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We have modeled the additive-pulse modelocked (APM) laser with a set of four nonlinear
difference equations, that describe the transit of optical pulses through the main cavity and
through an external cavity containing a single-mode optical fiber. Simulating the system
under several parameter variations, including fiber length, gain, and fiber coupling, we have
observed period-doubling bifurcations into chaos. In addition, the model predicted large
regimes of quasiperiodicity, and crisis transitions between different chaotic regions. We
have used the method of nearest neighbors, Lyapunov exponents, and attractor reconstruc-
tion to characterize the chaotic regimes and the different types of bifurcations. We have
included bandwidth-limiting and monitoring provisions to prevent non-physical solutions. To
our knowledge, this is the first such characterization of chaos in the APM laser, as well as
the first evidence of crisis behavior.
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INTRODUCTION

Quasiperiodicity, period-doublings, and chaos have
recently been identified in the pulsed output of the
additive-pulse modelocked (APM) laser 1,2], spark-
ing a renewed interest in this system related to the
study and possible exploitation of these complex
nonlinearities. In this paper, we present the results
of discrete mathematical simulations aimed at
properly characterizing the dynamics of the APM
laser through the calculation of embedding dimen-
sion and Lyapunov exponents, the analysis of un-
stable time series, and the reconstruction of chaotic
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attractors. With these efforts, we hope to provide
the necessary evidence that the unstable APM out-
put is truly deterministic, and explore more subtle
issues such as the varied bifurcation parameters and
routes to chaos in this laser.
APM has been used extensively since about 1984

to provide transform-limited, ultrashort optical
pulses from a variety of gain media [3-8]. The most
common APM laser configuration, shown in Fig. 1,
consists of two, coupled cavities: the main cavity
houses the gain, tuning elements, high reflector,
and output coupler of the laser while the external
cavity contains a short length of optical fiber, and
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FIGURE The NaC1 APM laser cavity.

is exactly matched in length to the main cavity.
Considered alone, the main cavity is either syn-
chronously pumped or actively modelocked (e.g.
by an acousto-optic modulator [9]) to produce
relatively long (10ps) pulses. In the APM con-
figuration, a fraction of the pulsed output power is
coupled onto the optical fiber of the external
cavity, and then retroreflected back to recombine
with the pulses circulating in the main cavity. The
small fiber core diameter leads to high peak
intensities, causing a frequency chirp due to non-
linear self-phase modulation (SPM). When the
length of the external cavity is properly adjusted,
the frequency-chirped pulses interfere with those of
the main cavity constructively at the peaks, and
destructively at the wings, resulting in an effective
temporal shortening of the pulses. After many
round trips, dispersion and finite bandwidth
balance the pulse shortening caused by this process,
and the laser reaches a steady-state operating point,
generating pulses on the order of 100 fs in duration.

Because modelocked lasers are characterized by
a (periodic) train of pulses at the output coupler
separated by the main cavity round-trip transit
time, such lasers are most easily described by an
iterative model. In previous work [1], four differ-
ence equations were used to model the APM laser,
verify steady-state operation, optimize laser param-
eters, and predict the presence of bifurcations and
chaos. Despite these achievements, no one has
pursued these equations in a more detailed under-
standing of the APM dynamics. In particular, do
quasiperiodicity and chaos truly exist in the APM
laser and if so, can the chaos be characterized by a

largest Lyapunov exponent? What is the dimen-
sionality of the chaotic system, and can one
reconstruct a strange attractor from the time series

output of the iterative model? What routes to chaos
exist in the APM system? Although the iterative
model has been used to suggest rich chaotic
dynamics, these questions indicate the need for
better characterization.
We have pursued these questions at length, and

will describe the development and use of the
iterative APM model. In determining a proper
embedding dimension for the chaotic dynamics,
calculating a largest Lyapunov exponent, and
reconstructing several different attractors from
the output time series, we provide convincing
evidence that this laser’s unstable output is truly
deterministic. We also explore the routes to chaos,
which include period-doubling and crisis transi-
tions in different regions of phase space.

THE APM MODEL

The APM laser can be represented schematically as
shown in Fig. 2. The quantities al, a2, bl, and b2
model the incident and reflected electric fields at
the output coupler. The laser pulses can be modeled
by some optical carrier wave and a Gaussian
envelope:

/

E(t) A exp(icot)exp[-2 ln2[t- to]/St) exp(iqS).

Since the carrier wave is common to all fields in the
APM model, it can be omitted and the pulses are

simply represented by the complex envelope. The
two cavities interact with each other at the output
coupler, which has an intensity reflectivity R. Two
difference equations explain the interaction of

R
Main a’a2 External ICavity b b2 Cavity

Output
Coupler

FIGURE 2 A schematic of the APM cavity, defining the
model fields ax, a., bx, and b2.
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these fields"

bl al x/ + azv/1 R, (2)

b2 al v/1 R a2x/-. (3)

The b fields generated above make a round trip
traverse of their respective cavities in becoming a

fields. Defining all of the optical processes in those
traverses allows us to develop a description of the
pulse evolution which can then be iterated. From
Fig. 1, the field bl passes through the birefringent
tuner plate (BTP) and saturable gain twice before
returning to the output coupler as al. The tuner

plate, positioned at Brewster’s angle (56.8) in the
main cavity, has an intensity transmission that
depends upon wavelength as [10]

The spectral filtering of the BTP and gain are

applied to the main cavity pulse in the frequency
domain by taking the product of the pulse spectrum
with both filter responses. Expressing the input
pulse to this process as p(t), the filtered output
becomes

[’(p(t)) exp(iwt)IT G

[/_i (6)

The effect of the saturable gain can be treated in
the time domain [12]"

( )G lout//in exp + gin/gsat
(7)

4 2

IT(A) sinZ(2qS) n no cOS2 0

(n2o cos2 q5 COS2 0) 2

(__{ ne[14-cs2Ocs2d/)(1/n2e-1/n2o)]x sin2

[1 cos2 0(sin2 /n2e + cos2 /n2o)] 1/2

[1 COS2 0///2o] 1/2 (4)

where go is the small-signal gain,

go exp(o-AN0), (8)

given cr 9 x 10-17 cm2, the gain cross-section for
NaC1 OH-, and unsaturated population inversion

AN0, which is proportional to the pumping. Uin
and Usat are input pulse and saturation energy
fluences, defined as

where 0 is the angle formed by the surface
of the plate and the cavity optic axis, b is the
angular deviation of the plate’s extraordinary axis
from the vertical, is the plate thickness, and no (ne)
is the index of refraction of the (extra)ordinary
axis. For this model, we used a plate of thickness
t-1.75 mm, which is similar to that used in the
laboratory.
The laser gain both amplifies the pulse and

performs some spectral filtering, due to its finite
gain bandwidth. For NaCI: OH-, the gain emission
spectrum is Gaussian in shape, with a bandwidth of
u 45 THz centered at Uo 187.5 THz (1.60 gm)
[11]. Given these parameters, the normalized gain
versus frequency can be expressed as

G(u) exp[-4 In 2(u ’o)2/5/’2] (5)

Uin (t) Iin(t) dt, (9)

gsat (10)

For NaCI:OH- laser centered at A= 1.60gm,
Usa 1.38 mJ/cm2. With these definitions, Eq. (7)
expresses the saturable gain as a function of
intracavity pulse energy, independent of gain
lineshape.
The overall relationship between the fields al

and bl can then be achieved by first filtering bl
according to Eq. (6), then multiplying by the one-

pass gain in Eq. (7) twice, then filtering according
to Eq. (6) a final time.

In the external cavity, the fields a2 and b2 are
related by propagation through the single mode
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optical fiber in the external cavity. Given the fiber
core radius 51am and the duration of typical
APM laser pulses (100 fs), peak pulse intensities
within the fiber can exceed GW/cm2. With such
high intensities, the fiber exhibits an intensity-
dependent index of refraction:

n(I) no + nI. (11)

This index variation causes the high-intensity
center of the pulse to travel more slowly than the
leading and trailing edges, thereby causing com-

pression (frequency upshift) of the optical carrier
wave on the trailing edge, and stretching (frequency
downshift) on the leading edge. This effect is known
as self-phase modulation (SPM), and is usually
expressed in terms of the additional phase a pulse
acquires in traveling a certain length L of fiber,

exp(-i 64)-expl-i(o)n2I(t)l. (12)

For fused silica fiber, n2 3.2 10-16 cm2/W, and
a length on the order of 20 cm can typically generate
7r radians of phase across a single pulse.
To express the effects of SPM in this model, we

can write a2 in terms of b2 as

a2(t) Rs’7/b(t)

xexp 0+
2r/0A0

(13)

where RBS is the intensity reflectivity of the
beam-splitter, 3’ is the forward fiber coupling
efficiency (between cavity and fiber modes), 2 is
the back-coupling efficiency (the fraction of
the intensity emerging from one pass through the
fiber able to be coupled back onto the
fiber after retroreflection), and r/0 is the char-
acteristic impedance of air, about 377 f, used to
convert between field strength and intensity. The
square-root dependence on ")/2 in the above
expression results from taking the back-coupling
loss only once, since none of the light is lost
exiting the fiber to strike the retroreflector.

Typically, RBs=0.5, L20-50cm, 710.5-
0.8, 72 0.6-0.95, and o 3.1 for stable APM
operation.

SIMULATION RESULTS

We first tested the APM model by simulating the
steady-state operation of the laser. Given Eqs. (2)
and (3) which explain the recombination of pulses
al and a2, and Eqs. (6), (7), and (13) which describe
the transformation of fields bl and b2 by the main
and external cavities, the model can be iterated
to generate successive a and b fields. With hundreds
of round trips through the laser, steady-state is
achieved for the typical range of parameters given
above.

Table I shows a set of typical laboratory APM
laser specifications used as a basis for our model.
Using an initial 100 fs Gaussian input pulse in the
model, several hundred round trips of the simu-
lator allowed transients to die out. The resulting
steady-state pulse and its spectrum after about 500
round-trips are shown in Fig. 3, indicating a 105 fs,
transform-limited Gaussian pulse train. The output
energy of each pulse is calculated to be 6.91 nJ/cm2,

TABLE Typical NaC1 APM laser specifications

Average output power 100mW
Output beam radius 2.45 mm
Pulse repetition rate 80 MHz
Pulse width (FWHM) 100 fs
Pulse bandwidth 4.5 THz
A0 1.60 pm
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FIGURE 3 Steady-state output pulsewidth and spectrum of
the APM model for a typical set of parameters.
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which corresponds to 104mW given the pulse
width and output beam radius. The steady-state
output of the model is thus in excellent agreement
with the laser specifications of Table I.
Having verified the accuracy of the APM model

in the steady-state, we next varied certain laser
parameters, attempting to find a regime of more

complicated APM dynamics. With a fixed small-
signal gain and forward and backward fiber
coupling coefficients of 0.5 and 0.6, respectively,
we first varied the length of the fiber from 10 cm to
over 50 cm, since the fiber length is the most direct

perturbation to the SPM nonlinearity (see Eq. (13)).
In varying a model parameter, we iterated the
model several hundred times after each parameter
adjustment, to insure that the system had settled
into a new steady-state. Plotting about 30 succes-

sive output pulse energies for each separate fiber
length value, Fig. 4 shows that the laser exhibits

seemingly unstable behavior after a length of 27 cm.
Figure 5 shows the time progression and phase-

space orbit of the output energies, with the discrete
data connected for clarity. We observe that the
output is periodic, with a period of about 17.5
iterations. Since the laser output itself is periodic
(a pulse train with a frequency of 80 MHz), we can

conclude that this behavior is quasiperiodic, since
the secondary oscillation period is incommensurate
with the fundamental period. The phase-space plot,
or first return map (nth versus the (n+ 1)th
iteration) provides a similar conclusion since the
orbit becomes continuous as n -+ oc: no two output
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Fiber Length [cm]

FIGURE 4 Fiber length bifurcation diagram for moderate
fiber coupling (3’1 0.5 and 72 =0.6) showing a large unstable
region.
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FIGURE 5 Time series and first return map for the unstable
region of Fig. 4, demonstrating quasiperiodic output.

pulses are coincident in phase-space, indicating
two, incommensurate frequencies. As the fiber

length increases beyond 27cm, similar analysis
shows that the output remains quasiperiodic, with
the orbit in phase-space simply becoming more

convoluted.
We next repeated the fiber length variation with

increased forward and backward fiber coupling
coefficients of 0.8 and 0.9, respectively, close to the
upper limit of achievable laboratory conditions.
We chose to vary the coupling coefficients because
they not only perturb the SPM, but also increase
the interference between the main and external
cavities while remaining readily adjustable labora-
tory parameters. Figure 6 shows the resulting
bifurcation diagram when the output pulse energies
are again plotted for each value of fiber length. We
see the laser bifurcate from period-one to period-
two behavior around 9 cm, followed by a period-
doubling cascade into chaos, much like the
well-known logistic map. Figure 7 shows a close-
up of the unstable region, where the chaotic
behavior suddenly drops into a stable orbit near

l-16.30cm, again period-doubles into chaos,
transitions to another seemingly chaotic region,
then reverse bifurcates to a stable orbit.
To properly conclude that these instabilities are

indeed chaos, we sought to calculate a largest
Lyapunov exponent for each of the three unstable
regions of Fig. 7: l 15.9-16.3 cm, l 16.67-
16.76 cm, and l 16.83-17.12 cm. This involved re-

constructing the laser output in delayed-coordinate
phase-space, then employing the algorithm of
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FIGURE 7 Close-up of period-doubling and chaotic regions of the fiber length bifurcation diagram of Fig. 6.
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Wolf et al. [13] to calculate the exponent. Phase-
space reconstruction first requires some knowledge
of the dimensionality of the APM laser, which is
readily provided by the algorithm of Kennel et al.
involving false nearest neighbors [14]. Essentially,
this method determines the percent of false-nearest
neighbors when the laser output is reconstructed in
successive integer dimensions, starting from 1.
High-dimension systems reconstructed in lower-
dimensions will exhibit large percentages of false
neighbors, but this percentage will drop to zero
when the proper embedding dimension is reached.
Figure 8 shows the result of such a calculation for
each unstable region of Fig. 7, and the proper
embedding dimension is three in each case.

Knowing the proper embedding dimension, we
next reconstructed the phase-space orbits, using
n=32000 output iterations of the model for a

given set of parameters in each chaotic region, and
the delayed coordinates n, n + 1, and n + 2. One
attractor from each region is shown in Figs. 9-11:
the first two regions actually yield two attractors
each, one for each of the two major branches of
the bifurcation diagram, while the third region
consists of four distinct attractors, due to the
underlying period-four behavior. From a graphical
viewpoint, the orbits indeed exhibit the qualities of
strange attractors, including low topological
dimension and folding behavior, and self-similar
structure.

o 80
-o- Regmn 3. 60 [-- , --X- Region 2

Z, 40- ’. -<y-Regionl

20 .-.
6 0
N 2 3 4 5

Embedding Dimension

FIGURE 8 False-nearest neighbor embedding dimension
calculation for the three prominent regions of instability in
Fig. 7.

The best evidence of chaotic behavior however,
lies in an estimation of the largest Lyapunov
exponent. This exponent was obtained with the
Wolf code using a minimum initial displacement of
10-5 and a "largeness" condition on the final
displacement of 10-2 (where the order of the
attractor is 10-), allowing trajectories to diverge
by three orders of magnitude before calculating
local exponents. Such a calculation yields
A=0.24, A2=0.14, and /3=0.15 bits/s for the
respective chaotic regions, the positive values indi-
cating the presence of chaos, where nearby trajec-
tories in phase-space locally diverge exponentially.

Figure 7 still raises questions as to the nature of
the transitions between the different chaotic
regions, or more generally, the routes to chaos in
the APM laser. The period-doublings provide an

obvious answer as one of the routes into each
chaotic region, but the nature of the transitions at
l-- 16.3 cm where the chaos suddenly drops into a

stable orbit, and l= 16.72cm where one chaotic

region suddenly jumps to another still remains
unknown.

In order to understand these transitions, we con-
sider 16 000-iteration reconstructions of the laser
output at the critical parameter values. Figure 12
shows the case of l= 16.3 cm, reconstructed three
times with successively larger numbers of iterations
removed from the beginning of the time series. Plot
(a) shows an attractor identical to Fig. 9, from the
first chaotic region. Plot (b), with the first 1250
iterations removed, displays a much more "sparse"
looking attractor. When the first 2500 iterations
are removed, plot (c) shows that the laser is actually
exhibiting the stable periodic orbit for --, oc. This
progression demonstrates what is known as a
chaotic transient, where the system follows the
nearby, destabilized chaotic attractor for some
finite number of cycles, then finally falls onto a
different (stable) orbit. Together with the facts that
the transition between the chaotic and stable
regions is sudden and causes the destruction of
the attractor, this chaotic transient provides con-

vincing evidence that the transition at 16.3 cm is
a crisis [15].
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FIGURE 9 Reconstructed chaotic attractor in three dimensions for l 15.9-16.3 cm.
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FIGURE 10 Reconstructed chaotic attractor in three dimensions for l 16.67-16.76cm.
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FIGURE 11 Reconstructed chaotic attractor in three dimensions for l 16.83-17.12cm.
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FIGURE 12 Chaotic transient in the APM output near l= 16.3cm: (a) shows iterations 1-16000 containing the large initial
chaotic transient preceding a small stable orbit; (b) shows 1251-16000 where a portion of the initial chaotic transient has passed;
and (c) shows 2501-16 000 where the entire chaotic transient is over, and the system has settled onto the stable orbit.
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FIGURE 13 Chaotic transient in the APM output near l-- 16.72cm: (a) shows iterations 1-12000 with both an initial chaotic
transient and two drastically different coexisting stable chaotic attractors; (b) shows 4001-12000 where a portion of the initial
chaotic transient has passed; and (c) shows 8001-12000 where the system has settled onto the two stable coexisting chaotic
attractors.

Likewise, we examined the sudden transition at
1-- 16.72 cm, and found similar behavior. Figure 13
shows the progression of the reconstructed time
series, where a region two chaotic transient dis-
appears to leave the region three attractor for

oo. This sudden change of attractor and the
presence of the chaotic transient indicate that the
region two/three transition is also a crisis.

Since adjusting the fiber couplings had a dra-
mati6 effect on the fiber length bifurcation dia-
gram, we decided to investigate fiber coupling as
the bifurcation parameter. For a fixed fiber length
of 15 cm, we varied the forward and backward fiber
coupling coefficients simultaneously
0.1). Figure 14 shows the resulting bifurcation
diagram, which is very similar to the fiber length
case. Aside from variations in the absolute output

energy, the only major difference between the
fiber coupling and length cases is the unstable
region beyond the second crisis at 7 =0.715. This
region exhibits underlying period-two instead of
period-four, and also does not reverse bifurcate
back to a stable orbit. An embedding dimension
calculation shows that this region should be
reconstructed in four dimensions, and the resulting
largest Lyapunov exponent calculation reveals
A 0.31 bits/s, again indicating chaos.
Beyond fiber parameters, we also varied the

small-signal gain (which is proportional to the
pumping strength in the laboratory), and found
results similar to the fiber length case. For small
fiber coupling, the laser exhibited quasiperiodicity
for large gain, while higher coupling allowed for
period-doubling, chaos, and crises.
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FIGURE 14 Fiber coupling bifurcation diagram, which shows essentially the same features as the fiber length bifurcation
diagram.

CONCLUSIONS

Although the model described above is fairly
common for the APM system, one should be aware
that certain effects were neglected, including
temporal gain saturation (across the pulse profile)
and dispersion. The model remains valid in a

practical sense however, since temporal gain
saturation cannot easily be observed in the labora-
tory (short timescale), and generally only causes

asymmetry in the pulse shape. Moreover, the NaC1
laser is usually operated with dispersion-shifted
fiber (D0 at A 1.55 gm) and dispersion can be
neglected to first order.
More important to the implementation of this

model were errors due to overly large bandwidth.
Because some of the external cavity energy recircu-
lates through the external cavity without being
filtered by the gain and tuner plate in the main
cavity, it is possible under conditions of large
nonlinearity (long fiber, high coupling, large gain,
etc.) for the recirculating pulses to obtain huge
amounts of chirp after many iterations, corre-

sponding to pulse bandwidths exceeding 100 THz.
In the time domain, this corresponds to oscillations
on the order of the optical carrier frequency

(187.5 THz), at which point the distinction between
the optical wave and its envelope is meaningless;
i.e., the situation is non-physical.
When such a situation occurs in the model, the

center of the pulses typically becomes extremely
narrow, eventually collapsing to a point disconti-
nuity. This event results in a drastically altered
pulse integral (energy), and manifests itself in a

discontinuity in the bifurcation diagram. In fact,
such a non-physical discontinuity in a similar
model was erroneously reported as hysteresis [1].
Experimentally, this problem would never arise,
because optical components would limit the pulse
bandwidth to some finite level. We chose to correct
this problem by inserting into the external cavity a

filter which approximates the finite-bandwidth
coating of a typical laboratory mirror, about
100 nm.

SUMMARY

We have modeled the APM laser with a simple set
of four difference equations which provide a great
amount of insight into the complex dynamics of the
APM system. In particular, the model verified
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quasiperiodicity, period-doubling, and chaos in the
laser output. In addition, we explored the nature of
the APM chaos, including the dimensionality of
the laser dynamics, the reconstructed chaotic
attractors, largest Lyapunov exponents, and crisis
transitions between different chaotic regions. Our
exploration of several different parameter varia-
tions should also prove useful to the development
of laboratory experiments to verify and exploit the
dynamics of the APM system.
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