subpopulations. (a) Heatmap demonstrated the Z-score of
diferential stemness genes of the four fbroblast subpopulations. (b) Bubble plot demonstrated the average expression levels of diferential
stemness genes of the 4 fbroblast subpopulations. (c) UMAP plot demonstrated the distribution of the expression of the 4 stemness genes
CD34, KLF4, MYC, EPAS1. (d) UMAP plot demonstrated the distribution of the densities of the 4 stemness genes CD34, KLF4, MYC,
EPAS1. (e) Bar graph demonstrated the comparative expression levels of 4 stemness genes CD34, KLF4, MYC, EPAS1 in 4 fbroblast
subpopulations.
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Figure 6: Visualization of expression diferences of stemness genes in diferent groups. (a) Heatmap demonstrated the Z-score of diferential
stemness genes in 4 groups. (b) Bubble plot demonstrated the average expression level of diferential stemness genes of the 4 groups.
(c) UMAP plot demonstrated the distribution of the expression of the 3 stemness genes CD34, EPAS1, MYC. (d) UMAP plot showed the
distribution of the densities of the 3 stemness genes CD34, EPAS1, MYC. (e) Bar graph demonstrated the comparison of the expression
levels of the 3 stemness genes CD34, EPAS1, MYC in the 4 groups. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001, ns indicates no
statistical diference.
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Figure 7: Continued.
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cardiomyopathy. PySCENIC was used to infer the gene
regulatory network of all cardiomyopathy groups. Based on
the fndings of specifc regulatory activities of diferent
groups, the most active TFs in each of the 4 groups, in-
cluding NR3C1(DCM), MYBL1(ICM), CREB5(N),
NR3C1(RM) (Figure 8), with NR3C1 being the most highly
expressed in both DCM and RM. Heatmaps were used to
show the diferential expression of Top5 TFs in the four
groups (Figure 8(a)). To visualize the gene expression more,
we also used Bar graphs (Figure 8(b)). Regulators in car-
diomyopathy groups were sorted according to the specifcity
score (RSS). In UMAP, cardiomyopathy groups are high-
lighted (red dots), and the binarized regulator activity scores
(RAS) based on UMAP for the main regulators of the four
cardiomyopathy groups (Z-score normalized for all samples
and converted to 0 and 1 using 2.5 as the cutof value) are
also shown (orange dots) (Figures 8(c)–8(f)).

3.9. Identifcation of TF Regulatory Modules in Cardiomy-
opathy Fibroblasts and Correlation of Transcriptional Regu-
latory Activity amongDiferent Subpopulations. We used the
SCENIC identifcation rule and discovered the regulatory
modules of cardiomyopathy fbroblast subpopulations using
the connection specifc index (CSI) matrix. Te similarity of
diferent rules based on AUCell score was categorized into
the following two main modules (M1, M2) (Figure 9(a)).
Ten, UMAP plots further demonstrated that the functions

of these TFs were highly specialized to the corresponding
one or several cardiomyopathic fbroblast subpopulations
(Figure 9(b)). When we mapped the average activity scores
of each module onto UMAP, we found that each module
occupied a diferent cellular subpopulation. Combined with
Figure2(d), C1 LINC01133+ Fibroblasts, C2 FGF7+ Fibro-
blasts, and C3 AGT+ Fibroblasts were predominantly dis-
tributed in M1, and C0 THBS4+ Fibroblasts were
predominantly distributed in M2. In order to more visually
demonstrate the expression occupancy of the various f-
broblast subpopulations in M1 and M2 ratio, we applied
a violin plot (Figure 9(c)). In M1, the expression of C1
LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts and C3
AGT+Fibroblasts was relatively high. In M2, the expression
of C0 THBS4+ Fibroblasts was slightly higher than the other
subpopulations. Consistent with the results demonstrated by
the UMAP plot. In order to understand the expression levels
of the four groups and diferent cell cycles in the two
modules of M1, M2, we also applied the intuitive violin plots
(Figure 9(d) and 9(e)). Te expression levels of N and DCM
were higher in M1, the expression level of G1 was higher
than the other two periods, and the expression levels of G2M
and S were similar and high. Te expression levels of RM,
DCM and ICM were relatively a little higher in M2. Te
expression levels of G2M were slightly higher than the other
two periods, and the expression levels of G1 and S were
similar and low. In addition, we also compared the regulon
activity scores of diferent fbroblast subpopulations,
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Figure 7: Gene regulatory network analysis of cardiomyopathy fbroblast subtypes. (a) Heatmap demonstrated the expression levels of Top5
TFs in four fbroblast subpopulations. (b) Bar graph demonstrated the ratio of expression levels of NR3C1, KLF4, FOSB, FOS in fbroblast
subpopulations. (c–f ) Ranked of regulons in cardiomyopathy fbroblast subpopulations based on regulon specifcity score (RSS). Car-
diomyopathy fbroblasts were highlighted in UMAP (red dots). Binarized regulon activity score (RAS) of the top regulon of cardiomyopathy
fbroblast subpopulations on UMAP (Z-score normalization was performed for all samples and 2.5 was set as the cutof value to convert to
0 and 1) (orange dots).

Cardiology Research and Practice 15



expression

NR3C1
KLF2
STAT1
ZNF580
MYBL1
MYBL1
E2F7
KLF2
NR3C1
STAT1
CREB5
CEBPD
ATF3
KLF3
JUNB
NR3C1
STAT1
ZNF580
KLF2
MYBL1

DCM ICM N RM

0.8

0.6

0.4

0.2

0

To
p 

5 
TF

s

(a)

****
****

ns
****

***
*

NR3C1

DCM ICM N RM

0

2

4

6

Group

Ex
pr

es
sio

n 
le

ve
l

ns *
****
*

****
****

MYBL1

DCM ICM N RM

0

1

2

3

4

Group

Ex
pr

es
sio

n 
le

ve
l

****
****

ns****
ns

****

CREB5

DCM ICM N RM

0

2

4

6

Group

Ex
pr

es
sio

n 
le

ve
l

Group:
DCM
ICM

N
RM

(b)

NR3C1
KLF2

STAT1
ZNF580

MYBL1

0.2

0.3

0.4

0 5 10 15 20 25
Regulons

Sp
ec

if
ci

ty
 sc

or
e

DCM

DCM

−5.0

−2.5

0.0

2.5

5.0

−5 0 5
UMAP_1

U
M

A
P_

2

Regulon: NR3C1

−5.0

−2.5

0.0

2.5

5.0

−5 0 5
UMAP_1

U
M

A
P_

2

(c)

MYBL1
E2F7 KLF2

NR3C1 STAT1

0.25

0.35

0.45

0.55

0 5 10 15 20 25
Regulons

Sp
ec

if
ci

ty
 sc

or
e

ICM

ICM

−5.0

−2.5

0.0

2.5

5.0

−5 0 5
UMAP_1

U
M

A
P_

2

Regulon: MYBL1

−5.0

−2.5

0.0

2.5

5.0

−5 0 5
UMAP_1

U
M

A
P_

2

(d)

CREB5
CEBPD

ATF3KLF3
JUNB

0.2

0.4

0.6

0 5 10 15 20 25
Regulons

Sp
ec

if
ci

ty
 sc

or
e

N

N

−5.0

−2.5

0.0

2.5

5.0

−5 0 5
UMAP_1

U
M

A
P_

2

Regulon: CREB5

−5.0

−2.5

0.0

2.5

5.0

−5 0 5
UMAP_1

U
M

A
P_

2

(e)
Figure 8: Continued.

16 Cardiology Research and Practice



diferent groups and diferent cell cycles in M1 and M2
(Figure 9(f )–9(h)). Te regulon activity score of C2 FGF7+
Fibroblasts was the highest in M1, and that of C0 THBS4+
Fibroblasts was the lowest, and the regulon activity score of
C0 THBS4+ Fibroblasts was the highest and C2 FGF7+
Fibroblasts was the lowest inM2. regulon activity scores of N
were the highest and ICM were the lowest in M1, and RM in
M2 had the regulon activity score was highest in M1 and
lowest in N. Regulon activity score was highest in M1 for G1
phase and lowest for G2M phase, and highest inM2 for G2M
phase and lowest for G1.

Next, we enriched all the genes in M1 and M2 and
analyzed them, which were presented in bubble plots
(Figure 9(i)). Te genes in M1 were mainly enriched in
Ubiquitin mediated proteolysis and Cell cycle. Te genes in
M2 were mainly enriched in Ubiquitin mediated proteolysis,
Infuenza A, p53 signaling pathway, Human papillomavirus
infection and Cell cycle. Finally, in order to understand the
correlation of transcriptional regulatory activities among
diferent subpopulations of cardiomyopathic fbroblasts, we
each divided into subpopulations of fbroblasts with dif-
ferent groups and subpopulations of fbroblasts with dif-
ferent cell cycles. subpopulations of fbroblasts with diferent
cell cycles (Figure 9(j)). We learned from the heatmap that
the correlations between ICM_C2 and DCM_C2, N_C0 and
N_C3, N_C0 and N_C2, N_C3 and N_C2, DCM_C3 and
RM_C3, DCM_C1 and ICM_C1, and DCM_C0 and
ICM_C0 were all high. In addition, fbroblasts in each f-
broblast subpopulation that were in diferent cell cycles were
highly correlated with each other.

4. Discussion

Cardiomyopathy is usually considered to occur at any age
and is one of the common dangerous cardiovascular dis-
eases. Te presence of myocardial hypoxia in the majority of
cardiomyopathies is well established and this is associated
with the development of myocardial fbrosis [40]. In the
cardiovascular system, myocardial fbrosis originates in

nonischemic cardiomyopathies [41]. In ischemic cardio-
myopathy (DCM), cardiac fbrosis can drive the progression
of heart failure [42]. Terefore, myocardial fbrosis is a se-
rious adverse outcome of cardiomyopathy. And fbroblasts
in cardiomyopathy determine the extent and quality of
myocardial fbrosis [20]. Proliferation of fbroblasts and cell-
specifc activation of genetic programs associated with cell
migration are factors in the progression of cardiomyopathy
[43]. A study suggests that persistent fbroblast eforescence
in patients with long-term heart disease can be therapeu-
tically modulated by targeted silencing in human myof-
broblasts [42]. However the intrinsic cellular landscape of
relevant pathways among diferent subtypes of cardiomy-
opathy fbroblasts in terms of stemness gene expression,
metabolic pathway salience, and transcription factor regu-
latory activity remains unclear. Terefore, we performed
visualization and landscape analysis of cardiomyopathy
fbroblasts.

First, we used scRNA-seq data from cardiomyopathy.
After classifcation of 32 clusters, removal of batch efects,
and initial cell type annotation, 179,927 cells were classifed
into 11 cell types. Fibroblasts had high proliferation and
activity, as they were higher in terms of both nCount_RNA
and nFeature_RNA. To demonstrate that the heterogeneity
of all cells in cardiomyopathy is equally high, we showed
Top5 marker genes for the screened cell types, clarifying the
diferential expression of specifc marker genes in diferent
cell types. Ten we performed GO_BP enrichment analysis
of diferent cell types and found that fbroblasts were mainly
enriched in the following biological processes: vasculature
development, tube development, blood vessel development,
circulatory system development, tube morphogenesis, an-
atomical structure formation involved in morphogenesis,
system process. Tese enrichment pathways are all related to
the formation and development of anatomical structures
such as blood vessels and the development and operation of
the circulatory system, proving that fbroblasts are mainly
enriched in functioning, demonstrating that fbroblasts are
intimately involved in the structure of the myocardium and
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Figure 8: Cardiomyopathy groups gene regulatory network analysis. (a) Heatmap demonstrated the expression levels of Top5 TFs of the 4
groups. (b) Bar graph demonstrated the proportion of expression level of NR3C1, MYBL1, CREB5 in groups. ∗p< 0.05, ∗∗p< 0.01,
∗∗∗p< 0.001, ∗∗∗∗p< 0.0001, ns indicates no statistical diference. (c–f) Ranked of regulons in cardiomyopathy groups based on regulon
specifcity score (RSS). Cardiomyopathy groups were highlighted in UMAP (red dots). Binarized regulon activity score (RAS) of the top
regulon of cardiomyopathy groups on UMAP (Z-score normalization was performed for all samples and 2.5 was set as the cutof value to
convert to 0 and 1) (orange dots).
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may contribute in part to the progression of myocardial
fbrosis in cardiomyopathy. To further understand the
functional status of all genes among fbroblasts, we enriched
them again and found that genes in fbroblasts have im-
portant roles in activation of immune responses and spatial
transport of proteins and enzymes.

To reveal the heterogeneity among diferent sub-
populations of fbroblasts, we further divided the 8148
cardiomyopathic fbroblasts into 4 subpopulations (C0
THBS4+ Fibroblasts, C1 LINC01133+ Fibroblasts, C2
FGF7+ Fibroblasts, C3 AGT+Fibroblasts). Each sub-
population was named after its topmarker. Among them, C3
AGT+Fibroblasts had the highest percentage of ischemic
cardiomyopathy (RM), and coincidentally ICM had a worse
prognosis. Terefore, we inferred that C3 AGT+Fibroblasts
are more sensitive and active than other fbroblast sub-
populations for the progression of cardiomyopathy as well as
fbrosis. In addition, we also found that C3
AGT+Fibroblasts were located at the end stage of the
pseudo-temporal sequence with the highest degree of dif-
ferentiation by pseudo-temporal sequencing. Tere are also
the results of enrichment pathway by GO_BP enrichment
analysis and all the diferential genes of this subgroup, all
three of which indicate that C3 AGT+Fibroblasts are more
active for the progression of cardiomyopathy and myo-
cardial fbrosis. In addition, the GO_BP enrichment results
also showed that the enrichment score of the biological
process of muscle contraction were higher in C3
AGT+Fibroblasts than in other cardiomyopathy fbroblast
subpopulations. Tis demonstrated that myocardial con-
tractile dysfunction in cardiomyopathy may be associated
with fbroblasts. In addition, a signifcant etiological factor of
dilated cardiomyopathy (DCM) is oxidative stress,

characterized by an imbalance between the accumulation of
reactive oxygen species (ROS) and the body’s antioxidant
defense mechanisms [44]. Excessive ROS accumulation can
lead to sustained loss of potassium ions and high-energy
phosphates, as well as an increase in cytosolic calcium ion
concentration, resulting in decreased contractile force of
myocardial cells. Te key factors in ROS generation are
related to metabolic and mitochondrial respiratory chain
dysfunction, particularly oxidative phosphorylation
[45].Terefore, through the enrichment of fbroblast subsets
in processes like oxidative phosphorylation, we inferred that
certain types of cardiomyopathy might have been driven by
abnormal activity levels of fbroblasts. We believed that this
held potential signifcance for the diagnosis of certain types
of cardiomyopathy, which required further validation.

Meanwhile, the above results from AUCell on the
metabolism of a subset of cardiomyopathic fbroblasts in-
dicate that Oxidative phosphorylation is a major metabolic
pathway in fbroblasts, and that it scores particularly high in
C1 LINC01133+ Fibroblasts and C3 AGT+ Fibroblasts.
Oxidative phosphorylation is mainly the process of driving
ATP by the energy released from the oxidative step in the
catabolism of organic substances, including sugars, lipids,
and amino acids. Tis result likewise demonstrates that ATP
production is higher in C3 AGT+Fibroblasts, with richer
biological processes and more prominent efects on disease
development. As mentioned above, in C3
AGT+Fibroblasts, oxidative phosphorylation increases the
production of reactive oxygen species (ROS), ultimately
leading to a decrease in the contractile force of myocardial
cells. Besides, Glycolysis/Gluconeogenesis activity was also
more signifcant in C3 AGT+Fibroblasts. Glycolysis is not
dependent on oxygen and produces twomolecules of ATP in

(i) (j)

Figure 9: Identifcation of TFs regulatory modules in cardiomyopathic fbroblasts. (a) Heatmap showed the similarity of diferent rules
based on AUCell scores using the SCENIC identifcation rule module. 2 rule submodules identifed based on rule similarity. (b) UMAP plot
showed the distribution of mean AUCell scores for 2 rule submodules (M1, M2). (c) Violin plot demonstrated the proportion of car-
diomyopathy fbroblast subpopulations in M1, M2. (d) Violin plot showed the proportion of diferent groups in M1, M2. (e) Violin plot
showed the proportion of diferent cell cycles in M1, M2. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001, ns indicates no statistical
diference. (f–h) Scatter plots demonstrated regulon activity score of each fbroblast subpopulation, each group and each cell cycle inMI,M2.
(i) Bubble plots demonstrated the enrichment results of all diferential genes in M1, M2. (j) Heatmap demonstrated the correlation of
transcriptional regulatory activity between fbroblast subpopulations of diferent groups (left) and between fbroblast subpopulations of
diferent cell cycles (right).
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its process, so under hypoxic conditions (low oxygen), the
rate of Glycolysis increases to compensate for the reduced
oxidative respiration to meet the cell’s energy requirements.
In contrast, the primary physiological signifcance of Glu-
coneogenesis is to ensure a relatively constant blood glucose
concentration in the presence of starvation. Terefore, we
hypothesized that C3 AGT+ Fibroblasts may have the ability
to overcome difcult environments (e.g., hypoxia and
starvation) and thus continue to infuence disease
progression.

Stemness refers to the ability to self-renew and diferentiate
into mature cells. Terefore, we performed the same study on
stemness genes and found that the expression of stemness
genes is also heterogeneous in cardiomyopathic fbroblasts.
Four stemness genes, CD34, KLF4, MYC, and EPAS1, which
were highly labeled among subpopulations of fbroblasts, were
screened by comparing their Z scores, average expression, and
percent expressed. Among them, EPAS1 was highly expressed
in C3 AGT+Fibroblasts. In addition, we visualized the density
distribution of these four stemness genes by mapping to
UMAP. We found that MYC was denser in C1 LINC01133+
Fibroblasts, C2 FGF7+ Fibroblasts, and C3 AGT+Fibroblasts,
but was only highly expressed in C2 FGF7+ Fibroblasts.EPAS1
was highly expressed in C0 THBS4+ Fibroblasts and C3
AGT+Fibroblasts was denser in C0 THBS4+ Fibroblasts and
C3 AGT+Fibroblasts, but was only highly expressed in C3
AGT+Fibroblasts. We then proceeded to compare the ex-
pression of stemness genes in diferent groups of cardiomy-
opathies using the same method, and screened for the same
high expression of CD34, EPAS1, andMYC. the results showed
that EPAS1 and MYC had high expression in N, and we
hypothesized that EPAS1 and MYC had a possible correlation
with the improvement of cardiomyopathy. Meanwhile,
according to previous literature, EPAS1, an endothelial PAS
domain protein 1, has been found to have some association
with the stability of HCM [46]; MYC is one of the top ten hub
genes in diabetic cardiomyopathy (DbCM) [47]. FOS has been
shown to be associated with heart development, having
a certain correlation with DCM, and upregulated in protective
cells, potentially involved in regulating the diferentiation fate
of cardiac fbroblasts under pressure overload [48, 49]. Because
EPAS1 was densely and highly expressed in C3
AGT+Fibroblasts, andMYCwas densely but poorly expressed
in C3 AGT+Fibroblasts, whether inhibition or promotion of
EPAS1 and MYC is benefcial to the treatment of cardiomy-
opathy requires further study.

To explore the key TFs among cardiomyopathy fbro-
blast subpopulations, we employed gene regulatory network
analysis for further study. Based on the CSI results, two
major modules, M1, and M2, were identifed among car-
diomyopathy fbroblast subpopulations. In addition, we
found that the fbroblast subpopulations in M1 were mainly
C1 LINC01133+ Fibroblasts, C2 FGF7+ Fibroblasts and C3
AGT+Fibroblasts, and C0 THBS4+ Fibroblasts were pre-
dominantly found in M2.We also frmly established that
cardiomyopathic fbroblasts subpopulations and diferent
groups of key TFs, including NR3C1 (C0 THBS4+ Fibro-
blasts), KLF4 (C1 LINC01133+ Fibroblasts), FOSB (C2
FGF7+ Fibroblasts), FOS (C3 AGT+Fibroblasts), NR3C1

(DCM) FOS(C3 AGT+Fibroblasts), MYBL1(ICM),
CREB5(N), NR3C1(RM).FOS is the most important TF of
C3 AGT+Fibroblasts and is associated with the M1 module.
Te regulon activity score of N is the highest in M1, and the
highest in G1 phase, and the lowest in G2M phase.
Meanwhile the major genes in M1 were mainly enriched in
Ubiquitin mediated proteolysis and Cell cycle. Terefore, we
hypothesized that FOS may infuence with the development
of cardiomyopathy through protein hydrolysis and cell cycle
progression.

Finally, we further elucidated the correlation of tran-
scriptional regulatory activities among diferent sub-
populations of cardiomyopathic fbroblasts and found that
C3 AGT+Fibroblasts in N were highly correlated with C0
THBS4+ Fibroblasts and C2 FGF7+ Fibroblasts that were
also in N. C3 AGT+Fibroblasts in DCM and C3
AGT+Fibroblasts in RMwere highly correlated. And within
each fbroblast subpopulation, they were highly correlated
even among cells in diferent cell cycles. Tus, C3
AGT+Fibroblasts in the normal group had a modest cor-
relation with other subpopulations, whereas C3
AGT+Fibroblasts after the development of cardiomyopathy
lost some correlation with other subpopulations. We hy-
pothesized that the heterogeneity of C3 AGT+ Fibroblasts in
cardiomyopathy is more prominent, and the possibility
exists with the development of cardiomyopathy.

5. Conclusion

Based on the single-cell characterization of cardiomyopathic
fbroblasts, we conclude that C3 AGT+ Fibroblasts may be
more sensitive to cardiomyopathy, whereas the activity of
other subpopulations may be more suppressed. Diferences
in stemness gene expression and diferences in transcrip-
tional regulatory activity between C3 AGT+Fibroblasts and
other subpopulations of cardiomyopathic fbroblasts may
provide a novel perspective that the diferential gene ex-
pression, stemness diferences, and transcriptional regulator
diferences in C3 AGT+Fibroblasts may infuence cardio-
myopathy outcomes such as myocardial fbrosis. Tis pro-
vides a direction for improving the unfavorable prognosis of
cardiomyopathy. If possible, it also ofers some references
for potential therapeutic targets in the treatment of car-
diomyopathy. More importantly, the stemness genes EPAS1,
MYC, and the regulator FOS with C3 AGT+Fibroblasts
may regulate the biological processes of cardiomyopathic
fbroblasts through the corresponding pathways, thereby
afecting disease progression. Although our bioinformatics
analyses have yielded insights of valuable signifcance, we
lack specifc experimental validation, which limits further
justifcation of the conclusions presented in our study.
Terefore, in order to gain a clearer understanding of the
specifc mechanisms of infuence and outcomes, we need to
further advance our research.
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