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We present some results on the existence and the minimum period of periodic orbits for
discrete-time dynamical systems under periodic perturbation. Some examples are pre-
sented to illustrate these results.
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1. Introduction

Consider the following discrete-time dynamical systems:

x(n+ 1)= f
(
x(n), y(n)

)
, x ∈Rn, y ∈Rm, (1.1)

where f is a continuous function, y(n) is a perturbation function.
We are interested in the following question.

Question 1.1. Under what conditions system (1.1) has a periodic orbit when the pertur-
bation is a periodic signal?

There have been a lot of researches in the literature on the periodic trajectories of
discrete-time dynamical systems [1, 3–15]. However, to the authors’ best knowledge, the
existence of periodic orbits in a discrete-time dynamical system with a periodic pertur-
bation has not received enough investigations, therefore in this short paper we study the
above question.

2. Main results

In this section, we present some results on the existence and the minimum period of
periodic orbits of system (1.1) under the following assumptions.
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2 Discrete-time systems under periodic perturbation

Assumption 2.1. The perturbation y(n) is assumed to be a periodic signal of minimum
period k satisfying yi = yi+k, that is, the periodic perturbation is {y0, y1, . . . , yk−1}, where
i is a nonnegative integer and k is a positive integer.

Assumption 2.2. f (0, yi) �= 0 provided that yi �= 0, i= 0,1, . . . ,k− 1.

Assumption 2.3. We have

lim
‖x‖→∞

∥
∥ f
(
x, yi

)∥∥

‖x‖ < 1, i= 0,1, . . . ,k− 1. (2.1)

Before stating our results, we first recall a fixed-point theorem due to Brower, which is
useful in the following arguments.

Lemma 2.4 (Brower fixed-point theorem). Let F : C ⊂Rn→ C ⊂Rn be a continuous map-
ping, where C is a nonempty, bounded, close and convex set. Then F has a fixed point. Its
proof can be found in [2].

Now we present the following theorems.

Theorem 2.5. Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Then system (1.1) has a
nontrivial periodic orbit.

Proof. According to Assumption 2.1 we know that the periodic signal is {y0, y1, . . . ,
yk−1} with minimum period k satisfying yi = yi+k, where i is a nonnegative integer and k
is a positive integer.

Since lim‖x‖→∞(‖ f (x, yi)‖/‖x‖) < 1, for every yi, i = 0,1, . . . ,k− 1, there exist corre-
sponding positive numbers mi, i = 0,1, . . . ,k− 1 such that ‖ f (x, yi)‖ < ‖x‖ when ‖x‖ >
mi.

Let mi = max‖x‖≤mi‖ f (x, yi)‖ > 0, let Mi = max(mi,mi), and let M = max{Mi, i =
0,1, . . . ,k− 1} > 0. It is easy to see that if ‖x‖ ≤M, then for every yi, i = 0,1, . . . ,k− 1,
‖ f (x, yi)‖ ≤M, which implies that the set U = {x | ‖x‖ ≤M} is a positive invariant set
of the following systems:

x(n+ 1)= f
(
x(n), yi

)
, i= 0,1, . . . ,k− 1. (2.2)

Let fi = f (x, yi), i = 0,1, . . . ,k − 1, and let F = fk−1 ◦ ··· ◦ f0. Then F : U → U is a
continuous mapping. By Brower fixed-point theorem, the mapping F has a fixed point
x0, that is, F(x0)= x0, fk−1 ◦ ··· ◦ f0(x0)= x0.

Let xi = fi−1(xi−1), we get fk−1(xk−1)= x0, thus the orbit o(x0)= {x0,x1, . . . ,xk−1} is a
periodic orbit. This implies that o(x0) contains a periodic orbit whose minimum period
j divides k, where j is a positive integer.

In addition, according to Assumption 2.2, we have that there exists i0 ∈ {0,1, . . . ,k−1}
such that xi0 �= 0. This shows that o(x0) contains a nontrivial periodic orbit. The proof is
complete. �
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It seems that the period of o(x0) should not be less than that of the perturbation y(n),
which is often the case when dynamical systems described by ordinary differential equa-
tions are forced by periodic signals. However, the following example shows that this can
not be the case in discrete-time systems.

Consider the following example.

Example 2.6. We have

x(n+ 1)= f
(
x(n), y(n)

)
, x ∈R, y ∈R, (2.3)

where f (x, y)= x/(2 + |y|) + |y|/(2 + |y|), the perturbation y(n) is a periodic signal {1,−
1/2,−1,1/2}.

It is easy to see that for Example 2.6 the conditions stated in Theorem 2.5 are satisfied.
Thus according to Theorem 2.5, system (2.3) has a periodic orbit. In fact, it can be verified
that the orbit {5/13,6/13} is a periodic orbit of (2.3).

Remark 2.7. In Example 2.6, we have the following facts.
(a) The system x(n+ 1)= f (x(n),0)= (1/2)x(n) is globally asymptotically stable which

implies that the system does not have nontrivial periodic orbits. However, its perturbed
system has a nontrivial periodic orbit.

(b) The functions fi = f (x, yi), i= 0,1,2,3, satisfy the following condition:

f3 ◦ f2 ◦ f1 ◦ f0(x)= f1 ◦ f0(x), (2.4)

which shows that f3 ◦ f2 ◦ f1 ◦ f0(x) and f1 ◦ f0(x) have the same fixed points.
(c) The minimum period of the periodic orbit of the perturbation is 4, but the mini-

mum period of its corresponding periodic orbit is 2, which defies our intuition.

Considering the above fact (c), we want to know under what conditions (1.1) has a
nontrivial k-period orbit. This will be given in Theorem 2.8. Before presenting Theorem
2.8, we assume that the integer k (in Assumption 2.1) has the following factors: k1, . . . ,kr
and 0 < k1 < k2 < ··· < kr < k, where r and k1, . . . ,kr are positive integers and kl divides k,
l = 1,2, . . . ,r. Moreover, we let fi = f (x, yi), Fkl = fkl−1 ◦ ··· ◦ f0, F2kl = f2kl−1 ◦ ··· ◦ f0.

Theorem 2.8. Suppose that Assumptions 2.1, 2.2, and 2.3 hold, and for any kl ∈ {k1, . . . ,kr},
Fkl and F2kl do not have the same fixed points. Then system (1.1) also has a periodic orbit of
minimum period k.

Proof. In terms of the proof of Theorem 2.5, we have that system (1.1) has a periodic orbit
{x0,x1, . . . ,x j−1} of minimum period j, where j ∈ {k1, . . . ,kr ,k}. Below, our purpose is to
prove that the minimum period of the above periodic orbit is k, that is, j = k. For this
purpose, we assume that j ∈ {k1, . . . ,kr}. Since {x0,x1, . . . ,x j−1} is a periodic orbit, it is
evident that x0 is the fixed point of Fj and F2 j , which is a contradiction to the assumption
of Theorem 2.8. Therefore the minimum period of the periodic orbit {x0,x1, . . . ,x j−1} is
also k. The proof is complete. �



4 Discrete-time systems under periodic perturbation

We apply Theorem 2.8 to discuss the following system.

Example 2.9. We have

x(n+ 1)= f
(
x(n), y(n)

)
, x ∈R, y ∈R, (2.5)

where f (x, y)= x/(2 + |y|) + y/(2 + |y|), the perturbation y(n) is a periodic signal {1,−
1/2,−1,1/2}.

It is easy to verify that in Example 2.9 the conditions stated in Theorem 2.8 are satis-
fied. Thus by Theorem 2.8, we know that system (2.5) only has a periodic orbit of period
4. It is easy to verify that the period orbit is {1/17,6/17,−1/17,−6/17}.
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