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We present a Razumilchin-type theorem for stochastic delay difference equation, and use
it to investigate the mean square exponential stability of a kind of nonautonomous sto-
chastic difference equation which may also be viewed as an approximation of a nonau-
tonomous stochastic delay integrodifferential equations (SDIDEs), and of a difference
equation arises from some of the earliest mathematical models of the macroeconomic
“trade cycle” with the environmental noise.
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1. Introduction

The problem of stability of stochastic difference equation has been investigated in a num-
ber of papers. We refer the readers to [2, 3, 13–17]. Some results on the asymptotic behav-
ior of the moments were obtained in [18]. But very few results on the Razumilchin-type
theorem for stochastic delay difference equation have been published. In this paper, we
present a Razumilchin-type theorem for stochastic delay difference equation, and use it to
investigate the mean square exponential stability of a kind of nonautonomous stochastic
difference equation.

We consider the equation

Xn+1 = a
(
n,Xn−m, . . . ,Xn

)
+ b
(
n,Xn−m, . . . ,Xn

)�μn, n∈ Z+, (1.1)

where a∈R, b ∈R, a(n,0, . . . ,0)= b(n,0, . . . ,0)= 0, Z+ = {0,1, . . .}, and Xn = ξn (n∈ I =
{−m,−m+ 1, . . . ,−1,0}) is the initial segment to be �0-measurable.�μn are independent
N(0,1)-distributed Gaussian random variables.

We denote by (Ω,�,{�n}n∈N,P) a complete filtered probability space, where filtration
{�n}n∈N is naturally generated: �n+1 = σ{�μi+1 : i= 0,1, . . . ,n}. Among all the sequences
{Xn}n∈N of the random variables, we distinguish those for which Xn are �n-measurable
for all n∈N.
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2 Exponential stability of stochastic difference equations

2. Main result

Definition 2.1. The stochastic difference equation (1.1) is said to be pth moment expo-
nentially stable if there are positive constants γ and N such that with initial data ξn, n∈ I ,

E
∣
∣Xn

∣
∣p ≤NE‖ξ‖pe−γn on n∈ Z+, (2.1)

where ‖ξ‖ =maxn∈I |ξn|.
Theorem 2.2. Let all λ, p, c1, c2 be positive numbers and q > 1, suppose there exists a
Lyapunov function V : I ∪Z+×R→R+ such that

c1|X|p ≤V(t,X)≤ c2|X|p ∀(n,X)∈ I ∪Z+×R (2.2)

and for all n∈ Z+,

E�V
(
n,Xn

)= E
(
V
(
n+ 1,Xn+1

)−V
(
n,Xn

))≤−λEV(n+ 1,Xn+1
)

(2.3)

if

EV
(
n+ s,Xn+s

)
< qEV

(
n+ 1,Xn+1

)
on s∈ I. (2.4)

Then for all ξn, n∈ I , ‖ξ‖ =maxn∈I |ξn|,

E
∣
∣Xn

∣
∣p ≤ c2

c1
E‖ξ‖pe−γn on n∈ Z+, (2.5)

where 0 < γ =min{log(1 + λ), logq/(1 +m)}.
Proof. Let

U(n)= sup
s∈I

{
eγ(n+s)EV

(
n+ s,Xn+s

)}
, n∈ Z+. (2.6)

For any n∈ Z+, we affirm that

�U(n)=U(n+ 1)−U(n)≤ 0. (2.7)

Otherwise, there exists an n∈ Z+ such that

eγ(n+1)EV
(
n+ 1,Xn+1

)
> U(n), (2.8)

that is,

eγ(n+1)EV
(
n+ 1,Xn+1

)
> eγ(n+s)EV

(
n+ s,Xn+s

)
, s∈ I. (2.9)

For any s∈ I , the inequality (2.4) implies

EV
(
n+ s,Xn+s

)
< eγ(m+1)EV

(
n+ 1,Xn+1

)
< qEV

(
n+ 1,Xn+1

)
(2.10)
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since γ < logq/(1 +m). Thus, by condition (2.3),

E�V
(
n,Xn

)= E
(
V
(
n+ 1,Xn+1

)−V
(
n,Xn

))≤−λEV(n+ 1,Xn+1
)
. (2.11)

We obtain that

EV
(
n+ 1,Xn+1

)≤ 1
1 + λ

EV
(
n,Xn

)
. (2.12)

Multiplying both sides of above inequality by eγ(n+1) and noting that γ ≤ log(1 + λ), we
can get

eγ(n+1)EV
(
n+ 1,Xn+1

)≤ eγ(n+1) 1
1 + λ

EV
(
n,Xn

)≤ eγnEV
(
n,Xn

)
. (2.13)

From the definition of U(n), we have

eγ(n+1)EV
(
n+ 1,Xn+1

)≤U(n). (2.14)

It is a contradiction with assumption (2.8), therefore, (2.7) holds. Thus, it follows from
(2.7) immediately that

U(n)≤U(0), ∀n∈ Z+. (2.15)

From the definition of U(n) and the condition (2.2), we obtain that the inequality
(2.5) holds. �

3. Application

3.1. A numerical approximation to SDIDEs. We consider the stochastic delay difference
equation

Xn+1 = Xn +h

[

a(n)Xn +h
m∑

i=1

K(n, i)Xn−i

]

+
√
hc(n)Xn−m�μn, n∈ Z+,

Xn = ξn, n∈ I ,

(3.1)

where h > 0 is a nonrandom parameter. For the functions a(·), b(·), and K(·,·), suppose
that

A(m,n,h)= 2a(n) + a2(n)h+m
∣
∣1 + a(n)h

∣
∣h2,

B(m,n,h)= c2(n) +h
(
mh2 +

∣
∣1 + a(n)h

∣
∣)

m∑

i=1

K2(n, i)
(3.2)
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satisfy the conditions (H1) and (H2) as the following:
(H1) A(m,n,h) +B(m,n,h)≤−δ(m,h) < 0 for n∈ Z+;
(H2) −1 < hμ(m,h)≤ hA(m,n,h).

Let

q(m,h)= inf
n∈Z+

{
B(m,nh)−A(m,n,h)

2B(m,n,h)

}
,

λ(m,h)=− inf
n∈Z+

{
A(m,n,h) +B(m,n,h)

2
(
1 +hA(m,n,h)

)
}
.

(3.3)

From the conditions (H1) and (H2), we know that

q(m,h) > 1, λ(m,h) > 0. (3.4)

Equation (3.1) may also be viewed as an approximation of the stochastic delay integrod-
ifferential equation

dX(t)=
[
a(t)X(t) +

∫ t

t−τ
K(t, t− θ)X(θ)dθ

]
dt+ c(t)X(t− τ)dW(t), t > 0,

X(t)= ξ(t), t ∈ [−τ,0],

(3.5)

where W(t) is a standard Brownian motion. Here, setting h = τ/m and approximating
the differential part of (3.5) with the Euler-Maruyama method and the integral part
with composite left-side rectangle rule [12], tn = nh, write Xn for an approximate value
to X(nh), and use Xn−m to approximate the delayed argument X(tn − τ). When n ∈
I = {−m,−m + 1, . . . ,−1,0}, we have Xn = ξ(tn). Moreover, the increments

√
h�μn :=

W(tn+1)−W(tn) are independentN(0,h)-distributed Gaussian random variables, so�μn
are independent N(0,1)-distributed Gaussian random variables. We assume Xn to be �n-
measurable at the mesh-points tn. It is therefore to be hoped for h sufficiently small that
solutions of (3.1) have similar asymptotic properties to those of (3.5). A statement of
these asymptotic results for stochastic delay differential equations can be found in, for
example, [1, 4–11].

Here, we use the above Razumilchin-type Theorem 2.2 to study the moment exponen-
tial stability of (3.1).

Theorem 3.1. Assume conditions (H1) and (H2) are satisfied, the solution sequence {Xn}
produced by the difference equation (3.1) satisfies

E
∣
∣Xn

∣
∣2 ≤ E‖ξ‖2e−γ(m,h)nh on n∈ Z+, (3.6)

where 0 < γ(m,h)=min{log(1 +hλ(m,h))/h, logq(m,h)/h(1 +m)}.
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Proof. Define a Lyapunov function V(n,X)= |X|2. Clearly, the condition (2.2) in Theo-
rem 2.2 is satisfied naturally with c1 = c2 = 1, p = 2. We see from (3.1) that

X2
n+1 =

(
1 + a(n)h

)2
X2
n +h4

( m∑

i=1

K(n, i)Xn−i

)2

+
(√

hc(n)�μn
)2
X2
n−m

+ 2
(
1 + a(n)h

)
h2

m∑

i=1

K(n, i)Xn−iXn + 2
(
1 + a(n)h

)√
hc(n)�μnXnXn−m

+ 2h2
√
hc(n)�μn

m∑

i=1

K(n, i)Xn−iXn−m

≤ (1 + a(n)h
)2
X2
n +mh4

m∑

i=1

K2(n, i)X2
n−i +

(√
hc(n)�μn

)2
X2
n−m

+
∣
∣1 + a(n)h

∣
∣h2

m∑

i=1

(
K2(n, i)X2

n−i +X2
n

)
+ 2
(
1 + a(n)h

)√
hc(n)�μnXnXn−m

+ 2h2
√
hc(n)�μn

m∑

i=1

K(n, i)Xn−iXn−m

= [(1 + a(n)h
)2

+m
∣
∣1 + a(n)h

∣
∣h2]X2

n

+
(√

hc(n)�μn
)2
X2
n−m +

m∑

i=1

[
mh4 +

∣
∣1 + a(n)h

∣
∣h2]K2(n, i)X2

n−i

+ 2
(
1 + a(n)h

)√
hc(n)�μnXnXn−m + 2h2

√
hc(n)�μn

m∑

i=1

K(n, i)Xn−iXn−m.

(3.7)

Note that E(�μn)= 0, E[(�μn)2]= 1 and Xn, Xn−k are �n-measurable, Hence

E
(�μnXn−kXn−m

)= E
(
Xn−kXn−mE

(�μn |�n
))= 0,

E
(�μnX

2
n−m

)= E
(
X2
n−mE

(�μn |�n
))= 0,

E
(�μ2

nX
2
n−m

)= E
(
X2
n−mE

(�μ2
n |�n

))= E
(
X2
n−m

)
.

(3.8)

From (3.7), (3.8) we get that

EV
(
n+ 1,Xn+1

)≤ [(1 + a(n)h
)2

+m
∣
∣1 + a(n)h

∣
∣h2]EV

(
n,Xn

)

+
(√

hc(n)
)2
EV
(
n−m,Xn−m

)

+h2(mh2 +
∣
∣1 + a(n)h

∣
∣)

m∑

i=1

K2(n, i)EV
(
n− i,Xn−i

)
.

(3.9)
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Let q = q(m,h), from assumption (2.4), we also have

EV
(
n+ 1,Xn+1

)≤ [(1 + a(n)h
)2

+m
∣
∣1 + a(n)h

∣
∣h2]EV

(
n,Xn

)

+hq(m,h)

[

c2(n) +h
(
mh2 +

∣
∣1 + a(n)h

∣
∣)

m∑

i=1

K2(n, i)

]

EV
(
n+ 1,Xn+1

)

= (1 +hA(m,n,h)
)
EV
(
n,Xn

)
+hq(m,h)B(m,n,h)EV

(
n+ 1,Xn+1

)

≤ (1 +hA(m,n,h)
)
EV
(
n,Xn

)
+h

B(m,n,h)−A(m,n,h)
2

EV
(
n+ 1,Xn+1

)
,

(3.10)

that is,

E�V
(
n,Xn

)≤ h
B(m,n,h)−A(m,n,h)

2
(
1 +hA(m,n,h)

) EV
(
n+ 1,Xn+1

)
. (3.11)

By the definition of λ(m,h) and (3.4), we get

E�V
(
n,Xn

)≤−hλ(m,h)EV
(
n+ 1,Xn+1

)
. (3.12)

Therefore, the inequality (3.6) holds by Theorem 2.2. �

3.2. Models of macroeconomics. Consider the following nonlinear delay difference
equation:

x(n+ 1)= cx(n) + f
(
x(n)− x(n−m)

)
+ εx(n)�μn, (3.13)

where c ∈ [0,1) and ε are constants, m is a positive integer.�μn are independent N(0,1)-
distributed Gaussian random variables. We assume that x(n) are �n-measurable for all
n∈N, and we have x(n)= ξn when n∈ I . f :R→R satisfies f (0)= 0, f (u) 
= 0 for u 
= 0,
and there exists a constant α such that

∣
∣ f (u)

∣
∣≤ α | u | . (3.14)

Such equation arises from some of the earliest mathematical models of the macroeco-
nomic “trade cycle” with the environmental noise.

Theorem 3.2. Assume that the conditions (3.14) and

0≤ c <−2α+
√

2α2− ε2− 2α+ 1 (3.15)

are satisfied. Then there exists positive constants γ such that with initial data ξn, n∈ I ,

E
∣
∣X(n)

∣
∣2 ≤ E‖ξ‖2e−γn on n∈ Z+. (3.16)
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Proof. Also define a Lyapunov function V(n,x)= |x|2. Similar to the proof of Theorem
3.1, let

q = 1− c2− 2αc− 2α2− ε2 + 2α
2α(2 + c)

,

λ=
[
2(2 + c)α− 1

](
c2 + 2α2 + ε2 + 3cα

)
+ 1

2(2 + c)α
(
c2 + 2α2 + ε2 + 3cα

) ,

(3.17)

the inequality (3.16) with γ=min{log(1 + λ), logq/(1 + k)} can be completed by Theorem
2.2 easily. �

4. Examples

4.1. A numerical approximation to autonomous SDIDEs. Consider the autonomous
stochastic delay integrodifferential equation as (3.5),

dX(t)=
[
aX(t) + b

∫ t

t−τ
X(θ)dθ

]
dt+

√
hcX(t− τ)dW(t), t > 0,

X(t)= ξ(t), t ∈ [−τ,0].

(4.1)

Approximating the differential part of (3.5) with the Euler-Maruyama method and the
integral part with composite left-side rectangle rule, we get the difference equation as
follows:

Xn+1 = Xn +

(

aXn + bh
m∑

k=1

Xn−k

)

h+
√
hcXn−m�μn, n∈ Z+. (4.2)

Here, h= τ/m and

A(m,n,h)= 2a+ a2h+ τh|1 + ah|,
B(m,n,h)= c2 + b2τ

(
τh+ |1 + ah|).

(4.3)

Since

1 +hA(m,n,h)= (1 + ah)2 + τh|1 + ah| > 0, (4.4)

so that the (H2) is satisfied, and if

2a+ c2 + b2τ +
(
a2 + τ + b2τ2− ab2τ

)
h− aτh2 < 0, (4.5)

then (H1) also is satisfied.
By letting

q(m,h)= B(m,nh)−A(m,n,h)
2B(m,n,h)

,

λ(m,h)=−A(m,n,h) +B(m,n,h)
2
(
1 +hA(m,n,h)

) .

(4.6)

From Theorem 3.1 we know that the inequality (3.6) holds.
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From the above analysis and (4.5), we can get the theorem as follows.

Theorem 4.1. Assume condition 2a+ c2 + b2τ < 0 is satisfied, then there exists an h∗ > 0
such that for all 0 < h < h∗, the solution sequence {Xn} produced by (4.2) satisfies

E
∣
∣Xn

∣
∣2 ≤ E‖ξ‖2e−γ(m,h)nh on n∈ Z+, (4.7)

where 0 < γ(h)=min{log(1 +hλ(h))/h, logq(h)/(h+ τ)}, and

h∗ = a2 + τ + b2τ2− ab2τ −
√(

a2 + τ + b2τ2− ab2τ
)2

+ aτ
(
2a+ c2 + b2τ

)

2aτ
. (4.8)

Corollary 4.2. Assume condition 2a+ c2 + b2τ < 0 is satisfied, then for any given ε > 0,
there exists an h(ε) > 0 such that for all 0 < h < h(ε), the numerical solution sequence {Xn}
produced by the numerical scheme (4.2) satisfies

E
∣
∣Xn

∣
∣2 ≤ E‖ξ‖2e−(γ−ε)nh on n∈ Z+, (4.9)

where γ =min{λ, logq/τ} with λ=−(a+ (1/2)(c2 + b2τ)) and q = 1/2− a/(c2 + b2τ).

Proof. From Theorem 4.1, the corollary is a consequence of the fact that

log(1 +hλ(h))
h

= λ+O(h),

logq(h)
(h+ τ)

= logq
τ

+O(h).

(4.10)

�

4.2. An example of macroeconomics models. Consider the difference equation

x(n+ 1)= cx(n) + 0.25sin
(
x(n)− x(n− 3)

)
+ 0.25x(n)�μn, (4.11)

we can get that if the condition

0≤ c ≤ 0.25 (4.12)

is satisfied, then the inequality (3.6) holds, with γ =min{log(1 + λ), logq/4}. Here

λ= 21/8− 2c2− c

2 + c
,

q = 2 + c
(
c2 + (3/4)c+ 3/16

)

(2 + c)
(
c2 + (3/4)c+ 3/16

) .

(4.13)
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