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Background. Prediction of high-risk depression trajectories in the first year following breast cancer diagnosis with fMRI-related
brain connectomics is unclear. Methods. The Be Resilient to Breast Cancer (BRBC) study is a multicenter trial in which 189/
232 participants (81.5%) completed baseline resting-state functional magnetic resonance imaging (rs-fMRI) and four sequential
assessments of depression (T0-T3). The latent growth mixture model (LGMM) was utilized to differentiate depression profiles
(high vs. low risk) and was followed by multivoxel pattern analysis (MVPA) to recognize distinct brain connectivity patterns.
The incremental value of brain connectomics in the prediction model was also estimated. Results. Four depression profiles
were recognized and classified into high-risk (delayed and chronic, 14.8% and 12.7%) and low-risk (resilient and recovery,
50.3% and 22.2%). Frontal medial cortex and frontal pole were identified as two important brain areas against the high-risk
profile outcome. The prediction model achieved 16.82-76.21% in NRI and 12.63-50.74% in IDI when brain connectomics were
included. Conclusion. Brain connectomics can optimize the prediction against high-risk depression profiles in the first year
since breast cancer diagnoses.

1. Introduction

Breast cancer accounts for 24.5% of all new female cancer
cases worldwide, with an increasing incidence trend in
China [1]. Improved screening and innovative treatments
have resulted in a 5-year survival rate of >90% in Western-
ized countries and increasing to >80% in China [2, 3]. There

are known persistent physical and psychological symptoms
among breast cancer survivors. Compared with healthy
women, a higher prevalence of depression (10-25%) was
identified in survivors of breast cancer within the first year
since diagnosis [4, 5]. Depressive symptoms are associated
with poor treatment adherence, increased suicide ideation,
and lower quality of life [6, 7]. Early recognition of cancer
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survivors with depressive symptoms is needed, especially
research to identify severity and patterns across time [8, 9].

However, predicting depression profiles that may be at
higher risk remains difficult in the context of a complex of
factors, such as demographics, psychosocial distress, social
support, and clinical characteristics [10–12]. More objective
approaches have been studied, specifically using brain imag-
ing. Reduced amygdala and hippocampus volume were
reported to be associated with depression after breast cancer,
but the causal association could not be concluded due to
cross-sectional study designs [13, 14]. The wide application
of noninvasive resting-state functional magnetic resonance
imaging (rs-fMRI) offers an opportunity to evaluate brain
connectomics using data-driven multivoxel pattern analysis
(MVPA) which is designed to reduce false positives or neg-
atives in fMRI-related analysis [15–17]. To our knowledge,
no previous research has been conducted to estimate the
associations between brain connectomics and high-risk
depression profiles in breast cancer.

We hypothesized that (1) distinct depression profiles
(high and low risk) would be identified in the first year of
breast cancer, (2) brain connectomics would be a robust pre-
dictor of a high-risk depression profile, and (3) brain con-
nectomics could provide incremental predicting power
over the conventional TNM staging system.

2. Method

2.1. Sample. The Be Resilient to Breast Cancer (BRBC) is a
multicenter longitudinal study, and 189/232 participants
(81.5%) completed depression questionnaires and fMRI
imaging (Figure 1(a)). Three centers (cohorts A, B, and C)
from different cities (Guangzhou, Shenzhen, and Foshan)
were involved, and details have been described elsewhere
[18–22]. The inclusion criteria for patients were as follows:
(1) aged > 18 years, (2) fluent in Mandarin or Cantonese,
and (3) informed consent. The exclusion criteria were as fol-
lows: (1) life expectancy less than 12 months and (2) declined
to participate in the current study. fMRI data were obtained
at baseline (T0), and research nurses were trained to collect
depression data at different assessments (T0-T3). To achieve
a high response rate, both offline and online evaluations were
available for data collection on depression. There was ethics
approval for the study (2016KYTD08).

2.2. Data Collection

2.2.1. Patient Health Questionnaire-9 (PHQ-9). The PHQ-9
is a 9-item scale about depressive symptoms based on the
DSM-IV criteria [23]. The total score ranges from 0 to 27,
with a higher score indicating a higher level of depressive
symptoms. A cut-off of 10 indicates a potential major depres-
sive disorder [24]. In the current study, Cronbach’s coeffi-
cient was 0.84.

2.2.2. MRI Data Acquisition and Preprocessing. 3.0T Siemens
were used as MRT scanners across different centers, and the
parameters are detailed in Figure 1(b). SPM12 was utilized in
the current study to handle slice timing correction, smooth-
ing, and other spatial preprocessing procedures. In addition,

BOLD timeseries within CSF and white matter and artifac-
tual covariates were regressed out as temporal covariates.
The band-pass filter was set at 0 01Hz < f < 0 10Hz.

2.3. Data Analysis

2.3.1. Latent Growth Mixture Model (LGMM) for Depression
Trajectories. First, linear and nonlinear LGMM were com-
pared in consideration of fitting indicators of comparative
fit index (CFI), root mean square error of approximation
(RMSEA), standardized root mean square residual (SRMR),
Bayesian information criterion (BIC), and model simplifica-
tion [25]. Three parameters of intercept (I), linear growth
(Slope_S), and nonlinear growth (Slope_Q) were estimated
based on the depression data at different assessments
(PHQ_1, PHQ_2, PHQ_3, and PHQ_4). In addition, mea-
surement errors were also considered (Error_1, Error_2,
Error_3, and Error_4). Second, when the optimal LGMM
was determined, another parameter of subgroups (class)
was taken into consideration to explore the heterogeneity in
the baseline (intercept) and growth (slope). The class number
was increased from 1 to 6 according to the Akaike informa-
tion criterion (AIC), BIC, adjusted BIC (aBIC), entropy
value, and Lo-Mendell-Rubin likelihood ratio test (LMR)
[26]. Maximum likelihood estimation was performed, and
the results were further validated by a Bayesian analysis of
four independent Markov chain Monte Carlo (MCMC)
chains. A hypothesized LGMM for depression trajectories
with four assessments is detailed in Figure 2(a).

2.3.2. Data Analysis Process. First, LGMM was performed for
PHQ-9 data with four assessments. In the current study,
four distinct depression trajectories (resilient, recovery,
delayed, and chronic) were recognized and classified into
high-risk (resilient and recovery, coded as 1) and low-risk
(delayed and chronic, coded as 0) trajectories. Second, a
multivoxel pattern analysis (MVPA) was performed by
using baseline fMRI data to predict the trajectory outcome
(high vs. low risk) [27]. In consideration of small sample
sizes in different centers, a conservative ratio of 10 : 1,
20 : 1, 30 : 1, and 40 : 1 was explored, resulting in a retained
component number of 7, 4, 3, and 2, respectively (MVPA_
7, MVPA_4, MVPA_3, and MVPA_2) [28]. In addition,
the prediction abilities of different MVPA-based models
including MVPA_2 vs. MVPA_3, MVPA_2 vs. MVPA_4,
and MVPA_2 vs. MVPA_7 were further compared in order
to get the optimal component, and NRI (net reclassification
improvement) as well as IDI (integrated discrimination
improvement) were calculated [29, 30]. Third, when the
optimal MVPA component was determined, taking cohort
A as the training dataset, brain connectivity was estimated
and a mask template was extracted from those significant
brain areas (height threshold uncorrected p < 0 01; cluster-
level FDR-corrected p < 0 05), which was further utilized
as the region of interest (ROI) in cohorts B and C as the val-
idation dataset. Then, a new model combining TNM stage
and brain values from ROI (Model 2) was compared with
the conventional TNM stage model (Model 1) in consider-
ation of AUC, NRI, IDI, calibration and decision curves,
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and clinical impact curves according to TRIPOD guideline
[31–33]. Mplus was used for LGMM analysis, while
MATLAB R2021b, SPM 12, and CONN software were uti-
lized for fMRI-related analysis. R was used for the develop-
ment and validation of prediction models.

3. Results

3.1. Demographic and Clinical Characteristics. In Figure 1(a),
74/92 (80.4%), 50/62 (80.6%), and 65/78 (83.3%) partici-
pants had complete depression and fMRI data. There were
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Figure 1: (a) Enrollment line in the Be Resilient to Breast Cancer (BRBC). (b) fMRI parameters in different centers. (c) Demographic and
clinical characteristics of participants.
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Figure 2: Continued.
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Figure 2: (a) Hypothesized model for LGMM. (b) Model fittings for unconditional LGMM. (c) Bayesian posterior predictive checking
scatterplots. (d) Bayesian posterior predictive checking distribution. (e) Trajectory patterns for four distinct depression trajectories.
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no significant differences in demographics or clinical charac-
teristics between those with incomplete versus complete data
(all p > 0 05). Other information is described in Figure 1(c).

3.2. LGMM for Depression Profiles. Compared with a nonlin-
ear model, the linear one was chosen in consideration of the
relative fitting indicators of CFI, RMSEA, SRMR, BIC, and
model simplification (Figure 2(a)). In Figure 2(b), the class
number was increased from 1 to 6, and four distinct depres-
sion trajectories including resilient (N = 95, 50.3%), recovery
(N = 42, 22.2%), delayed (N = 28, 14.8%), and chronic (N =
24, 12.7%) were recognized as the optimal LGMM according
to AIC, BIC, aBIC, and LMR (p value). The entropy value of
0.81 indicated a high accuracy (>90%) and was further vali-
dated by a Bayesian analysis of four independent MCMC
chains (Figures 2(c) and 2(d)). In Figure 2(e), intercept
and slope (variances) parameters for four distinct depression
trajectories were described.

At last, the four trajectories were classified into high
(resilient and recovery, coded as 1) and low (delayed and
chronic, coded as 0) risk profiles.

3.3. Multivoxel Pattern Analysis (MVPA) and Significant
Brain Areas. In Figure 3, different component numbers were
explored in MVPA against the trajectory outcome across
different centers. A two-component model (MVPA_2) was
chosen as the optimal MVPA in consideration of the nonsig-
nificant increase in NRI (ranged from -4.92% to 24.07%) and
IDI (ranged from 0.11% to 5.80%) when the component
number was increased from 2 to 7 as well as a low false pos-
itivity. Two brain regions including (1) frontal medial cortex
and (2) frontal pole left and right were identified as signifi-
cant areas, which are presented in Figure 4(a). Peak Cluster
Coordinates (MNI) and voxels per cluster are described in
Figure 4(b), and the difference of brain connectivity between

high- and low-risk trajectories is visualized in Figures 4(c)
and 4(d) using ROI derived from MVPA.

3.4. The Prediction Model Combining TNM Stage and Brain
Connectomics. Compared with Model 1 (TNM stage), AUC
in Model 2 (TNM stage + brain connectomics) increased
from 63.3-71.0% to 76.8-90.7% when the brain values were
included in the regressions (Figure 5(a)). In addition, NRI
and IDI ranged from 16.82 to 76.21% and 12.63 to 50.74%,
respectively (Figure 5(a)). In Figure 5(b), compared with
19.6-23.7 in Model 1, less Brier scores of 8.8-18.9 were recog-
nized in Model 2, indicating a better fit. In Figure 5(c), com-
pared with Model 1, higher net benefits were also identified
in Model 2 across different risk thresholds. In Figure 5(d),
clinical impact curves were visualized for Model 2 to facilitate
its clinical utilization across different risk thresholds.

4. Discussion

First, the Be Resilient to Breast Cancer (BRBC) cohort was
used to explore the associations between brain connectomics
and high-risk depression profiles of women diagnosed with
breast cancer within the first year. Four distinct depression
profiles were identified, which were consistent with previous
research [34]. Approximately 25% of participants in our
study were classified into high-risk depression profiles
(delayed or chronic). It is important to note the delayed pro-
file and benefit of the longitudinal data collection and anal-
ysis due to the presence of low depressive symptoms at
baseline.

Second, different from most previous research, partici-
pants enrolled in the Be Resilient to Breast Cancer (BRBC)
study did not receive chemotherapy and would not be
affected by common neurotoxicity [35]. Our results showed
significant differences in the frontal medial cortex and frontal
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pole between patients with high- and low-risk depression
profiles. Frontal areas are associated with cognitive function,
and breast cancer survivors were reported to needmore effort
and time to complete cognitive tasks which provided evi-
dence for the depression trajectories [36]. Without an a priori
theoretical hypothesis, MVPA was performed in the current
study to achieve a maximized prediction ability of high-risk
depression profiles. However, significant brain areas identi-
fied by MVPA could not always be well explained. For
instance, in Figure 4(b), 22 voxels (10%) could not be ana-
tomically labelled in MNI, although these voxels survived
correction for multiple comparisons (height threshold
uncorrected p < 0 01; cluster-level FDR-corrected p < 0 05).
Therefore, the difference should be further compared
between an a priori anatomical approach (i.e., ROI-to-ROI/
seed-based connectivity analyses) and an agnostic MVPA
approach in future research.

Third, the results showed that rs-fMRI neuromarkers
were robust predictors for a high-risk depression profile
and could contribute incremental predicting power over
conventional TNM staging systems. When rs-fMRI neuro-
markers and TNM staging were combined, the patients were
successfully classified into high- and low-risk depression
profiles with approximately 76.8-90.7% accuracy. Thus, in
consideration of easy access across different medical centers
and the noninvasive nature of data collection, rs-fMRI could
be considered in the precision management approach of
breast cancer [37, 38]. Furthermore, the reliability of rs-
fMRI neuromarkers was quite high across different datasets
in the present study, and the prediction ability of baseline
neuromarkers has previously been validated in populations
with depression, generalized anxiety, and schizophrenia
[39–42]. In addition, using the anisotropic Brownian motion
of water molecules along the nerve fiber method, diffusion
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tensor imaging (DTI) could be considered in the prediction
model as a noninvasive tractography indicator and could
provide unique information about brain structure in future
research [43]. However, due to the complex nature of the
brain, opposite results are often recognized between fMRI-
related connectivity and DTI-related ones, even within the
same samples [44, 45]. Thus, whether multimodal brain con-
nectomics could achieve a better prediction ability should be
further investigated.

5. Limitations

Several issues should be considered in the current study. First,
patients were enrolled in one of the most developed provinces
in China, and the LGMM-related findings might not be gener-
alizable to patients across varied socioeconomic statuses.
Second, previous psychiatric diagnosis and hospitalization
could not be determined from the medical chart which will
affect the findings here [46]. Second, in consideration of the
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Figure 5: (a) AUC, NRI, and IDI for Model 1 (TNM stage) and Model 2 (TNM stage + brain connectomics). (b) Calibration curves for
Model 1 and Model 2. (c) Decision curve analysis for Model 1 and Model 2. (d) Clinical impact curve for Model 2.
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restriction of the unconditional model in LGMM, many con-
founders (i.e., antidepressant prescription, family history of
psychiatry disorder) are not considered in MVPA, resulting
in increased type I errors. A priori anatomical approach could
be performed to validate MVPA-related findings. Third, the
assumption of the LGMM may be compromised due to the
time difference in measurements between subjects across the
observation period, andmodeling errors should be noted here.
Fourth, the sample sizes of the training and validation cohorts
are relatively small, and the prediction model should be vali-
dated in a larger population with different cancer diagnoses.
Fifth, measurement errors were not taken into consideration
to calculate the QoL outcomes, and item response theory
could be tried to achieve a better estimation [47–50].

6. Conclusion

Brain connectomics has been shown to predict high-risk
depression profiles in women diagnosed with breast cancer
within the first year.
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