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Chemical dynamics provides quite a number of examples of interesting and useful discrete
models. But it catches one’s eye that the majority of them are from the field of homogeneous
chemistry. Whereas the chemical individuality of solid substances is represented in discrete
terms of crystal lattices, the conventional description of solid state reaction dynamics is
essentially continual. The recent progress in the theory of random mosaics and theory of
planigons opens the way for developing an alternative discrete description in terms of
Dirichlet tessellations. In the present paper the two approaches are compared from the angle
of meaningful simulation. It seems that this may be of interest not only for chemists but also
in the broad context of developing and employing discrete dynamical models.
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1. INTRODUCTION

Both discrete and continual features are generally
inherent for real phenomena and processes and may
be exhibited in a larger or smaller measure depend-
ing on a particular angle they are considered from.
Many interesting examples of this may be found

in various branches of science. Aiming to discuss
this point with respect to the dynamics of solid state
chemical reactions, refer the series of Shubnikov’s
(1975) works on crystal symmetry. They provide
convincing evidence that the coexistence of such
seemingly contradictory and mutually exclusive
features as continuity and discontinuity within the
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same crystal are not simply possible but logically
necessary. Thus, one and the same crystal may
possess, say, the cubic symmetry with respect to
some properties and at the same time the spherical
symmetry with respect to other properties, exhibit-
ing discrete and continual features respectively.
Upon transition to a mathematical description,

the picture becomes distinctly continual or discrete,
i.e. this transition involves an important choice.
At this point we face a thought-provoking

perplexity concerning the mathematical description
of solid state reaction dynamics. The chemical
features of crystals are described in discrete terms
of crystal lattices. From the angle of heterogeneous
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chemical kinetics such crystals are solid reagents,
i.e. the medium in which one or another solid state
reaction proceeds. It should seem that discrete

space and time naturally suggest themselves in this
case for describing the reaction dynamics. But the
conventional geometric-probabilistic description
of these reactions, originated in the classical works
of Kolmogorov (1937), Johnson and Mehl (1939),
and Avrami (1941), is essentially continual (modern
presentation may be found, in particular, in Barret,
1973; Belen’kiy, 1980; Brown et al., 1980; Delmon,
1969; ,estak, 1984). This is even more strange with
the account that in the contiguous field of homo-
geneous chemical kinetics, where the introduction
of discrete variables is not so direct, the discrete

ideology has been finding much wider use (see
Kapral, 1991 for review).

Figure gives an idea about the situation. The
conventional continual formalism was developed
for describing the experimentally observed "rate-
time" dependencies. Now it is clear that they are
determined by universal geometrical regularities of
first-order phase transitions conjugated with solid
state reactions. The continual approach is efficient
for describing these regularities but only until one

attempts to get a keener insight into the chemical
mechanism of a reaction. Then a number of
essential difficulties arise connected with the fact
that the main variables has the geometric-prob-
abilistic rather than chemical meaning, i.e. the
chemical individuality of a solid reagent is not

represented within the continual formalism in the
proper manner.
On the other hand, this chemical individuality

may be naturally described in discrete terms
determined by the crystal chemical structure. But
for discussing in these terms the observed macro-

scopic behaviour the geometry of the crystal space
must be agreed with the geometry of the evolution
of the reaction front with the account of relevant
probabilistic aspects. A possibility to do this is
connected with relatively recent progress in the
theory of random tessellations (see Moller, 1992;
1995, Stoyan et al., 1987, Chiu, 1995 and references
therein) and theory of planigons developed in
Delone el al. (1978) and Grtinbaum and Shephard
(1987). This opens the way for developing a discrete

description of solid state reaction dynamics with the
primary aim to get a keener insight into interrela-
tions "Chemical individuality Mechanism
Rate. (In Bradley (1987) and Weinberg and Kapral
(1989) the lattice analog of Johnson-Mehl-
Avrami equation is considered irrespectively of
relevant chemical aspects.)

It should be noted that "from-the-very-begin-
ning" discrete description is implied in the present
context (rather than the substitution of a discrete
model for a continual one as is often the case when
net methods are used on the stage ofcomputations).
Mathematics is not simply a language but the
language with the logic, the tool for considerations
(Feynman, 1965). Accordingly, the change of the

I Chemical IIndividulity Mechanism Rate

FIGURE In describing the dynamics of solid state chemical reactions the problem is approached in discrete and continual
terms from the opposite sides.
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formalism means the change of the "conceptual
capability". It seems that now the further accumu-
lation of experimental data is not so crucial for
solving the essential issues of solid state reaction
dynamics as the progress in their interpretation. In
balancing the experimental evidence and the logical
substantiation (the external justification and inter-
nal perfection according to Einstein) the stress is
shifted towards the latter.

2. A BRIEF OUTLINE AND SOME
PECULIARITIES OF THE
CONVENTIONAL CONTINUAL
DESCRIPTION

The continual geometric-probabilistic approach to
solid state reaction dynamics was discussed from
various angles in quite a number of treatises and
papers (see, in particular, Barret 1973; Belen’kiy,
1980; Brown et al., 1980; Delmon, 1969; ;estak,
1984). Here we will restrict ourselves to its brief
outline and discussion of some particular features.

Crucial premises: The preferred occurrence of a
solid state reaction and one and the same sigmoid
form of the ’degree of conversion c time t’ curves
for fairly disparate in nature reactions. Main princi-
ples: A reaction is localized at the boundary
between original and newly formed phases; it pro-
ceeds through the formation and growth of new

phase nuclei; these nuclei appear in a random
manner at the points of energetic inhomogeneity
of original phase; the impingement of two nuclei
stops their growth in this direction. Main quantities:
Time t, the degree of conversion c(t), the rate c(t),
the kinetic coefficient k. Some derived quantities:
The nucleation law Ln(t) is the intensity of nuclei
formation, the nucleus growth law Lg (% t) is a
measure (volume or area) of a growing nucleus; the
form factor r/, the age of a nucleus (t -) (where - is
the instance of nucleus appearance). The central
problem in developing the mathematical description:
The account ofthe impingements ofgrowing nuclei.
The way of solving it: The degree of conversion c is
identified with some probability P that an arbitrary

point of the original phase will have appeared
within a new phase up to the instant t. Main

assumptions: The original phase is unrestricted;
the nucleation is according to Poisson; the form
and orientation of all growing convex nuclei are the
same; the rate of a nucleus growth is independent
of its age; these assumptions cannot be relaxed
(Belen’kiy, 1980). The main model:

)o(t) P-- exp tn(T)tg(T,t) dT (1)

The relationship for the rate:

&(t) w(t) 2k Ln(7-) w() d d’r

exp(-footLn(-)Lg(-,t)d7-) (2)

where w is the rate ofa separate nucleus growth, and
{ is the integration variable. Some important
characteristic features: Mathematical models are

independent on the dimensionality; the spherical
form ofnuclei is chosen as a rule to satisfy one ofthe
mentioned assumptions; the direct proportionality
between the rate and the total length ofthe interface
follows from the mathematical formalism without
any additional assumptions. Crucial disadvantages:
Though rigorous with respect to the nuclei impinge-
ment simulation, the geometric-probabilistic for-
malism is essentially ambiguous when the inverse
kinetic problem (IKP) is concerned, resulting in the
numerous failures in experimental data interpreta-
tion (Korobov, 1994).

Attempts to get at the roots of this ambiguity
make explicit some peculiar features of the conven-
tional description relevant in comparing continual
and discrete approaches.

In contrast to chemical thermodynamics, which
is the direct logical extension of physical thermo-
dynamics, chemical kinetics has been developing
from the very beginning in its own ways, fairly dis-
parate for homogeneous and heterogeneous kinet-
ics. As a result, solid state reaction dynamics is
characterized by its particular manner of reasoning



168 A. KOROBOV

and mathematical formalism. Rather dissimilar
from the formalism of homogeneous chemical
kinetics, this phenomenology has its main roots in
the theory of first-order phase transitions. With the
account that solid state reactions are always
accompanied by first-order phase transitions, this
phenomenology is efficient for describing the
universal geometrical regularities of solid state
reactions that determine the observed kinetic be-
haviour i.e. the always sigmoid form of rate-time
curves. But the other coin of this universality is that
no definite boundary may be drawn between
first-order phase transitions proceeding with and
without chemical transformations. Gradually the
evidence was accumulated that one and the same
set of experimental data may be described equally
well within this phenomenology by several differ-
ent mathematical models (see, for example, Brown
et al., 1980; Delmon, 1969). This emphasizes, in
particular, the need of a deeper insight into the
interrelations between observed kinetic behaviour
and mechanism. In this connection we arrive at the
question to what extent the conventional approach
is adequate for this.

In answering this question the geometric-prob-
abilistic rather than chemical meaning of the main
variables must be noted, due to which all con-

ceptual details of one or another mechanism that do
not fall within this interpretation are represented on
the stage of formalization by the model coefficients
alone, i.e. they participate in the discrimination
procedure not through the form of the model
function but only through the numerical values of
the coefficients. One of the negative results is that
fairly different original concepts concerning the
reaction mechanism may lead to the same equation
in terms of c; examples may be found, in particular,
in Delmon (1969) and Prodan (1990).
The conventional phenomenology of solid state

reaction dynamics has been using in heterogeneous
kinetics for 60 years. During this period the
philosophy of phenomenological description has
been modifying materially, mainly due to the recent

progress in synergetics and complexity theory
(Haken, 1983; Nicolis and Prigogine, 1989). In the

context of"eliminating the extra variables" (Haken,
1983; Careri, 1982) we realize how tremendous the
distance between micro and macro is, in the case of
solid state reactions. It becomes clear that complex
heterogeneous systems possess phenomenological
features that may hardly be discerned in consider-
ing more simple subsystems or through direct
extrapolation of microscopic properties. One of
the main conclusions is that one or another
formalization of the mechanism must be based on
an adequate phenomenological character represen-
tation of the chemical individuality of a solid
reagent. In terms of the conventional continual
approach the solid reagent is represented as a
"sample" consisted of some abstract (as a rule
spherical) "particles". This is obviously not suffi-
cient for the close discussion ofmechanisms of solid
state reactions, and the potential of the continual
description seems to be limited in this respect.

3. DISCRETE DESCRIPTION IN TERMS
OF DIRICHLET TESSELLATIONS

Classical works of Kolmogorov (1937) and
Johnson and Mehl (1939) gave rise to the conven-
tional continual approach discussed above. His-

torically these works played also an important role
in developing the theory of random tessellations.
Relatively recent progress in this field of contem-
porary stochastic geometry makes it possible to

approach some essential issues of solid state
reaction kinetics from a different angle. The use of
the language of random tessellations in combina-
tion with the language of planigon tessellations
opens the way for developing a from-the-very-
beginning discrete description of solid state reaction
kinetics.

3.1. Discrete Space: From a Polycrystalline
Sample to the Single Crystal Face as a

Chemical Individual

Theoretical description of solid state reaction
kinetics was initially oriented to experimental
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results for polydisperse polycrystalline samples
characterized by "prehistory" (in what way the
sample is prepared, its age, storage conditions, etc.).
For quite a long period of time the vast majority of
experimental works was of this kind. But during last
decades the situation is considerably changed: the
fraction of experiments devoted (at least partly) to
single crystals has been considerably increasing.
Theory does not keep pace with this tendency. The
conventional continual approach discussed above
is not capable of distinguishing single crystals and
polycrystalline samples because in its framework
there are no adequate means for representing a solid
reagent in terms of its composition and crystal
chemical structure. As a result, the same equations
are used in both cases.

In this context, a discrete space appears as a result

ofattempts to overcome this chemicalfacelessness of
the conventionalformalism.

It was mentioned that a solid state chemical
reaction is always accompanied by first-order phase
transitions, and historically the continual geo-
metric-probabilistic approach originated from
the theory of first-order phase transitions. But the
emphasis is on the formation of new phases alone,
the disappearance of the original crystal phase
being practically ignored. Until one deals with
chemical transformations of polydisperse polycrys-
talline reagents treated as "samples" (Fig. 2(a)) into
polydisperse polycrystalline products, this remains
in the shadow and is masked to a degree by the use
of formal adjustment parameters. But the picture is
changed when a single crystal is taken as an original
solid reagent.

Further a single crystal will be considered as a
medium in which a solid state reaction proceeds
and as a solid reagent simultaneously. Accordingly,
this will be a finite real single crystal with defects
restricted by crystal faces rather than ideal infinite
crystal structure. In the present context it is rea-
sonable to treat such a crystal as a set of growth
pyramids as described in Shubnikov (1975)
(Fig. 2(b)).

In the majority of cases solid state reactions start
at a surface and proceed into the bulk. Both

(a)

(b)

(c)

(d)

(e)

FIGURE 2 The main steps in passing from a polycrystalline
samples to the single crystal face as a chemical individual.
Explanations are given in the text.

mechanism and kinetics of interactions between
the same reagents may be different at different
crystal faces. Quite a number of examples may be
found in Prodan (1990). Therefore, it is appropriate



170 A. KOROBOV

to consider each crystal face with its growth
pyramid separately (Fig. 2(c)).
The next point concerns interrelations between

symmetry of causes and symmetry of effects, the
general principles having been formulated by
Curie. When solid state reaction kinetics, e.g.
thermal decomposition kinetics, is simulated
within the conventional approach by the widely
used Avrami-Erofeev equation or some other
geometric-probabilistic equation in terms of the
degree of conversion c, the routine is to prescribe
the spherical form to growing nuclei. This is done
mainly for formal reasons and, obviously, is in
poor agreement with crystal chemical considera-
tions. According to Prodan (1990) the correspon-
dence between localization forms and crystal
symmetry is observed, as a rule, provided that the
original crystal is carefully prepared and a reaction
is carried out under conditions required for the
kinetic regime.
The question about form is actually the question

what exactly is described. If the description is
restricted to the formation and growth of new

phase nuclei alone (as is often the case), there is
no room for representing the original solid reagent
within the formalism. Accordingly, one cannot even
talk about representing it as a chemical individual.
On the other hand, the formation of a new phase
and the demolition of the original crystal phase
cannot be described by the same equation except
infrequent cases of complete coherence of all steps.
In this way we arrive at the necessity to separate the
description of the negative crystal growth, the form
of a negative crystal being determined by the crystal
chemical structure of a solid reagent (in Fig. 2(c)
such a negative crystal is hatched).
The next point is the central one in this logical

chain: in simulating the negative crystal growth the
reaction front advance along the surface and into
the bulk must be described separately to take into
account the non-equivalence of surface and bulk
positions of a crystal structure. In other words, the
description must be basically two-dimensional. It is
worth noting that this is the direct consequence of
symmetry considerations rather than the way to

simplify the model representation at the expense of
decreasing the dimensionality. There is also a sound
formal argument. Reactions start at surfaces and,
hence, the two-dimensional nucleation is implied.
The geometric-probabilistic approach requires
that nucleation and growth must be of the same

dimensionality. Two-dimensional nucleation fol-
lowed by three-dimensional growth would be the
violation of the applicability conditions. In more

details these and some other arguments were

discussed in Korobov (1995b).
It is adequate to represent a growth pyramid as a

set of crystallographic planes parallel to the chosen
crystal face (Fig. 2(d)). This way of representing the
bulk crystal structure is widely used when surfaces
and their properties are concerned (see, for exam-

ple, Ashcroft and Mermin, 1976). The growth of a

negative crystal is described separately within each
plane (Fig. 2(e)), the bulk process being followed
layer-by-layer.

In this way the growth of negative crystals within
a separate crystallographic layer is becoming the
conceptually central object offormal description.
The next step is determined by the need to

represent the growth of a negative crystal in terms
of the geometry of the crystal space of a solid re-

agent. This may be done in terms of planigons, the
complete mathematical theory of which is devel-
oped in Delone et al. (1978) and Grtinbaum and
Shephard (1987). In the present context an impor-
tant advantage of this mathematical tool, in com-

parison with more habitual crystal lattices, is such a

characteristic as the extensional measure. Also,
along with symmetry planigons represent the com-
binatorial-topological structure ofthe crystal space
of a sample. Due to this the description is more

detailed: 46 types of planigons correspond to 17
two-dimensional crystallographic groups (Table I).
Figure 3(a)-(c) shows three possible planigon
structures corresponding to p4 symmetry group.

There exists one-to-one correspondence between
crystal lattices and planigons, and thus in passing
from the former to the latter we lose nothing with
respect to representing the chemical individuality of
a solid reagent.



TABLE The number of planigon tessellations corresponding to each two-dimensional crystallographic group

Symmetry Number of Symmetry Number of Symmetry Number of
group planigon types group planigon types group planigon types

pl 2 pmg 4 p3 2
p2 5 pgg 8 p31m 2
pm cmm 2 p3ml
pg 4 p4 3 p6 4
cm 3 p4m p6m
pmm p4g 2

(a) (b)

(l)

(e) (f)

FIGURE 3 (a)-(c) Three different planigon tessellations for p4 symmetry group, filled quadrangles denote tetrad symmetry
axes, filled triangles are asymmetric crystallographic points and show the centers of action of planigons; (d) the superposition of
the planigon tessellation (c) and corresponding Wigner-Seitz tessellation; (e,f) first steps of the evolution of a PTCA according
to the rule described in the text.
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From the formal viewpoint, a planigon tessella-
tion is a Dirichlet tessellation with respect to lattice
points. Each lattice point is the center ofaction of its
planigon. With this in mind, it is reasonable to use
another variety of Dirichlet tessellations, Wigner-
Seitz cells, for representing the translational sym-
metry of a sample (see, for example, Ashcroft and
Mermin, 1976). The Wigner-Seitz cell correspond-
ing to the planigon tessellation shown in Fig. 3(c) is
hatched by dots in Fig. 3(d). This makes it possible
to associate the reaction front advance with the
translational symmetry of a sample.
The superposition of a particular planigon

tessellation and corresponding Wigner-Seitz tes-
sellation (an example ofwhich is shown in Fig. 3(d))
forms the discrete space which represents full
enough the crystal chemical structure of a sample
and may be used for developing a discrete basically
two-dimensional description of solid state reaction
kinetics.

3.2. Discrete Time" From Geometry to Dynamics

In the above way the chemical individuality of a

solid reagent finds the proper representation in
terms of the geometry of the crystal space. To
integrate the chemical individuality into dynamic
models, they must be agreed with this geometry.
The way ofdoing this is determined by the preferred
local occurrence of a solid state reaction. Its chem-
ical essence was clearly interpreted by Langmuir
(1916): the very first reaction event promotes
substantially the entry of neighbouring atoms into
a reaction. With this in mind, the notion ofadjacency
is used to link geometry of the crystal space and the
dynamics of the reaction front advance. (Note that
this possibility exists only in two dimensions, see

Galiulin and Senchal, 1977.) From this viewpoint
one more advantage of Dirichlet tessellations is the
possibility to formalize this notion: two points, p-
and p/, of a discrete set of points {Pi} are termed
adjacent if their Dirichlet domains have a common
side.
The significant increase in the probability for

the given atom to participate in the elementary

single-barrier event provided that one of neigbour-
ing atoms has entered a reaction is represented as a

propagation (or transmission) of a reaction. In this
context discrete time may be introduced in two

ways: (i) assuming the equiprobability of propa-
gation from a given planigon to all adjacent sym-
metrically equivalent planigons, and (ii) assuming
the equiprobability of propagation from a given
Wigner-Seitz cell to all adjacent Wigner-Seitz
cells. The latter is a bit more rough (more large-
scaled) variant of the former.

Corresponding to this are two ways of formaliz-
ing the unrestricted growth of a separate negative
crystal: in terms of cellular automata and in terms
of concentric belts.

3.3. Discrete Dynamics of Unrestricted Growth:
Distributed Description in terms of
Cellular Automata

The above superposition of the tessellations may be
considered as a cellular automaton (CA), each cell
of which consists of planigons (as is shown, for
example, in Fig. 3(d)). (Some simple examples of
tessellation cellular automata are discussed in
Toffoli and Margolus, 1987.) Such CA will be
referred to as planigon tessellation cellular auto-
mata (PTCA). The only exception is the p
symmetry group, which serves in our context as a

link with conventional CA. It is represented by two
tessellations, hexagonal and rectangular, each cell
of which is the planigon and Wigner-Seitz cell
simultaneously.

In terms of CA, the local interactions are

represented as a set of rules according to which a
unit or a group of units (a planigon or a cell con-
sisted of planigons) may enter an evolving pattern.
First of all we will be interested in the rules that
take into account and make explicit the distinc-
tions between translational and non-translational
(point) symmetry of a crystal lattice with respect to
the reaction front advance.

Consider the planigon tessellations for p4 sym-
metry group shown in Fig. 3(c). Planigons in this
case are isosceles right triangles (Delone et al.,
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1978). All vertexes of the tessellation bear tetrad
axes but fall into two types depending on whether
four or eight planigons meet at the given vertex.
One of the simplest possible rules may be formu-
lated, for instance, as follows:

Two values, p 0 and p 1, are possible for a

planigon depending on whether it (or, more

accurately, an atom situated in its center of

action) has entered a reaction. Planigons with

p are shown by hatching.
Only two values, 0 and 1, are admitted as well for
a square cell.
The value c of a cell is determined by the values p
of component planigons, e.g.

c pl @P2 @P3 @p4 (3)

where ) denotes addition modulo 4.
If a planigon or a cell has taken on the value 1, no
further changes are possible for it (monotony
condition).
If a cell with the value 0 has in its yon Neumann
neighbourhood specified as a set of displacement
vectors in the form

(4)

at least one cell with the value 1, the reaction
front is advanced towards the boundary plani-
gon (Fig. 3(e)).

Note that this rule "keeps" the reaction front
inside the cell until all planigons of this cell have
entered a reaction. As a result, we get two alter-
nating forms of the evolving pattern (Fig. 3(e)
and (f)).
At first glance, the analogy between a regular

two-dimensional crystal lattice and a regular lattice
of sites of a conventional CA seems to be not only
obvious but also trivial. But in describing solid-
phase chemical reactions in terms of CA, the
correspondence between them is not direct. The
cells of the PTCA introduced are Wigner-Seitz
cells whereas a particular atom of the given sort

is represented in these terms by a planigon, in the
center of action of which it is situated. Thus, a

PTCA cell includes several translationally non-

equivalent lattice atoms. This interplay between
PTCA cells and planigons provides the possibility
to follow the way in which local chemical inter-

actions, describable in terms of planigons, are

transformed into involved symmetrical patterns
evolving with time in a complicated manner. Due
to this PTCA offer the broad possibilities for
formulating new rules that are adequate to the wide
variety of the experimentally observed localization
forms.

3.4. Discrete Dynamics of Unrestricted Growth:
Concentrated Description in terms of
Concentric Belts

Within the approach suggested the advance of the
reaction front is associated with the Wigner-Seitz
tessellation representing the translational symmetry
ofa sample. And the simplest discrete description of
the unrestricted growth is the description in terms

of Wigner-Seitz cells alone. This means that the
step of discrete time is taken to be a slightly more
large-scaled in comparison with cellular automata.

Though not so detailed, the unrestricted growth in
terms ofWigner-Seitz cells is analytically tractable.
This is material with the account that for the present
we have not developed enough analytical tools even
for simple one-dimensional cellular automata, as

noted in Feldberg et al. (1994).
Two-dimensional Wigner-Seitz cells may be

either hexagons or rectangles providing two kinds
of patterns (Fig. 4). At each step s (standing in this
case for the discrete time) one concentric belt is
added to the growing figure (nucleus).
We are interested in the number of cells C(s) that

are added at each step s. To find it, consider the
growing nucleus as a planar graph. Denote
the number of faces, edges and vertexes at step s

as F(s), E(s) and V(s) respectively. The Euler
characteristic

x= V-U+F (5)
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(a) (b)

FIGURE 4 Two possible types of concentric belts; inner and outer belts are shown by hatching.

is equal in this case to unity provided that the outer
face is not taken into account (Ore, 1962). In these
terms

C(s) F(s) F(s- 1)
[() (- )]- [V()- V(- )].

(6)

It may be shown (see Korobov, 1996a) that for a

separate belt

( )Eb(S-- 1)- --1 C(s@ 1) 2’ (7a)

(7b)

and

EB E 2u (8)

where indexes B and b refer to the external and
internal boundaries respectively (see Fig. 4), and u is
the number ofedges of a cell (i.e. either six or four in
the present context). Using the known relationship
(Ore, 1962) for the number of edges of a graph

2E uF + B (9)

one arrives at the second-order difference equation
forC

2C(s) C(s + 1) C(s- 1) 0 (o)

which may also be represented in the "one-step"
form

where u, (C(s), C(s + 1)) and

-1 2

Among various features of this description the
following three seem to be the most relevant to the
discussed points.

The reaction front advance is associated with
the translational symmetry of the crystal struc-
ture in terms of difference equations. This is
favourable with the account that the conven-
tional formalism is formulated in terms of
differential equations.
In these terms the growth rate of a separate
nucleus is linear. This result is obtained without
any special assumptions and is in agreement with
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much experimental evidence (see Barret, 1973;
Brown et al., 1980; Delmon, 1969 and references
therein).
This description of the unrestricted growth is
purely deterministic.

Thus, in terms of Wigner-Seitz cells it is possible to

separate linear deterministic part within essentially
nonlinear stochastic problem.
At this point we face an interesting interrelation

between deterministic and stochastic description.
Real phenomena and processes generally possess
both deterministic and stochastic features manifest-
ing them in a larger or smaller measure. In mathe-
matical description of a phenomenon, the routine
is to choose either deterministic or stochastic ap-
proach depending on the angle it is studied from. In
our context we face somewhat different situation:
a deterministic part may be singled out within
stochastic description, that enables one to get a
"chemical insight" into above geometrical univer-

sality. As is known, the organization of indetermi-
nistic elements into a system may generally result in
either enhancement or suppression of this indeter-
minism (Blechman et al., 1983). The latter is the
case when the surface atoms participating in the
naturally stochastic single-barrier events are orga-
nized into a crystal structure. Due to this, the
inherent chemical regularities of a solid state
reaction may be described in deterministic terms.

This determines, in its turn, the framework for
constructing stochastic part of the description.

3.5. Discrete Dynamics of Restricted Growth in
terms of Random Mosaics

In reality, the growth of any nucleus is restricted
by impingements with neighbouring nuclei. Sto-
chastic part of the problem is represented by two
interconnected phenomena: nucleation and nuclei
impingements.
One of the main difficulties in describing a solid

state reaction is that the above deterministic
regularities of the reaction front advance and sto-
chastic regularities of nuclei impingements belong

to different levels of the "micro-macro" scale. The
meaning of the terms micro and macro is conven-
tional and depends on a particular context. In the
present context the macroscopic level is represented
by the universal geometrical regularities of first-
order phase transitions. Whereas phase transitions
may occur without chemical transformations, any
solid state chemical reaction involves disappear-
ance and formation of phases proceeding through
nucleation processes. Accordingly, the above geo-
metry representing the chemical individuality of a
solid reagent must be also agreed with the geometry
of nucleation and nuclei impingements.
The latter may be described in terms of one more

variety of Dirichlet tessellations, random mosaics

(Moller, 1994; Okabe et al., 1992; Stoyan et al.,
1978). In representing various aspects ofa solid state
reaction in terms ofDirichlet tessellations one makes
use of the .fact that three varieties of this mathe-
matical notion, planigons, Wigner-Seitz cells, and
random mosaics, represent d(fferent levels of the
micro-macro scale.

Figure 5(a) shows an example of the random
mosaic. In the present context it may be interpreted
as the ultimate picture after the transformation is
completely finished. Thus, carefully prepared
metallographic lapping represents such a picture.
But another interpretation is also possible. Each
cell of a random mosaic may be considered as a

"rightful domain" of the seed situated in its center
of action. In other words, a seed appearing at some

arbitrary time will assume the form ofcorrespond-
ing cell at t---+ oc. Among various types of random
mosaics we will be interested in Voronoi tessella-
tions and Johnson-Mehl tessellations (see Moller,
1994; 1995; Okabe et al., 1992; Stoyan et al., 1978,
and references therein). In both cases the Poisson
nucleation is assumed. Voronoi case corresponds
to the situation when all nuclei appear at once
at t=0.

Edges of cells of a random mosaic are lines along
which neighbouring nuclei impinge, as is sketched
in Fig. 5(b). This makes it possible to simulate
nuclei impingements as the impingements of a
nucleus with the boundary of its cell. One may
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FIGURE 5 Genesis of "conversion-time curve in terms of random mosaics. Explanations are given in the text.

define the "local" geometrical degree of conversion
as the ratio of the area of the nucleus at time to the
area of corresponding cell and plot the "individual
kinetic curve" c(t) for each cell. The omnipresent
sigmoid curve "degree of conversion time",
observed experimentally, may be considered as the
average over all cells of random mosaic.

This gives an idea about the way in which
deterministic and stochastic parts of the problem
representing different levels of micro-macro scale
may be conjugated. The random mosaic is char-
acterized completely enough by its typical cell
(Moller, 1994; Okabe et al., 1992; Stoyan et al.,
1978). The typical cell is always a hexagon for which
the averaged area, averaged perimeter, and a num-
ber of other similar characteristics may be calcu-
lated analytically or estimated numerically. Figure
5(c) sketches a typical hexagon with the growing

nucleus inside it. The "individual kinetic curve" for
a nucleus, which is the center of action of the typical
hexagon, will represent the averaged picture.

Straight edges of the typical hexagon generally
correspond to the spherical form of nuclei. In
contrary to this, nuclei consisted from Wigner-
Seitz cells impinge along stepwise lines the features
of which were discussed in Korobov (1995a). To
take this into account, one has to construct the
typical hexagon in the proper metric (Fig. 5(d)).
Until the first impingement with the boundary the
growth is linear (Fig. 5(e)) and, therefore, is
described by the difference equation (11) for unrest-
ricted growth. In Korobov (1995a) it has been
shown that for the growing nucleus restricted by
one or two edges of a typical hexagon the linearity is
preserved but the slope is different and is deter-
mined by the mutual situation of the growing
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nucleus and restricting edges. This means that
Eq. (11) holds but u0 varies.

In the Voronoi case the random mosaic is time
invariant. This is not so for Johnson-Mehl random
mosaic, which represents the general case in the
present context. The typical hexagon is decreasing
all the time due to the appearance of new nuclei in
the course of a process. The following visual picture
corresponds to this: ever-decreasing averaged hex-
agonal cell with ever growing nucleus consisted of
Wigner-Seitz cells inside it (Fig. 5(f) and (g)). The
latter represents the linear deterministic part of the
description suggested whereas the former corre-

sponds to its stochastic part. Their interconnection
in both time and space are taken into account by
their impingements. Six impingements with the
edges and six impingements with the angles of an

averaged cell provide 12 discontinuity points on the
sigmoid c(s) curve, which may be described by 12
conjugated difference equations similar to (11):

where j is the consecutive number of a curve

segment. The value j corresponds to the unrest-
ricted growth. In this case C(0)=0 and C(1) is

equal to the number of planigon edges. The step

number cr is counted for each segmentj off the point
next to the corresponding discontinuity point
S/-1)’. o-- S(j) Sj-l) -- l, i.e. or-0 for the first

point of each segment. This discrete model corre-

sponds to the continual expression (2) for the rate.

In these terms the genesis of the always sigmoid
curve "conversion-time" may be followed and due
to this more information may be extracted in
comparison with the continual approach in the
framework ofwhich geometrical details ofimpinge-
ments are avoided.

4. CONCLUSIONS

The main stimulus for developing the discrete
alternative to the conventional continual descrip-
tion was to overcome the "chemical facelessness"
and to escape in this way the vicious circle of
discrimination issues. Though fairly dissimilar,
continual and discrete descriptions discussed above
have an essential common feature: in both cases we
remain within the "nucleation- growth impinge-
ment" conception, and in mathematical respect
both descriptions are geometric-probabilistic.
With this in mind, the main conceptual aspects of
the two approaches may be compared as follows.

Continual description

1. The main variable has the
geometric-probabilistic meaning alone

2. Applies to new phases formation
3. The chemical individuality of a solid

reagent is represented by scalar model
coefficients which is insufficient for
essentially nonlinear kinetic models

4. The routine is to represent the nucleation
as a purely temporal point process

5. Geometrical details of nuclei impingements
are taken into account implicitly. This ensures
a relative simplicity in obtaining the final results.
But in this way the deterministic part of the
description is completely "dissolved" in the
stochastic part, and the continual description
as a whole becomes purely stochastic

Discrete description

The main variable admits both chemical
and geometric-probabilistic interpretations

Applies to the original solid reagent
The chemical individuality of a solid reagent
is represented in terms of Dirichlet tessellations
with due account of the crystal chemical
structure.

Nucleation acquires a spatial representation in
terms of random mosaics, which is more adequate
to the spatial description of nucleus growth.

In the framework of the discrete approach a similar
"dissolution" would mean the loss of chemical
information. Accordingly, the account of nuclei
impingements is explicit: they are represented as
the impingements of a separate nucleus with the
boundary of the typical cell of corresponding
random mosaic
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It may be concluded that the two approaches are
fairly disparate in the interpretational capability as

well as in the computational efficiency and have
good grounds to complement each other in the
detailed close description of involved solid state
reactions. But for making the simulation as mean-
ingful as possible the first violin in their combina-
tion must be played by the discrete description
applied to the original solid reagent being repre-
sented as a chemical individual.
The other coin of penetration of the ideas and

methods of discrete dynamics into the field of
heterogeneous chemical kinetics is the possibility
to throw a bridge between the islands of homo-
geneous and heterogeneous kinetics. In passing
from homogeneous to heterogeneous kinetic sys-
tems we face considerable increase of physico-
chemical complexity. To answer the question what
increase in algoritmic complexity corresponds to
this would be interesting in the broad context of
developing discrete dynamical models and refining
discrete calculus. It seems that suggested approach
in terms of Dirichlet tessellations provides some

opportunities in this respect.
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