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This paper has considered a novel approach to structural recognition and control of nonlinear reaction-
diffusion systems (systems with density dependent diffusion). The main consistence of the approach is
interactive variation of the nonlinear diffusion and sources structural parameters that allows to
implement a qualitative control and recognition of transitional system conditions (transients). The
method of inverse solutions construction allows formulating the new analytic conditions of
compactness and periodicity of the transients that is also available for nonintegrated systems. On the
other hand, using of energy conservations laws, allows transfer to nonlinear dynamics models that gives
the possiblity to apply the modern deterministic chaos theory (particularly the Feigenboum’s universal

constants and scenario of chaotic transitions).
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INTRODUCTION: NONLINEAR DIFFUSION-
REACTION SYSTEMS AND SELF-
ORGANIZATION IN ACTIVE MEDIA

The self-organization mechanisms in complex nonlinear
systems of reaction-diffusion type are considered. In
recent paper (Gontar, 2000) the necessity of new principle
and mathematical model for the dynamics of complex and
living systems is presented. Underlined the need for
careful using differential equation (DE) for chaotic and
living systems. Solutions of DE and corresponding
difference equations should converge when the difference
in initial conditions tends to zero. As opposed this, from
mathematical point of view, a small amount of information
can lead to drastic changes in living systems. On the other
hand, in author’s paper (Kardashov, 1999) the so called
finite control and recognition methods are suggested for
investigation of transitional waves (transients) arising in
active media with nonlinear diffusion or dispersion
features. These methods propose the using of conservation
laws and corresponding phase plane portrait for structural
analysis of the system transitional conditions, level of self-
organization and transition to deterministic chaos. The
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main component of this approach is interactive variation
of nonlinear diffusion and source parameters. A general
concept of diffusion stimulation of the evolutionary
processes was proposed by Talanov (1983). It should be
noted that the nonlinear reaction-diffusion models and
corresponding nonlinear phenomena was developed in a
lot of recent papers (for example, in (Rosenau and Hyman
(1993)) and (Li and Oliver (1997)). Analytical investi-
gations and computer simulation of patterns in blood flow
through branches and large vessels are considered by
Einav et al. (1990), Elad et al. (1991) and Kardashov and
Einav (1997). A constitutive equation for concentrated
suspensions that accounts the shear-induced particle
migration (Phillips et al., 1992) can be presented as
nonlinear reaction-diffusion models of the blood flow in
large vessels. On the other hand, in recent papers (see, for
example I. Cohen et al., 1998) nonlinear reaction-
diffusion models were developed for studies of bacterial
branching growth and bacterial cooperative self-organiz-
ation.

The main goal of this paper is to develop the
mathematical models of transitional waves structural
self-organization and control associated with nonlinear
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reaction-diffusion systems (see references Sanches-Garduno
et al., 1996).

For the most part of recent articles are considered the
semi-linear models (starting by the classical work
(Kolmogorov et al., 1937)) that describe the processes
with linear diffusion and nonlinear sources. Correspond-
ing transients characterized by infinite transition time and
unbounded spatial intention. We consider models with
nonlinear diffusion that associated with finite localized or
periodic transitional waves (FPTW). The nonlinear
diffusion-reaction models describe wave propagation in
active media (see for instance (Mikhailov, 1991)).
Furthermore will be shown the feasibility of these models
for mathematical description of pulse propagation in
cardio-vascular system, that may be considered as
complex self-organization process determined by inter-
action of blood flow dynamics with input impedance of
arteries and vessels (see (Westerhof, 1995)). On the other
hand, at recent years the new discrete dynamics of
complex and living systems are developing (Gontar and
Ilin, 1991; Gontar, 1993; Gontar, 1997). From our point of
view, it is possible to implement the common background
that is based on applications of the continual conservation
laws and discrete methods for investigation of self-
organization in active media. Effect of finite localization
and periodicity of transients, associated with controlling
diffusion or dispersion processes, may be considered as
features of self-organization in complex and living active
media.

(a) Our approach is based on methods of FPTW
recognition and control by interactive variation of the
structural parameters of the nonlinear diffusion and
nonlinear sources. It is known that the transients
corresponding to separatrix lines on the phase plane play
a similar role for Hamiltonian diffusion-reaction models to
the limit circles in auto-oscillatory systems. Because of
existence of the so called separatrix layers, generating
chaotic trajectories of Hamiltonian systems (see, for
example (Zaslavskiy and Sagdeev, 1991)), transitional
waves can be used for recognition of the system transition
to deterministic chaos.

On the other hand, as shown an analyze of models with
dissipation in biology, chemistry and physics, like models
of auto-catalytic reactions, Brusselator model and others,
self-organization process are accomplished by its
maintenance in closeness of limited circle. Similarly,
the self-organization process in Hamiltonian diffusion-
reaction systems may have been effected by structural
management of the transients. Significance of the
transients in self-organization of the Hamiltonian systems
is determined by its closeness to separatrix layers and
possibilities for transition to deterministic chaos that
generate infinite sets of variable structures (like fractals
and others). It is important that by such approach there is
no necessity for construction of an analytic expression for
the transients. Sufficiently to obtain from conservation

laws formulas determined its important physical charac-
teristics: period, energy etc., consisting the system
structural parameters or its ratio. By variation of these
structural parameters and using the iterative calculus
technique on separatrix line one may estimate the ranges
of the transitional process regularity and critical
parameters of chaos transitions. On the other hand, the
below obtained exact transient solutions can be used for
approximation of experimental signals. So, the structural
management of the transients allow to control self-
organization process and chaotic transitions of dynamic
system.

We consider the stationary transients of two different
types: finite localized transitional waves (FLTW) and
finite switch (or kink) waves (FSW). These transients are
of different qualitative structure: FLTW describe local
disturbance of the active media and FSW describe a
propagation front from one unstable condition to another.
By interactive variation of diffusion and sources (reac-
tions) structure may be implemented the qualitative and
quantitative control of these transients. It is important that
the transformations of the transients one to another may be
effected by above-mentioned structural control. These
types of control allow us to change a qualitative structure
of the process. From our point of view, it may be
considered as one of important features of self-
organization. For instance, in order for localization (or
periodization) of the front propagation in the chemical or
biological processes, one can use the structural control of
the last type.

(b) An importance of the transients structural
investigation follows from below considering energetic
approach to estimation of chaos degree by use of calculus
of iteration. This approach based on analyze of the
transients momentary energy variations by interactive
variation of diffusion and reaction structural parameters.
Obtained results allow to conclude that chaos degree of
the transitional process determined by ratio of some
nonlinear characteristics of diffusion and source functions.

It should be noted that considering models describe the
conservation law of the real physical values: energy,
impulses, mass, etc. Therefore, for the corresponding
transition processes the following equalities are fulfilled:

ou
H(uapla-“apm)=C; (Pi=é;,l=1,...,m)

where H is the finite-dimensional function (analogue of
the Hamilton’s function) or integral relations:

J F(uapl)”'7pm)dx= C; (i= 1,,k)
G
(C,C; = const)

By using the above-mentioned relations the investi-
gation and control of transients structure may be reduced
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to investigation and parametric control of singular points
and levels of the finite-dimensional functions. From the
above, the possibility of application of catastrophe theory
and discrete nonlinear dynamics to lot of problems in
applied mathematics (for biomedical and chemical
engineering, prediction of geodynamic, geophysical and
ecological processes) is followed. On the other hand, our
theoretical results and preliminary computer modeling
show the possibility of investigation and control of system
chaos degree by the using of the exact analytic expressions
for the transients, consisting the important ratio of the
structural parameters (see results of the computer
experiments).

We consider the processes that may be described by
nonlinear non-stationary equation:

ou
Frin Au)

where A is nonlinear operator of either of two types:

Ai(u) = AD(w) + [ (u)

2
Aw=3" ¢, (a—“) o hw

0x, /) dx?

Here A = Z:”Zl-a% is Laplace operator, ¥(s), g,(s),
S(s), h(s) are real-value functions that determine nonlinear
diffusion intensity and nonlinear sources. In present paper
we will be investigating the possibility to control of
stationary transients only by interactive variation of these
structural functions (without output actions). The general
equations of this type occur, for instance, in mathematical
biology as models of phase transitions in alloys and in
porous media with sources, in chemical physics. Similar
models were applied to investigation of heat waves
propagation in media with nonlinear thermo-conductivity
and nonlinear spatial sources. In monograph (Samarskiy
et al. (1987)) an effect of the spatial heat localization with
unbounded peakings at finite time was considered for wide
class of the problems with nonlinear diffusion and sources.
On the other hand, we consider furthermore the models
that generate periodic or finite localized transients. These
equations are suggested as models of dynamic processes
with non-linear feed-back relations describing self-
organization in some biological and chemical systems,
like self-sustaining pulse propagation in cardiovascular
system, heat-catalytic chemical reactions, etc. (see
references Hashizume, 1988; Diaz, 1985; Demiray,
1997). Systems with finite localized transients were
considered in some of recent articles. Above all we shall
note (Rosenau and Hyman, 1993; Li and Oliver, 1997) that
at first considered the finite localized solutions of soliton
type: compactons and peakons. On the other hand, effect
of finite localization and periodicity of the stationary
transitive waves for general evolutionary equations were
considered by one of authors in (Kardashov (1999)). Idea

of stimulated diffusion was considered previously in
(Talanov (1983)) and in author’s paper (Kardashov
(1993)), wherein the eigenfunctions of the nonlinear
eigenvalue problems for control of strongly nonlinear
evolutionary and oscillatory systems were used. In (Biro
(1997)) it was shown that the switch waves present an
attractor of the solution sets in diffusion-reaction model.
In present paper (Part 1) will be considered the problems
of the first type.

STRUCTURAL CONTROL AND RECOGNITION
OF THE DIFFUSION-REACTION SYSTEMS BY
USING THE FINITE SWITCH WAVES (FSW)

We consider some nonlinear phenomena for processes that
may be described by nonlinear reaction-diffusion
equation:

d
a—': = ADu) + f(u) 1)

where double differentiable nonlinear function @(u)
describes the diffusion or dispersion intensity and f(u) is
source function, A is Laplace operator.

We look for solutions of traveling-waves type:

u(t,x) = @(s) = (p<z a,x, + vt); (v =const) (2)
r=1

where numbers v and a, describe velocity and propagation
plain of the traveling wave, Zleaf =1, and focus our
attention on the systems with the set of the stationary
homogeneous solutions:

{§0170a(P2}

p=0=¢
Here
fO)=flel=0 (=12

The substitution of the expression (2) into Eq. (1) offers
following ordinary DE relative to function ¢(s):

v = m[D()] +f(e) 3)

Furthermore the sign """ means differentiation with
respects to self-similar variable s= 3 x,+ vt and
differentiation with respect the variable ¢ (by the
convenience of the situation).



30 V. KARDASHOV AND S. EINAV

L 4

7

FIGURE 1 Typical switch wave.

Introduce functions:

Flu) = Jof(z) Az W) = Jof(z)qy(z)dz

Definition 1. Bounded solution &(s,v) of the Eq. (3) is
defined as switch wave (or kink) (SW) if by some numbers
s1, $» conditions are fulfilled:

(@) limg, @(s,v) = @r;  lime, §(s, V) = @2;
(b) lim,—;, @(s,v) = lim,—.;, @(s,2) =0
) ¢0,v)=0

By traditional definitions of the transitional waves 51, =
*oo. It is shown below that in problems with nonlinear
diffusion exist the transients with finite numbers sy ». In this
case the transients will be named finite switch wave (FSW).
Typical SW and FSW are presented on Figs. 1 and 2.

(1) In this section we consider the FSW stationarity
conditions.

Multiplication of the Eq. (3) by expressions
L DLe()]} = P, [¢(s, v)]¢/ (s, v) gives equality:

v® ;[cp(s, WIF (s, V)I*

_d

m 20 2
ds{g[ﬁw(s, I[P (s, VI° + Plels, V)]}

v

FIGURE 2 Finite switch wave.

It is evident that last equation admits also the
supplementary set of stationary solutions governed by
finite equation:

@ (¢)=0

If the functions d>’q,, V¥ are continuous then the last
equality may be rewritten as following:

vj @, (s, )¢ (s, 0)]* ds
= 2T, g5z, )¢ (52, 0))°
- % {D,[o(s1, )]¢ {(s1,2)}* + Plg(s2, V)]
= Ye(s1,9)] @

It will be supposed furthermore that the following
condition is fulfilled:

J D, [p(s, V) (s, v))* ds # 0 )

N

Then for the switch waves ¢ = §(s, v, c) (see definition
1) last equations imply the important formula:

_ VY(p) — V1)
o @ L@, I[P s, v)]* ds

©

1. Using the formulas (5) and (6) one may formulate the
stationarity conditions for the switch waves.
Theorem 1. Suppose that following conditions are

fulfilled:

(a) function @"P(u) is bounded at the points u, = ¢y,
U = @3,

(b) function W(u) is continuous at points u,, u, and
V() = Vup);

(c) the condition (5) is fulfilled

Then the switch waves are stationary ones.

Proof. From equalities (5) and (6) and conditions of the
theorem follows equality v = 0 that means the stationarity
of the switch waves.

It is possible to formulate the other stationarity
conditions of the switch waves in processes, described
by the Eq. (1).

Suppose that @(u), f{u) are odd functions on variable u
and function @"P(u) is continuous at points u; = ¢; and
u; = .
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Integrating the Eq. (3) over interval [sy, 7] gives:

 [@(s2,9) — @(s1,0)] = P [@(s2,0)1¢F (52, 0)

52

- W‘P[@(S] ) v)]¢l(s1 ) ‘U) + J f[(ﬁ(s’ ‘U)] ds

s

It may be shown that on these conditions switch wave
@(s) is odd function, s, = —s1, ¢ = —¢; >0 and
integral in last equalities turns to zero. Taking this into
account one obtains from last equalities and definition 1:

200, =0

that implies equality v-= 0.
Furthermore we consider following particular cases:

(@) f3u) = au+ bu?, P3(u) = cu + du’
(b) folu) = au + bu?, Py(u) = cu + du?

Since f3(u), P3(u) are odd functions, above-mentioned
implies that corresponding SW are stationary ones. Using
results of theorem 1 one may formulate the conditions of
the SW stationarity also in the case (b). Since in this case

a
<P0=0,<P1=<P2=—B

one may obtain the relationship:

—a/b

Wup) — Wuy) = j (au + bu®)(c + 2du) du

0
a’ ad
——(e—=—
Thus, if a # 0 the condition of the SW stationarity is the
following parametric relationship:

(S

4
b

If a=0, b# 0 the SW are stationary on arbitrary
coefficients c, d.

On the other hand, if one will consider the nonstationary
transients (on condition v = const # 0) then from formula
(6) follows the equality:

S u—
J D, [(s, VI (s, )P ds = M»S)]v_‘l’(?’l_)

1(?
= —J F) P, (u) du
v P1

on arbitrary 51 = S =5, ¢ = ¢ = ¢).

The left hand integral may be consider as current value
of average kinetic energy E(S) of the transient on given
nonlinear diffusion law. The right hand expression
presents the one-dimensional function F(¢,v,A). Thus,

the last equality allow us to reduce the investigation of the
nonstationary current energy evolution to structural
investigation of the one-dimensional function. Hereby, A
is signed the vector of parameters that presents the main
diffusion-reaction structural relationships. Application of
the discrete dynamics and deterministic chaos methods
allow to determine the critical values of the parameters v,
A on that the bifurcations and chaos transitions are
observed. Furthermore it will be used as basis for
developing of the discrete energetic methods of chaotic
behavior investigation of the nonstationary transients of
the considering systems. However, for suitable discretization
of the stationary transitional processes furthermore will be
used method of inverse solution construction that allows to
implement the structural investigation of the transients and
also construct the corresponding Poincare map. It is
important that such approach is applicable to wide classes
(also non-integrable) nonlinear reaction-diffusion systems.

2. Construction of inverse solutions and interactive
structural control of the stationary switch waves (SW).

From conditions, that were considered above, follows
that stationary SW are governed by ordinary DE:

m{ )] +f(@) =0 D

that obtained from Eq. (3) on v = 0. By multiplication of
these equation by expressions [D(@)] = D, [@()]¢(5)
and consequent integration, one obtains the following sets
of the first integrals for this equation:

ZLPPIPT + Vg) = C ®)

The last equality presents the stationary conservation
law of the considering process. According to definition of
the switch wave

@(s1) = @1; ¢(s2) = @2;0(0) = 0; ¢ (51) = ¢(s2) = 0

Using these equalities and Eq. (8) on values s = s; and
s = s, one may determine the arbitrary constant C:

C=Weg)=Wgp) =Y

Particularly, from last formulas follows that stationarity
condition (b), considering in above subsection, are both
necessary and sufficient.

By separation of the variables in the Eq. (8) one may
obtain:

ds [P (o)

de= + [P (p)lde ©)

2|¥, — (o)

or

:
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By integrating the left side of the last equation
(considering at first with sign +) over interval [sy, s] (s; =
s = s,) and the right side-over interval [¢1, @l(¢1 = ¢ =
¢,) (taking into account conditions (a),(b)) one may obtain
the formula for inverse solution:

¢ |9 (2)| dz
s+(<p)=s++J (1 =9¢=¢)
" e Vaim - el
(10)
Taking into account equalities
e0)=0, o(s2)= ¢
one may obtain from formula (10):
. JO | (2)| dz _
5T o=-— ;
oV 2/m[ P — V()]
e | (2)l dz
so=st+ J
P @ mi - W)
_ rz | (2)] a1
0 Q/m[¥ — W)

It is evident that last formulas determine monotonically
increasing switch wave. Similarly, monotonically decreas-
ing switch wave ¢ (s) are determined by formula (9),
corresponding to sign —.

Obtained formulas allow us to investigate the transients
structure without construction of its exact analytic
expressions. It is especially important for structural
investigation of nonintegrated transitional solutions.

Now we consider the conditions of finiteness (compact-
ness) of the switch waves. It is evident that necessary and
sufficient condition for transient compactness is finiteness
of the numbers s; and s,.

By the Taylor’s formula one may obtain:

Y — V(@) = Wg) — Y2) = V(e)(ei — 2)

1
) Yo+ 6,z — eIz — @)

O=6=1i=12

Since Y(¢;) = f(¢)P(¢;) =0 one may obtain from
formula (11):

i [P (2)| dz
i = |
0o =1/ m¥'{¢;+ 6z — ¢}z — @il

(i=12)

Taking into account the formulas (10), (11) and (12) one
may formulate a following necessary and sufficient

finiteness conditions for the switch waves in problem (1):
@Y =0(zl") on z—0, ¥ >-1;

OIP@)| =00z~ @) on z— ¢,

Y >0 ©IP@|=0(z— ¢I|”) on
(13)
Z= @, >0, (d function V¥'(z)=0
on [¢1,¢] and continuous in points
4’1) P2
Since

V(@) =¥ @)+ V')
and ¢; are simple roots of the function f{u) then
V() =O0llP@I] on ¢— ¢(i=1,2)

Taking into account last relationship and conditions
(13(a—d)), one may obtain that

[P (2)]
V-C/m¥'{ @ + 6,z — @il}lz — @il

= 0(z — @)I(v:/27 (v > 0)

Di(z) =

and
®1(2) = Ozl ™)(yo > —1) on z—0

From last relationships and formulas (9)—(12) follows
the finiteness of switch waves.

Above-mentioned conditions (13) can be satisfied by
use of following simple procedure that may be
characterized as method of diffusion and reaction singular
points coincidence.

Furthermore, we consider a particular case:

fu) = au+bu®, Du)=cu+ du?

Since fu), d(u) are odd functions, according above-
mentioned the switch waves present the stationary transients.

It will be shown that for this case on conditions (13) the
FSW are periodic waves determined by simple harmonical
function. It is evident that nontrivial roots of the functions
f(u) and &' (u) are determined by formulas:

a C
= + —_— = + _——
P12 == bﬂ/’l,z 32

It is evident that conditions (13) follow from
relationship:

c

3d

SR
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FIGURE 3 FSW with infinite small velocity at zero.

Taking this into account one may obtain that
VY = f(u)P (u) = (au + bu’)(c + 3du?)

)

By integration of last expression one may obtain the
formula:

¥ = 35 (v +3)

thus

W, = w(i\/_—g) 0

On the other hand, it is evident from above-mentioned
formulas that

1 /a
_ 2t
@D (u) = c + 3du _3d(b+u)

The general formula (10) together with last relationship
imply the following expression for inverse function to
solution:

b (¢ du
s(p) =51+ \/2|‘—1|J ——
= [4] — u?
b . b T
=5 + \/Zlgl[af081n<\/|2|>¢+§

The constants s;, may be determined according to
formula (11):

b, (V¥ du b, w
s= =251 e = -y 2217
d'Jo /ll%l_uz d 2

b,

sy =—s51 = 2'2'5

Taking into account two last formulas one may obtain
the exact expressions for pair of two FSWs:

b b
P12(s) = =4/ I;Isin (\/2lals>

Now we shall do the important comment.

If for the problem (1) is accomplished the condition (a)
alone, the switch waves asymptotically (on indefinite time)
approaches to values ¢y, ¢, (see Fig. 1.) It immediately
implies an important conclusion: finiteness, periodicity
and structural stability of the FSW is accomplished on
special growth limitation of the diffusion function @' (u) in
closeness of the zeroth points of source functions f(u). By
this interaction the feedback control of the switch waves
structure can be implemented. The functions @;,(s)
determine the pair of FSW that may be periodically
continued (see last formulas).

It is evident that by variation of the parameters vy, v;, >
one may change some important geometric characteristics
of the FSW. Formula (9) implies that on condition —1 <
¥ < 0 one obtains FSW, tangent to axis O, at the point
x = 0 (see Fig. 3). Physically this means that velocity of
the transitional process at zero is infinite small value of the
order yo. On yy > 1 the FSW is depicted by curve that
tangent to axis O, at the origin (see Fig. 4). Physically this
means that velocity of transitional process has infinite
growing value of the order vj.

Then, by choosing the diffusion law of type

Du) = Au"(u — @) (1 — )"

and by corresponding management of the parameters o,
Y1, Y2 one may implement above-mentioned feedback
structural control of the transitional process. On the other
hand, using these results, one may formulate the following
approach to optimal control of diffusion-reaction process
by interaction of the diffusion and reaction parameters,
using obtained formulas for FSW.

For instance, the important problem for applications is
construction of the transitional processes with minimal
transient time 7 =s; —s;. For periodic FSW the
magnitude 7 = s, — 51 determines period or frequency
of the transient and, consequently, its kinetic energy. On
the other hand, it may be shown that the value of period,
frequency and kinetic energy of the FSW depict the
extremal ones for definite set of the periodic solutions of
the problem. Thus by considering structural interaction of
the FSW parameters one may implement, in determine
sense, the global optimal control of the process.

It is evident that the values ¢;, ¢, are functions of
structural coefficients of the source function. For instance,
if f(u) = au + bu’ then

o= t,/—%=i/\

Thus, transient time 7is a function of the four structural
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v

FIGURE 4 FSW with infinite velocity at zero.

parameters:
T= T(707 Y1, Y2, A)

One may consider the optimization problems by this
finite-dimensional function on corresponding set of the
vectors A(vyo, 1, ¥2, A), according to some criteria. The
simple and commonly accepted criteria is minimization of
the root-mean square deflection from given constant
condition, i.e. of the value:

d(y0, 71, Y2, M) = /IgleaA?}|To = T(Yo, v1, Y2, VI

In common case this is a problem of finite-dimensional
mathematical programming theory. A set of the solutions
are vector Ay of the structural parameters, that determine
the most interactable reaction-diffusion systems.

Applications is also important for the problem of
optimal structural variability of reaction-diffusion system,
that is given by criteria:

p(So, S[A]) = €

here S is desirable condition of the system, S[A ]-set of the
allowable structural variability conditions, € > 0 is given
number, that determines allowable (or necessary) variability
of the system, p(X, Y) is metric function, that determines the
closeness of the system conditions. To this problem the
mathematical programming theory can also be applied.
On the other hand, one may consider the inverse problem,
i.e. the problem of dynamic identification of the system by
using the experimental and visualization data. The problem
is to determine (or estimate) the unknown transitional
condition S, of the system by using of the known parameters
of conditions S[A ], that is obtained by experiments with
exactness e. Here the methods of nonlinear filtration and
experimental signals processing can be applied.

STRUCTURAL CONTROL OF THE FINITE
LOCALIZED TRANSITIVE WAVES (FLTW).
PERIODICITY PHENOMENA FOR FLTW ON
DIFFUSION AND REACTION STRUCTURAL
INTERACTION

Now we will consider a concepts of finite localized
transient wave (FLTW).

Definition 2. A solution ¢(s,v) of Eq. (4) is localized
transient wave (LTW) if by some numbers s,, s, assert
conditions:

(@) limy.y @(s, v) = lim;—, ¢(s,v) = 0
(b) limg ., ¢(s,v) = limy;, ¢(5,2) = 0
©) @0,9)=¢y or ¢0,v)= @

where @y > 0 and @y < 0 are the roots of the equation:
V() =0

The typical LTW is presented on Fig. 5.

From definition 2 follow that LTW consistent with
unstable critical point (0,0) of the functions ¥(u).

1. Conditions of stationarity of the localized transitive
wave may be obtained similarly by using equality (6) and
taking into account the definition 2 of the LTW.

Theorem 2. Suppose that the following conditions are
Sfulfilled

(a) the function 115'<P(u) continuous in zero, the function
W(u) is nonpositive on the sets [ ¢g, 01, [0, ¢ol. Here
@o, o are negative and positive roots of the function
Y(u);

(b) the following conditions are fulfilled: W, (0) =
f0)=0

(¢) the condition (5) is fulfilled. On these conditions
LTW is stationary wave and governed by Eq. (7).

2. Taking into account the last equalities and
substituting into Eq. (8) values ¢ =0, ¢/ = 0, one may
obtain that C = 0.

Furthermore, from equality

SLE@PLET + ) =0 (14)
one may obtain the following equations:
de _ , V-2/m¥pIP (o)l (15)

ds

By using variables separation method the formulas for
inverse functions to LTW of positive polarity can be
obtained on intervals [s1,0], [0,s,] respectively:

5 (9) =S++J¢_____|qyz(z)| &
N N S T
T =- %——WL(Ld 0=¢= 16
5 L 2 m , 0=e=¢) (16)
s2p) = st — J(P |9
’ 2 o /(2 m G
e _[* 190 "
& & Jo V(=2/m)¥() an
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FIGURE 5 Typical localized transient wave.

In a similar way formulas for LTW of negative polarity
may be obtained

(o) = J“’ | P (2)
2 o/ (—2/m) W)
_ 0 | (2)]
=| —————dz, (pr=9=0) (18
" J%\/(—Z/m)'l’(z) e
s (@) =5, — r __—_|<p/(z)| dz
! b o /(F2/my )
~ N LA 1 69|
=5 =] —Z 4z (19
* & Jo (=2/m)¥(z) 1

To take necessary and sufficient conditions of the
finiteness (compactness) for LTW one should determine
the finiteness conditions for the values s; and s; . Suppose
that

D(z) = 0(lzl") (20)

f@=0(z" @1

onz—0
Then necessary and sufficient condition of the LTW
finiteness is an inequality:

k> 1 (22)

It follows from the relationship

D) (k—1-2)/2
Ny ol O(Izl )

on z— 0 that may be obtained from conditions (20) and
(21) and definition of the function yxz). It is evident from
last equality that necessary and sufficient conditions for
finiteness of the integrals sz determined by inequality

k—1—2

> —
> 1

that implies the inequality (22). Thus, an inequality (22)
presents the condition of finite localized transitive waves
(FLTW) formation. On Fig. 6 a typical FLTW is
presented.

Furthermore we consider the particular case:
f=au+ bu®, du) = cu + du’®

By formula ¥(u) = [(f(z)®(z)dz one can obtain that
for this case

1 1 1
Wu) = Eacu2 + §(2ad + boyu® + —2-bdu4

According to finite localization conditions (20)-(22)
one shall to assume ¢ = 0 that implies the equality:

2 1
o) = §adu3 + —Z-bdu“

Furthermore we suppose that

b>0,d>0,a<0

It is evident that the value ¢y = 0 is three multiple root
of the function ¢(u ).Nontrivial root of the function ys(u)
is determined by formula:

4da

‘Plz_@

If the conditions b > 0, d > 0, a < 0 are fulfilled the
root ¢, is positive and may be used the formula (16):

d(¢ du
= 24/ —
s(p) =51 + 2\/_\/;]0 '__—————(—4a/3b)u —

d . [3b 2]al
= 24 < _
51+ 2\/_\/;arcsm [2|a| <qo b )]

By inversion of the last formula we obtain:

2 1
o(s) = %{1 + sin [m\/g(s - sl)] }

Furthermore, since by formula (17)

the last expression may be presented like:

A4l L1 d
(P(S) = WCOS (Z\/_E ZS) (23)

The exact formula (23) corresponds to harmonic FLTW
of positive polarity.
Similarly, on conditions.

b<0, d<0, a>0
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s

1 B

FIGURE 6 Finite localized transient wave.

by using the formulas (18) and (19) one may obtain the
expression, corresponding to FLTW of negative polarity:

W)= ﬂm <mFVF>

Since formula (15) implies the relationship

de _ O(|¢|(2—k+l)/2

—0
s ) on z

one may conclude that on condition k + [ < 2 is fulfilled:

——0 —0
ds on- ¢

Thus, if the system of conditions is fulfilled

k>1, 0<k+1<2

the FLTW are determined by following general formula:
(Pi(s) = +MCOSZ _1_
Y 42

Lﬁ<
NATE

@*(s)=0 on condition

d ...
Es) on condition
24)

—1— \/és > 2.
V2 Vb

In Fig. 6 is presented the graph of the finite localized
transient of positive polarity. These exact analytic
expressions allow us to investigate and control the system
chaos degree by variation of the parameter L = \/f_; (see on
Fig. 7 the bifurcation diagram and on Fig. 8 the momentary
energy level oscillations on variations of parameter L):

This particular case indicates that by sign changing of
the structural parameters the transitional process may be
switched from positive FLTW to negative one. Obtained
basic transients can be used for construction of the
transitional processes of more complex structure (for
instance for modeling of interaction between forward and
backward waves in cardiovascular system and for using
them as basis for Fourier expansion, see (Westerhof,
(1995)). In the next section we consider a possibility of
approximation of experimentally registered solitary pulses
in arteries by above-mentioned FLTW.

From formulas (15) follows that important geometric
properties of the FLTW and its behavior on s— s,
determined by order of decreasing of ¢f(s) to zero on
¢— 0. It was shown from formulas (15), (20) and (21)
that on conditions.

0<k—-1<2
is fulfilled the relationships:
dH—0 on @—0

This situation may be named as “soft finite localiz-
ation”. On condition

k—1>2
one may obtain from above-mentioned formulas that
¢g—*0 on @—0

Last situation may be named as “rigid localization” (see
Fig. 9).
On condition

k—1=2

FLTW has on s = sy, finite nonzero derivatives and
transfer to periodic switch wave on oddness condition for
the functions ®(u) and f(u ). This is interesting phenomena
of the transitional waves structure changing on determine
(critical) relationship between growth order of diffusion
and source functions.

We consider, for instance, the equation

J
a—: = Acu*?) + au® + bu™ 25)

with constants a < 0; b, ¢ > 0 for odd numbers k = 0,
m > k. Using general formulas (16)-(19) one may
obtain:

MU | b j“’ du
si(@)=s{ +ck+2) ) R e
= st +clk+2) ——b——arcsin [i]
: Qk+4) VA

Here A = (2k +4)lal/(2k + 2)b. Since s;(vVA) =0
from last formula follows:

Ay
st = —ctk+ 2)J — =
0o VA

T
— —c(k + 2)5

Taking into account last two formulas one may obtain
the following analytic expression for corresponding
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L—c‘?

FIGURE 7 Bifurcation diagram of pulse energy evolution.

transitional wave:

(s) \/_sm[l

Qk+4) =
b 12

1 /(2k+4)
\/—cos[ ) s

Evidently that solution of negative polarity is given by
formula:

(26)

O ()= —¢"(s)

We will consider now two special cases: k = 0,1. In
case k = 0 one obtains equation with nonlinear diffusion
coefficient @' (u) =2cu and reaction function
fuw) = a+ bu:

7.3
Z—— u—)+a+bu
16

As follows from general expression (26) transient
solution of this problem are given by the following

En

formulas:

. 2|al 1
o (s) = i\/—acos(z i ) @7

in case k = 1 we obtain an equation:

"3 ou
— - 3 2% b 3
; ; ax,-( cu 6)0) + au + bu

1

]

|

[=3)

with transient solutions:

. Blal (V6 1
o)== —2—;1)—cos( 3 ﬁs> 28)

REDUCTION TO DISCRETE DYNAMICS.
ENERGETIC APPROACH TO RECOGNITION
AND CONTROL OF CHAOS TRANSITIONS

The foregoing method of inverse transient solutions
construction may be used for transition to discrete
dynamic models. Particularly, obtained formula for FLT
of the positive polarity

st st = [ A2
0/ (—=2/m)W(z)

allow for given number of values s,(n=1,..
determine the corresponding recurrent sequence

= F(p)

,,N) to

Ont1 = F(@p)

that is necessary for Poincare map construction. One

Ta=31 .4

T

FIGURE 8 Momentary energy levels variation on transition to chaos.
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FIGURE 9 Rigidly localized transient.

should find the inverse function (that evidently exist)
Fi=F!

Then the desired recurrent sequence may be presented
as like:

Ont1 = Fi[Snt1 — sp + F(@n)]

This procedure in oppose using corresponding differ-
ence equation has the finite nature and stripped of above-
mentioned nonstability features.

Now we consider the brief description of the above-
mentioned approach that use the energy conservation laws
for chaos transitions estimation and control. If one
introduce the instantaneous total energy

E(s) = [P (@[ (5))* + Fle(s)]

the equality (4) for arbitrary s € [sy, so] may be rewritten
as follows:

s E(s) — E
J PlelgOF s =20 (g
on condition v = 0 and as
E(s) = E(s1) (30)

On condition v = 0. It is evident that the equality (29)
express the important property of the transients: average
kinetic energy of the nonstationary transient at arbitrary
moment equal to ratio of instantaneous total energy to
traveling waves velocity. Equality (30) express a law of
total energy conservation for stationary transient. It is
proposed to use this energy relationship for estimation of
the transient’s structural stability and critical relationships
between determined system parameters on that the process
transfers to deterministic chaos. The expression in the left
side of equality (29) determines an average kinetic energy
of the transient at arbitrary moment s; = s = 5y. On the
other hand, if one assume v = const, then the expression
in right side determines the ratio of current potential
energy to waves velocity. Thus, such approaches allow us
to reduce the stability estimation problem of the complex
dynamic system (generally non-integrated) for the

investigation of two-dimensional function stability and
transitions to chaos by use of corresponding iterative
sequences technique. Generally these are the catastrophe
theory problems (see, for example, (Gilmore, 1981)). It
may be also used the recent methods of nonlinear discrete
dynamics and iteration calculus. On the other hand, by

. using of the above-mentioned exact analytic solutions,

depending distinctly from structural parameters, can be
determined the exact critical constants, on that the system
transfer to deterministic chaos. Our computer experiments
(see Figs. 7 and 8) allow to formulate two important
preliminary conclusions:

(a) bounds of the system stability and system chaos
degree depend on the relationship of diffusion and
reaction structural parameters;

(b) it is possible the control of a system chaos degree by
feedback interaction of nonlinear diffusion and
sources (reaction) parameters.

SOME APPLICATIONS OF LOCALIZED WAVES
FOR MONITORING AND STABILITY
ESTIMATION OF PRESSURE AND FLOW PULSES

In paper (Djozjevitch, Sadov (1981)) basic principles of
electrohaemodynamics (EHD) were developed and
proposed system for determination of blood flow
characteristics. EHD is mathematical modeling of the
blood circulation combined with measurements of blood
pressure and electrical conductance of a select part of the
body. The main problem in the application of EHD to
clinical measurements is how to obtain reliable values of
all important cardiovascular parameters, such as diameters
of arteries, modulus of elasticity of arterial walls, the
length of blood vessels, etc.

EHD is capable of providing all the necessary
parameters and, as a result, is used for measurements of
cardiac output, cardiac index, stroke volume, systemic
vascular resistance, useful power or work of the heart, etc.
The technique is totally harmless; measurements are
continuous and can be done for an indefinite period of
time. EHD is further step in the development of electrical
impedance phlethysmography. The common ground is the
measurement of the variation of electrical impedance of a
section of a human body as a function of time.

From analyze of the EHD principles we can conclude
that this method may be combined with impulse response
method, using the solitary waves exciting in the arteries.
From our view, this approach may simplify the recognition
process of the pressure and pulse propagation parameters
and additionally allow to estimate the bounds of its
stability.

In this section we consider a general mathematical
model that may describe the cardiovascular interaction,
determines pressure and flow (Westerhof, 1995).

It is suggested to use for description of the pressure
and flow pulses in the region of low frequencies, and
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particularly of the solitary waves, a follows generalization
of the Korteveg-de-Vries (KdV) equation:

[ Y

TR [axif(u) a0 g(u)} =0 G
Here the solution u(t,x) is to describe the vessel walls
displacements, real functions f(u), g(u) determine
nonlinear structure of the blood flow and input impedance
(resistance) of the vessels walls respectively. On case
f(u) = Au?, g(u) = Bu one obtains the traditional (week
nonlinear) KdV equation. The structure of these functions
should be improved by laboratory and clinical experi-
ments. This model with nonlinear dispersion allow us to
describe finite localized structures (so called compactons)
or periodic switch waves that experimentally registered in
large arteries by use of electro-impedance technique. It
may be proven that on some conditions finite localized
structures are highly dependent on blood viscosity and
thus offer the potential for detection of clotting in blood
vessels. This model is adaptable for elaboration of
structure interaction control methods of the pulse
propagation and patterns formation in arteries and vessels.
By the special structure interaction of the nonlinear blood
flow and input bio-impedance parameters may be
constructed a new types of the solitary and switch
waves. On the other hand, this model allow us to find the
main relationships between structural parameters that
determine the pulse propagation regularity and transition
to deterministic chaos.

We assume that axisymmetric pressure pulse is moving
with constant speed in the longitudinal direction of the
tube. Then we may look fore solutions of this equation of
the traveling-wave type:

3
u= <p(§ ax; -\—vt) = ¢(s)
i=1

Here vis the constant velocity of the traveling wave, g; are
the constants, that determines the wave propagation plane,
>3 \a> = 1. The desired function ¢(s) is governed by
ordinary DE:

, d d3
vg(s) +3 [gf [GD(S)] + @g[qo(S)] =0

By integration on variable s one may obtain the
equation of reaction-diffusion type, that have investigated
in previous chapters:

d2
@g[qo(S)] + 3fle(s)] + vo(s)} —C=0

here C is the arbitrary parameter of integration, that shall
to be determined from initial conditions.

Thus for this model all our results are applicable, which
were considered in previous chapters. The finite localized

solutions of type Eq. (24) may be used for description of
the forward and backward waves in cardiovascular system
[Westerhof, 1995]. Obtained exact analytic formulas in
combination with the electro impedance monitoring allow
to estimate the pulse velocity and other important
parameters, that determine blood flow propagation. It is
important, that monitoring in such a manner of the solitary
waves may be used for quantitative estimation of the
structural interaction of the vessel walls with the blood
flow. By these estimations can be determined the bounds of
the pressure and flow pulses stability and critical values of
its parameters on that the pulse propagation can turns
chaotic and breaks “through chaos to full annihilation”
(see results of computational analyze in Figs. 7 and 8).
The possibilities of applications of the solitary waves in
cardiovascular monitoring were reported to International
Conference in Washington (Kardashov and Einav, 1997).

The deplacements of the tube walls satisfy to the
Korteweg-de-Vries equation (Hashizume, 1988; Demiray,
1997). On the other hand, according to Ohms law, electro-
impedance of the flow and vessels cross-sectional area is
proportional. This offers scope for application of the
electro-impedance monitoring in association with solitary
waves analyze for estimation of the vessels condition. By
means of the electro-impedance technique we have
registered the formation of periodic rheological graphics.
We suggest the Eq. (25) and its exact solutions of Egs. (27)
and (28) as analytic models for description of experimen-
tally obtained periodic transients. Taking into account that
bio-impedance measurements are implemented by aver-
age process over measuring body area, from this result one
can be reached the important conclusion on possibility of
exciting of the coherent waves in the parts of the
cardiovascular tree.

An amplitude and shape of the solitary wave are defined
by elastic properties of the vessel walls. This give a
possibility to determine by monitoring of solitary waves
the important hemodynamic parameters such as diameters
of arteries, modulus of elasticity of arterial walls, the
length of blood vessels, etc.
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