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Deep in the fascinating world of numbers there still might lurk useful insights into the pro-
cesses of the socio-spatial world. A rich section of the world of numbers is of course Number
Theory and its pantheon of findings, a part of which is revisited here.

It is suggested in this note that a smooth sequence of seemingly random periodic cycles
hides the absence of chaotic dynamics in the sequence. Put differently, a seemingly chaotic
sequence of periodic cycles, no matter the bandwidth, implies absence of chaotic motion at
any point in the sequence; and conversely, the presence of chaotic motion at any specific point
in the sequence implies smooth sequence of periodic cycles at any point in the sequence prior
to the onset of quasi periodic or chaotic motions.

To make this conjecture, the paper draws material from the well known property of
rational numbers in Number Theory, namely that the division of unity by any integer will
always produce a sequence of decimals in some form of periodicity. The conjecture is taken in
a liberally interpreted “Pythagorean type” context, whereby a general principle is suggested

to be present in all natural or social systems dynamics. Thus, the paper’s subtitle.
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1. SOME INTERESTING PERIODIC
PROPERTIES INVOLVING THE
DECIMALS OF THE UNIT’S
CERTAIN FRACTIONS

In commenting on an initial draft of this paper with
its emphasis on computer simulation, Professor
M. Sonis has suggested to this author* that the
great Swiss mathematician Leonhard Euler was
the first one, in the 18th century, to search into the

* Personal correspondence, October 1998.
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empirical regularities of Theoretical Arithmetics
and Number Theory by using numerical calcula-
tions. A reemergence of this idea is due to Ulam
(1964). Since then, a plethora of papers and books
have produced innumerable insights into what it
could be perceived as a rather esoteric mathematical
topic, enhanced by the modern power of comput-
ing. It is suggested here that Number Theory and
computing might not be as removed from social
sciences as they might first appear.
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A note at the outset: all properties presented
below have been obtained by computing; thus, all
propositions made here require formal mathemat-
ical proofs. No periodicity greater than 75 number
cycles is reported, except as a postulate.

What motivated this note, as a part of a series
of three closely connected papers, is the need for a
closer look at the approximations involved in vari-
ous divisions when social stocks are studied. It is
not so much the approximation itself which is of
import here, but rather the conclusions one might
draw from the study into the nature of these divi-
sions proper. More precisely, the paper elaborates
on the realization that when shares of stocks are
computed then certain properties inevitably appear
which characterize these shares. In computing the
shares of large stocks (as is the case when urban to
regional or to national population ratios are com-
puted), the ensuing probability always consists of a
stream of periodic (at times with a very large period)
decimals. These periodic sequences are “rationals”
as they are the outcome of divisions of integer num-
bers or fractions, Niven (1961) Chapters 2 and 3.

The study of rationals enjoys a very long and dis-
tinguished past in the history of mathematics in
general and Number Theory in specific, Adams and
Goldstein (1976) Chapter 1. At the start of any ra-
tional number sequence should be the study of the
unit’s divisors by all integers, something that one
fails to see in standard textbooks on rationals. Were
one to systematically study the behavior of these
specific rationals, then one might seek regularities,
or distinct properties, governing their periodicity.

As this paper demonstrates, the periodic se-
quence of decimals of the unit’s divisions by inte-
gers, although apparently not random, does not
seem to obey any predictable rule either; i.e., there
does not appear that periodic sequences of increas-
ing period occur at expected intervals as one moves
up the magnitude of integer divisors; but neither

does it appear that these sequences are random, as
one moves up the fractions’ scale. Also noteworthy
is the fact that small periodic sequences in decimals
appear no matter the position in the fractions’ scale
(from 1/1 to 1/r, where r is very large). Since these
periodic sequences are to an extent no chance
events, the question arises as to whether there are
a few underlying principles generating at least cer-
tain among them.* Similar questions arise with di-
visions involving physical, chemical or other social
and economic stocks (for example, intercurrency
conversions).

In searching for answers to these initial ques-
tions, two general properties underlying periodic
cycles in streams of decimals are uncovered: first,
there seem to be some prime numbers with asso-
ciated periodic sequences which dominate; and
second, periodic sequences can be constructed
as accumulations of successively higher powers of
numbers. Both of these properties are uncovered
for the first time here, to the author’s knowledge.

There seems to be certain linkages between pe-
riodic behavior in decimal streams of the unit’s
divisions, and a variety of events already recorded
in numerous mathematical branches, particularly
those associated with nonlinear dynamics. Thus,
the Pythagorean universality of this paper’s title is
justified.

1A. First Set of General Properties

A special set of fractions are examined in this paper:
that set which represents the unit’s division by any
other integer. The division produces a stream of
decimals which falls into one of the following three
distinct categories:

(a) Fixed point This type of decimal stream
contains a finite number of digits, at most six deci-
mals in the spectrum (1/2...1/101), involving the
division 1/64 =0.015625, and at most ten decimals

T This paper, in conjunction with two other papers by the author titled “Iterates” and “Oddities” (still under construction) comprise

the three paper sequence.

#One may ask the question in view of the information we now have on the periodic motions involved in nonlinear dynamics.
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in the spectrum (1/2...1/2001) that this paper
has looked at (with an aperture of 75 decimal
approximation), involving the fraction 1/1024 =
0.0009765625; there are fourteen fixed points in
the interval (1/2...1/101).

(b) One-number (1-n) cycle This type of deci-
mal sequence usually (but not necessarily) con-
tains two parts: a (varying and nonperiodic) set of
decimals (to be called a dendrite, the longest one
appearing in the interval (1/2...1/101) at 1/96=
0.010416..., consisting of five digits); and an
infinite series of 1’s, 2’s, 3’s, 57s, 6’s, 7’s or 9’s to
be referred to as a 1-n.1, 1-n.2,...1-n.9 cycle se-
quence respectively. The fixed point type decimal
sequence could also be looked at as a 1-n.0 cycle
with a dendrite. However, its distinct type will be
retained, due to the fact that such cycles have an
exact (and not an approximate) depiction depicted
by its dendrite. There exist two 1-n.1, one 1-n.2,
five 1-n.3, one 1-n.5, five 1-n.6, one 1-n.7, and one
1-n.9 of these cycles (in total 16 out of 101 divi-
sions) in the spectrum (1/2...1/101). Thus, all
single digit cycles are encountered with the excep-
tion of a 1-n.4 and a 1-n.8 cycles. The relatively
high frequency of 1-n.3 and 1-n.6 periodic cycles
is noted in this part of the spectrum. In the spec-
trum (1/2...1/2001) there are four 1-n.1, three 1-
n.2, fourteen 1-n.3, three 1-n.4, four 1-n.5, thirteen
I-n.6, two 1-n.7, two 1-n.8 and one 1-n.9 period
cycles. Again, the relatively high frequency of the
1-n.3 and 1-n.6 cycles is noted, as well as the rela-
tive rarity of the 1-n.9 cycle. Further, it is re-
marked that as the size of the spectrum increases
20-fold, the overall frequency of these one-decimal
periodic cycles decreases considerably.

() A periodic cycle of decimals This type
of decimal stream may involve a dendrite. For
example, in the interval 1/2...1/101, at 1/88 =
0.0113636. .. there is a three digit (011) dendrite
and it is followed by a 2-n cycle (thirty-six). In the
interval 1/2...1/101 one encounters 2-n (seven),
3-n (four), 4-n (one), 5-n (two), 6-n (fifteen), 8-n
(one), 9-n (one). In total, there are 31 of these
types of periodic cycles in this interval of integer
divisors of unity.

The single 4-n periodic cycle is found at the divi-
sion 1/101 =0.0099..., the single 8-n cycle is at
1/73=0.01369863. .., whereas the single 9-n peri-
odic cycle corresponds to the division 1/81=
0.012345679. . .; the relatively high frequency of
3-n and particularly 6-n periodic cycles is noted; no
7-n cycle has been encountered in this interval, see

TABLE I Cumulative frequencies of periodic cycles in unit’s
fractions decimal streams

Period I 1 11T v v VI
2 4 11 24 31 36 40
3 2 6 19 28 34 39
4 — 1 5 9 12 15
5 — 2 10 18 23 27
6 9 27 74 109 135 156
7 — — 2 4 7 8
8 — 1 9 17 25 30
9 — 1 3 5 6 7

10 — — 2 3 4 5

11 — — — — — —

12 — -— 2 2 4 4

13 — 2 14 24 30 36

14 — — — — — —

15 — 3 13 20 28 33

16 2 7 20 30 36 44

17 — — — — — —

18 2 7 25 40 56 67

19 — — — —

20 — — — — — —

21 — 2 10 15 20 25

22 2 6 20 28 37 41

23 — — — — — —

24 — — — 3 4 9

25 — - — — — —

26 — — — 3 4 7

27 — — 2 4 5 6

28 — 3 14 24 32 37

29 — —— — — — —

30 — — 9 19 32 42

31 — — — — — 1

32 — — 2 6 12 15

33 — 1 6 9 13 17

34 — — 4 8 12 13

35 — 1 6 11 15 18

36 — — — — — 1

37 — — — — — —

38 — — — — — —

39 — — — — 1 2

40 — — — — — —

41 — 1 5 9 13 15




136 D.S. DENDRINOS

TABLE I (Continued)

Period I II 11 v
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43 —
44 —
45 _
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47 _
48 —
49 —
50 — —
51 — —
52 - —
53 — —
54 —
55 — —
56 — —
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59 — —
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60 —
61 —
62 —
63 — — — —
64 —
65 — — — —
66 — 5
67 — — — —
68 — — — 1
69 — — 1 3
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70 —
71 — — —

72 — — — —
73 —
74 — — — — — —
75 —
>75 — 1 102 330 604 908
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Note 1: Only periodic motions (plus the dendrite) equal to or less
than 75 were examined.

Note 2: The six domains in the spectrum of integer unit divisors,
for which cumulative frequencies of periodic sequences were
computed, are: I identifies periodic frequencies between 1/2
and 1/50; II identifies periodic frequencies between 1/2 and
1/101; 111 identifies periodic frequencies between 1/2 and 1/500;
IV identifies periodic frequencies between 1/2 and 1/1000;
V identifies periodic frequencies between 1/2 and 1/1500; and
VI identifies periodic frequencies between 1/2 and 1/2001.

Table I. In the interval (1/2...1/2001) there are
one-hundred and fifty-six 6-n cycles, by far the most
frequently encountered periodic sequence in the
decimal fractions of unity. Following the 6-n period
cycle’s frequency, one finds the 18-n (sixty-seven)

and 42-n (fifty-six) cycles, Table I. A few hints as to
why will be given later.

1B. Second Set of General Properties

In examining the location of the various cycles
when they first appear, a number of observations
are possible. Period 6-n appears at 1/7; the first 16-n
cycle appears at 1/17; the first 18-n at 1/19; 22-n at
1/23;28-n at 1/29; 46-n at 1/47; 58-n at 1/59; 60-n at
1/61, Table II. All these periodic sequences (where
the period n is at location 1/(n + 1)), when they first
appear, have no dendrite associated with them,
Table III, and they correspond to prime number
divisors (i.e., n+ 1 are all primes).

The case of the 96-n periodic sequence, appearing
at 1/97, is shown in Table I1I: since 1/97 is not as-
sociated with any of the frequently encountered pe-
riodic sequences, the hypothesis was tested whether
it might be the location of the first 96-n periodic
cycle. This proved to be the case. Consequently, one
might expect that prime number divisors, desig-
nated as N, are either points in the spectrum of
numbers associated with a set of frequently encoun-
tered periodic sequences, or the beginning point of
N — 1 periodic cycles.

Period 15-n appears at 1/31; 21-n at 1/43; 33-n at
1/67;35-nat 1/71;41-nat 1/83; 44-n at 1/89; 53-n at
1/107, Table 1. All these periodic sequences (where
the period nis atlocation 1/(2n + 1)), when they first
appear have no dendrite associated with them, too,
and they also correspond to prime number divisors
(i.e., 2n+ 1 are all primes), Table III.

When the 43-n period sequence first appears at
1/173, Table I1, it happens that 173 =4n + 1; 69-n at
1/277, where 277 =4n+ 1, Table I11.

The 34-n period first appears at 1/103, where
103=3n+1, Table III. 103 is also a prime
number.

The sequence in obtaining periodic streams of
decimals as the magnitude of the divisors increase,
Table 111, observes the following rules: first, a fixed
point is obtained at 1/2=0.5; it is followed by a
I-n3cycle at 1/3=0.3...; at 1/7=0.142857... the
first six period (6-n) cycle appears; at 1/11 =0.09. ..
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TABLE II First appearance of periodic sequences
Period First Period First Period First Period First Period First
appearing at appearing at appearing at appearing at appearing at

2 11 17 ? 32 353 47 ? 62 ?

3 27 18 19 33 67 48 119 63 ?

4 101 19 ? 34 103 49 ? 64 ?

5 41 20 ? 35 71 50 251 65 ?

6 7 21 43 36 1919 51 613 66 161

7 239 22 23 37 ? 52 521 67 ?

8 73 23 ? 38 ? 53 107 68 920

9 81 24 511 39 1431 54 856 69 277
10 324 25 ? 40 ? 55 760 70 781
11 ? 26 583 41 83 56 928 71 ?
12 390 27 243 42 49 57 ? 72 1387
13 53 28 29 43 173 58 59 73 ?
14 ? 29 ? 44 89 59 610 74 ?
15 31 30 211 45 ? 60 61 75 ?
16 17 31 1621 46 47 61 733

the first 2-n period cycle is encountered; at 1/17 the
first 16-n periodic sequence is obtained, whereas at
1/19 the first 18-n cycle comes up.

The division 1/81=0.0123456790... produces
the first and only 9-n period cycle in the interval
(1/2...1/101), whereas, the division 1/101=
0.0099. .. results in the first and only 4-n cycle in
the set of divisions within the above interval
(interval II of Table II).

With the exception of the first fixed point (at 1/2)
and the case of the first 3-n period cycle (at 1/27),
all other transitions to a new phase involve divisions
by a prime number.

A 3-n periodic cycle commences, as already
noted, at 1/27 (where 27 is not a prime number);
it appears next at 1/37, where 37 is a prime num-
ber. One may ask why is it so, and what particular
value is associated with 27 =3*. This topic will be
addressed at another occasion. Note that 1/27 =
0.037037...and 1/37=0.027027...

In general, periodicity associated with prime
number divisors has always zero length dendrites.
Put differently, if there is a dendrite in the periodic
sequence of decimals in a unit’s divisor, then this
divisor is not a prime number; but the opposite does
not necessarily hold, since periodic sequencing
without dendrites might involve nonprime number
divisors.

2. DOMINANCE OF CERTAIN PRIME
NUMBER DIVISORS

When unity is divided by a multiple of certain
prime numbers, then some dominance patterns
emerge. Some of these dominance patterns are as
follows:

Rule 1 The divisor 11 x 5=55 will behave as the
divisor of 11 (i.e., it will exhibit a 2-n periodic
cycle). Thus, prime number 11 dominates prime
number 5, or 11DS5.

Rule 2 The divisor 7 x 11 =77 will behave as the
divisor of 7 (i.e., it will exhibit a 6-n periodic cycle).
Thus, prime number 7 dominates prime number 11,
or 7DI1.

Rule 3 Since 7D11 and 11D5 it must follow that
7D5 which is the case. For example, 1/35 behaves
as 1/7 (i.e., it exhibits a 6-n periodic cycle).

Rule 4 The divisor 3 x 5=15 will behave as the
divisor 3, thus 3D5.

Rule 5 The divisor 7 x 3=21 will behave as the
divisor 7, thus 7D3.

Rule 6 The divisor 3 x 11 =33 will behave as the
divisor 11, thus //D3.

Comment Consequently, so far, the following
dominance pattern has been established:
7D11D3DS5.
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TABLE III The Periodic Table of unit fractions by integers less than 103*

Division

Behavior Comment Prime
divisor (p)

1/2=0.5 fixed point (fp)
1/3=0.333... 1-n.3 cycle first 1-n cycle p
1/4=0.25 fp
1/5=0.2 fp p
1/6=0.16... 1-n.6 cycle one digit dendrite
1/7=0.142857. .. 6-n cycle first 6-n cycle p
1/8=0.125 fp
1/9=0.111... 1-n.1 cycle
1/10=0.1 fp
1/11=0.09... 2-n cycle first 2-n cycle p
1/12=0.083... 1-n.3 cycle two digit dendrite
1/13=0.076923. .. 6-n cycle p
1/14=0.0714285. .. 6-n cycle one digit dendrite
1/15=0.06... 1-n.6 cycle one digit dendrite
1/16=10.0625 fp
1/17=10.0588235294117647. .. 16-n cycle first 16-n cycle p
1/18=0.05... 1-n.5 cycle one digit dendrite
1/19=0.052631578947368421. .. 18-n cycle p
1/20=0.05 fp
1/21=10.0476190. .. 6-n cycle
1/22=0.045. .. 2-n cycle one digit dendrite
1/23 =0.0434782695652173913. .. 22-n cycle p
1/24=0.0416... 1-n.6 cycle three digit dendrite
1/25=10.04 fp
1/26=0.0384615. .. 6-n cycle one digit dendrite
1/27=0.037... 3-n cycle first 3-n cycle
1/28=0.0357142857. .. 6-n cycle four digit dendrite
1/29=10.0344827586206896551724137931. .. 28-n cycle p
1/30=0.03... 1-n.3 cycle one digit dendrite
1/31=10.032258064516129. .. 15-n cycle p
1/32=0.03125 fp
1/33=0.030... 2-n cycle
1/34=0.02941176470588235. .. 16-n cycle one digit dendrite
1/35=0.0285714. .. 6-n cycle one digit dendrite
1/36=0.027... 1-n.7 cycle two digit dendrite
1/37=0.027... 3-n cycle p
1/38 =0.0263157894736842105. .. 18-n cycle one digit dendrite
1/39=0.025641... 6-n cycle
1/40=0.025 fp
1/41=0.02439... 5-n cycle first 5-n cycle p
1/42=0.0238095... 6-n cycle one digit dendrite
1/43 =0.023255813953488372093. .. 21-n cycle p
1/44=0.0227... 2-n cycle two digit dendrite
1/45=10.0222... 1-n.2 cycle one digit dendrite
1/46 =0.02173913043478260869565. . . 22-n cycle one digit dendrite
1/47=0.0212765957446808510638297872340425531914893617. .. 46-n cycle p
1/48 =0.02083. .. 1-n.3 cycle four digit dendrite
1/49 = 0.020408163265306122448979591836734693877551. .. 42-n cycle
1/50=10.02 fp
1/51=0.01960784313725490. . . 16-n cycle
1/52=0.01923076. .. 6-n cycle two digit dendrite
1/53=0.0188679245283. .. 13-n cycle first 13-n cycle p
1/54=0.0185... 3-n cycle one digit dendrite
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TABLE III (Continued)

Division Behavior Comment Prime
divisor (p)
1/55=0.018... 2-n cycle one digit dendrite
1/56=0.017857142. .. 6-n cycle three digit dendrite
1/57=0.017543859649122807. .. 18-n cycle
1/58 =0.01724137931034482758620689655. . . 28-n cycle one digit dendrite
1/59=0.0169491525423728813559322033898305084745762711864406779661. . . 58-n cycle p
1/60=0.016... 1-n.6 cycle two digit dendrite
1/61 =0.016393442622950819672131147540983606557377049180327868852459... 60-n cycle p
1/62=0.0161290322580645. .. 15-n cycle one digit dendrite
1/63=0.015873... 6-n cycle
1/64=0.015625 fp
1/65=0.0153846. .. 6-n cycle one digit dendrite
1/66=0.015. .. 2-n cycle one digit dendrite
1/67=0.0149253731343283582088955223880597. .. 33-n cycle p
1/68 =0.014705882352941176. .. 16-n cycle
1/69=10.0144927536231884057971. .. 22-n cycle
1/70=0.0142857.... 6-n cycle one digit dendrite
1/71=0.01408450704225352112676056338028169. . . 35-n cycle p
1/72=0.0138. .. 1-n.8 cycle three digit dendrite
1/73=0.01369863. .. 8-n cycle first 8-n cycle p
1/74=0.0135... 3-n cycle one digit dendrite
1/75=0.013... 1-n.3 cycle two digit dendrite
1/76 =0.01315789473684210526. . . 18-n cycle two digit dendrite
1/77=0.012987... 6-n cycle
1/78 =0.0128205. .. 6-n cycle one digit dendrite
1/79=0.012658227848]1. .. 13-n cycle p
1/80=0.0125 fp
1/81=0.012345679. .. 9-n cycle first 9-n cycle
1/82=0.012195. .. 5-n cycle one digit dendrite
1/83=0.01204819277108433734939759036144578313253. .. 41-n cycle p
1/84=0.01190476. .. 6-n cycle two digit dendrite
1/85=0.01176470588235294. .. 16-n cycle one digit dendrite
1/86 =0.0116279069767441860465. . . 21-n cycle one digit dendrite
1/87=10.0114942528735632183908045977. ... 28-n cycle
1/88=0.01136... 2-n cycle three digit dendrite
1/89=10.01123595505617977528089887640449438202247191. .. 44-n cycle p
1/90=0.01... 1-n.1 cycle one digit dendrite
1/91=0.010989... 6-n cycle p
1/92 =0.010869565217391304347826. .. 22-n cycle two digit dendrite
1/93=0.010752688172043. .. 15-n cycle
1/94=10.01063829787234042553191489361702127659574468085. . . 46-n cycle one digit dendrite
1/95=0.0105263157894736842. .. 18-n cycle one digit dendrite
1/96=0.010416. .. 1-n.6 cycle five digit dendrite
1/97=10.0103092. .. 96-n cycle** p
1/98 =0.010204816326530612244897959183673469387755. .. 42-n cycle one digit dendrite
1/99=0.01... 2-n cycle
1/100=0.01 fp
1/101=0.0099... 4-n cycle first 4-n cycle p
1/102 =10.00980392156862745. .. 16-n cycle one digit dendrite

*All calculations were carried out at a 75-digit approximation.

**As an experiment, the 1/97 sequence was computed to test whether a prior “expected” 96-n cycle would indeed appear, by using 120
decimals in length sequence; the expectation was realized. See text for more discussion.
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Rule 7 The divisor 13 x 11 =143 will exhibit the
behavior of 13, i.e., a 6-n period cycle. Thus:
13D11D3D5. Among primes 7 and 13 there does
not arise a question of dominance, since both pro-
duce 6-n period cycles.

Rule 8 The divisor of unity 17x7=119 (or
17 x 13=221) will behave neither as that of 17
(with a 16-n cycle) nor that of 7 and 13 (with a 6-n
cycle); in effect 1/119 and 1/221 both exhibit a 48-
n cycle. Thus, the 16-n cycle resulting from 1/17 is
a killer prime of frequencies with respect to both
7 and 13. Consequently, here lies the answer to
the initial question motivating this paper: large
number divisors of the unit tend invariably to pro-
duce very large number periodic streams because
of the killer properties of the 16-n cycle over all
other smaller period streams.

Comment The killer property of 17 (and 19) and
the relative dominance of 7 and 13 among prime
numbers may hint at the high frequency of the 16-
n (and the 18-n), as well as that of the 6-n period
cycles in the Periodic Table (Table I). Thus, 17 may
be dominant not because there are many multiples
of 17 in any interval (I, I1, ..., VI), but because of
its killer property.

The same rationale may apply to 7 and 13 with

regards to the 6-n cycle, as well. Consequently,
dominance is afforded a prime number because of
the frequency of its underlying behavior, and not
because of its relative magnitude.
Rule 10 Any divisor of unity by an integer which
is not a prime but a multiple of one or more
prime(s) will behave as the dominant prime num-
ber. All prime numbers dominate all nonprime
numbers which are not multiples of primes.

Professor Sonis¥ has remarked to the author, in
response to a prior draft of this paper, that the dual
representation of the rational numbers will result in
the symbolic dynamics introduced by Thue (1906)
and Morse (1921), and used by Metropolis et al.
(1973) for the presentation of “universal se-
quences,” see Schroeder (1991) and Hao (1983).

YPrivate correspondence, October 1998.

One might profitably ponder the question what the
dominance patterns, identified above, and the cycle
accumulation phenomenon (to be addressed below),
might imply for these universal sequences. Among
other things, they might set “markers” for separa-
tion domains in these sequences.

3. ON THE NATURE OF CERTAIN
PERIODIC BEHAVIOR: CYCLE
ACCUMULATION

The discussion which follows, beyond its mathe-
matical interest, presents the opportunity to derive
some fundamental underlying principles in socio-
spatial (and possibly even natural) systems. It is
shown that the decimal sequences of certain
rational numbers is but an accumulation of a well
identified sequence of cycles. This finding may shed
some light into the nature of socio-spatial periodic
dynamics, as the composites of temporal (hourly,
daily, weekly, monthly, seasonal, yearly, etc.)
cycles; as well as spatially dominant (urban, re-
gional, national, global) cycles.

First, a brief look into some periodic decimal
streams will be taken. The inverse of 7 is a 6-n cycle
(1/7=0.142857...); this cycle is simply the accu-
mulation of successively higher powers of 2, multi-
plied by 7, and occupying two decimal places each,
as follows:

14 28 57 14 28 57...
56
112
2 24
4 48
8 96
17 92
14 28 57 14 28 56
1 13 9
57
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so that: 14=2x7; 28=2*x7; 56=23x7; 112 =
2'x7; 224=2°x7T, 448=2°x7, 896=2"xT;
1792 =2%x 7, etc. The accumulation of these
powers of 2 occurs as indicated above.

Another similar cycle is the inverse of 13, another
6-n cycle: 0.076923... This specific cycle involves
again two decimal spaces and successively higher
powers of 9 multipied by 7 as follows:

0.07 63
5 67
51 03
0.07 68
1 18 03
69

sothat, 7=7 x 9% 63 =7 x 9'; 567 =7 x 9% 5103 =
7 % 93, etc. .. The accumulation occurs as indicated
above with decimal units carried over to the ap-
propriate locations and with the additions shown
under the lines drawn.

Next, a longer periodic stream of decimals is
analyzed. Consider the inverse of 19 which is a 18-n
cycle, see Table III. This is a two-decimal spaces
accumulation of simple powers of 5, as shown
below:

0.05 25
1 25
6 25
31 25
1 56 25

0.05 26 31 57 81

so that the terms shown above involve the first (5),
second (25), third (125), fourth (6295), fifth (3125)
and sixth (15625) powers of 5. They have been
accumulated appropriately. Thus, the 18-n periodic
stream of decimals is nothing but a sequence and
accumulation of simple powers of 5. The key is that
each of these successively higher powers of 5 occupy
two decimal spaces.

Some definitions and nomenclature: In the
following 6-n sequence (or power accumulation)
involving the inverse of 112 (an integer equal to
2*x 7) and a four digit dendrite (0089), Table III,
1/112=0.0089285714285714... one observes the
following: there is a two-digit space over which
products of 91 accumulate. The two-decimal
spaces area will be referred to as the box-2 space;
the first 0 which is outside the boxed area is of
course the one digit dendrite of the power accumu-
lation sequence; the prime number 7 (seemingly
a prime number is always present in a periodic se-
quence broken down to an accumulation of prod-
ucts or powers of usually another number) is the
base; the number 91, products of which here accu-
mulate (91, 182,364, 728, etc.), is a product seed.

If powers of the seed accumulate, like in the case
of 1/19, the example previously shown, then thisis a
power seed; the product number (here 2, as the seed
is successively doubled) is the multiplier; in the case
of exponentiation, it would be referred to as the
power.

Another solved case of a periodic stream in-
volving power accumulation is that of 1/47=
0.02127659574... a 46-n periodic sequence, see
Table III. This sequence involves an accumulation
of powers of 6 (the power seed 6 =2 x 3, prime
number 3 being the base), with 02 being the two-
digit power accumulation dendrite; the box-2 space
allows for accumulation of: 2 x 6>=72, 2x 6> =
432,2 x 6*=2592,2 x 6> =15552.

An informative behavior, see the paper on
“QOddities” by the author, regarding rules involved
in series of sequences, is found in the periodic
streams of the region of inverses for the numbers
991-999: the 1/998 (a periodic sequence greater
than 75 digits) is formed by accumulation of powers
of 2 over a box-4 space; 1/997 (also a periodic se-
quence with a period greater than 75 digits) involves
powers of 3; 1/996 (a 41-n periodic sequence) is
an accumulation of powers of 4; 1/995 (a periodic
sequence with period greater than 75) involves
powers of 5; 1/994 (with a period greater than 75,
too) is an accumulation of powers of 6; 1/993 (with
a period greater than 75, as well) involves powers
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of 7; 1/992 (a 15-n periodic cycle) has powers of 8;
1/991 (with a period greater than 75) has powers of
9; and 1/990 (a 2-n periodic cycle) involves powers
of 10. A similar case is found in the region of
inverses at 490—499.

But there are other periodic streams of decimals
which do not succumb to such power accumulation;
an informative example is the inverse of the first
16-n cycle stream encountered in the Periodic
Table, that of 17. This finding forces one to recog-
nize the existence of at least two types of periodic
streams, a false (like the one of 1/19) and a genuine
one (like that of 1/17).

4. OTHER SOLVED SEQUENCES OF
POTENTIAL INTEREST

Next, a number of other sequences are presented,
because they seem to indicate some fertile grounds
for further work. All of the sequences given below
have been solved in terms of their underlying prin-
ciples giving rise to them. Since these cases identify
sequences consisting of variations of previously
established themes, they might possibly be indicat-
ing that the study of rationals hides still yet more
interesting cases.

Take for instance the inverse of 970: 1/970 =
0.00103092783505 ... ; this is a periodic sequence
with a period greater than 75 digits, with products
of 10 accumulating over two-space areas. The exact
specifications are: box-2, two-digit power accumu-
lation dendrite (00), prime number 3 is the base,
number 10, is the product seed, number 3 is the
multiplier; the first six products of the sequence are:
10, 30, 90, 270, 810, 2430.

Another solved case of a periodic sequence is that
of 1/358 =0.0028011204480... The specifications
are: box-4, one-digit dendrite (0), prime number 7
the base, product seed is 280 (2° x 5 x 7), and 4 is
the multiplier. The three first numbers accumulat-
ing are: 280, 1120 =280 x 4, and 4480 =1120 x 4.

Another case solved is the inverse of 989; 1/989 =
0.00101112234580384. .. a greater than 75 period
sequence. The first three boxes are filled with

numbers in sequence (10, 11, 12), whereas the rest
of the boxes (at least up to the next eight) are filled
with products of the number 23 (2 x 12 — 1). The
sequence of productsis: 23,45,91, 184,368, ... The
specifications of the sequence are: box-2, eight-digit
dendrite (itself a sequence, as indicated), prime
number 23 is the base, also being the product seed,
number 2 is the multiplier. There could be more
breaks in this sequence, which the author (due to
the computing limitations used) could not detect.

1/35=0.0285714285714. .. is a 6-n cycle, which
involves accumulations of products of 28; the exact
specifications are: box-2, one digit dendrite (0),
prime number 7 is the base (35=35 x 3?), product
seed is 28 (7 x 2?), and 2 is the multiplier. The first
five numbers accumulating are: 28, 56, 112, 224
and 448.

The 6-n period sequence of the inverse of 28 is
1/28 =0.0357142857142857. . . ; thisis an accumula-
tion of products of 14. The exact specifications are:
box-2, four-digit dendrite (0357 =51 x 7), prime
number 7 is the base, 14 is the product seed, number
2 is the multiplier; the first five numbers accumulat-
ing are: 14, 28, 56, 112 and 224.

Another type of accumulation is that of the
periodic sequence 1/38 =0.02631578947... Here,
the sequence is: 26, 2 x 26 —5°=31, 2x 31 —5'=
57,2%x57—-5"=89,2x 89— 5 =53,2x 53— 5=
—519, =2 x 519+ 5% ... (yet to be studied). Also,
sequences of some interest along similar lines are
those involving the inverse of 38 =2 x 19, and 26 =
2 x 13. They are left to the interested reader to
unfold, as an exercise.

5. CONCLUSIONS: THE IMPOSSIBILITY
OF CHAOS IN SOCIO-SPATIAL
DYNAMICS

The paper presented a conjecture, namely that
if rational numbers are any indication, then one
ought not to expect mathematical chaos in socio-
spatial (and even possibly, natural science) systems.
In particular, impossibility of chaotic dynamics in
socio-spatial systems at least is partly supported
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by the empirical fact that smooth variations in
any social parameter does not generate period
doubling behavior. No empirical evidence, to this
author knowledge, has been presented to violate this
assertion.

A second finding of possible interest has been
that of “cycle accumulation” found in seemingly
random sequences of periodic motions in the deci-
mals of rational numbers. This finding might sug-
gest that socio-spatial (and possibly natural science)
systems are governed by the presence of simulta-
neous cycles ranging from temporal ones (hourly,
daily, weekly, monthly, yearly, or seasonal cycles),
as well as spatial ones (urban, regional, national,
global cycles).

Obviously, the next step in this line of inquiry
would be to consider the role of nonrational
numbers and their relationship to rational ones in
reference to the chaotic sequence of decimals they
possess (such as the sequence of decimals in 7). A
second extension of this work might also be the use
of these findings to better understand the role of
approximations; necessary approximations found
in the recordings of rational numbers might prove
that all socio-spatial systems are properly to be
characterized as “simulated or modeled” rather
than “real.” In effect, this approximation might

rob all socio-spatial systems from their “reality,” no
matter the tool used to study and analyze them.
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