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1. Introduction

Zhang andWang [1] considered the following nonautonomous discrete predator-prey systems
with the Beddington-DeAngelis functional response

x(k + 1) = x(k)exp
{
a(k) − b(k)x(k) − c(k)y(k)

α(k) + β(k)x(k) + γ(k)y(k)

}
,

y(k + 1) = y(k)exp
{
− d(k) +

f(k)x(k)
α(k) + β(k)x(k) + γ(k)y(k)

}
.

(1.1)

By using a continuation theorem, sufficient criteria are established for the existence of positive
periodic solutions of the system (1.1).

As we know, permanence is one of the most important topics on the study of population
dynamics. One of the most interesting questions in mathematical biology concerns the survival
of species in ecological models. Biologically, when a system of interacting species is persistent
in a suitable sense, it means that all the species survive in the long term. It is reasonable to ask
for conditions under which the system is permanent. However, Zhang and Wang [1] did not
investigate this property of the system (1.1).
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As we know, ecosystems in the real world are continuously distributed by unpredictable
forces which can result in changes in the biological parameters such as survival rates. Of prac-
tical interest in ecology is the question of whether or not an ecosystem can withstand those
unpredictable disturbances which persist for a finite period of time. In the language of control
variables, we call the disturbance functions as control variables. Already, Gopalsamy andWeng
[2] have studied the Logistic growth model with feedback control. To the author knowledge,
there is few works dealt with system (1.1)with feedback control.

Therefore, one objective of this paper is to study the following discrete predator-prey
systems with Beddington-DeAngelis functional response and feedback controls

x(k + 1) = x(k)exp
{
a(k) − b(k)x(k) − c(k)y(k)

α(k) + β(k)x(k) + γ(k)y(k)
− e1(k)u1(k)

}
,

y(k + 1) = y(k)exp
{
− d(k) +

f(k)x(k)
α(k) + β(k)x(k) + γ(k)y(k)

− e2(k)u2(k)
}
,

Δu1(k) = −η1(k)u1(k) + q1(k)x(k),

Δu2(k) = −η2(k)u2(k) + q2(k)y(k),

(1.2)

where a(k), b(k), c(k), d(k), f(k), α(k), β(k), γ(k), e1(k), e2(k), η1(k), η2(k), q1(k), and q2(k) are
all bounded nonnegative sequence. For more biological background of system (1.2), one could
refer to [1] and the references cited therein.

Throughout this paper, we use the following notations for any bounded sequence {a(k)}:

au = sup
k∈N

a(k), al = inf
k∈N

a(k), (1.3)

and assume that 0 < ηl
1 ≤ ηu

1 < 1, 0 < ηl
2 ≤ ηu

2 < 1.
The aim of this paper is, by further developing the analysis technique of Chen [3], to

obtain a set of sufficient conditions which ensure the permanence of the system (1.2).
We say that system (1.2) is permanent if there are positive constants M and m such that

for each positive solution (x(k), y(k), u1(k), u2(k)) of system (1.2) satisfies

m ≤ lim
k→+∞

infx(k) ≤ lim
k→+∞

supx(k) ≤ M,

m ≤ lim
k→+∞

infy(k) ≤ lim
k→+∞

supy(k) ≤ M,

m ≤ lim
k→+∞

infui(k) ≤ lim
k→+∞

supui(k) ≤ M, i = 1, 2.

(1.4)

For biological reasons, we only consider solution (x(k), y(k), u1(k), u2(k)) with x(0) >
0;y(0) > 0;ui(0) > 0, i = 1, 2. Then system (1.2) has a positive solution (x(k), y(k), u1(k), u2(k))
passing through (x(0), y(0), u1(0), u2(0)).

2. Permanence

In this section, we establish a permanence result for system (1.2).
First, let us consider the first order difference equation

y(n + 1) = Ay(n) + B, n = 1, 2, . . . , (2.1)
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where A,B are positive constants. Following Lemma 2.1 is a direct corollary of Theorem 6.2 of
L. Wang and M. Q. Wang [4, page 125].

Lemma 2.1. Assume that |A| < 1, for any initial value y(0), there exists a unique solution y(n) of
(2.1) which can be expressed as follows:

y(n) = An(y(0) − y∗) + y∗, (2.2)

where y∗ = B/(1 −A). Thus, for any solution {y(n)} of system (2.1),

lim
n→+∞

y(n) = y∗. (2.3)

Following Comparison Theorem of difference equation is Theorem 2.1 of [4, page 241].

Lemma 2.2. Let k ∈ N+
k0

= {k0, k0+1, . . . , k0+l, . . .}, r ≥ 0. For any fixed k, g(k, r) is a nondecreasing
function with respect to r, and for k ≥ k0, the following inequalities hold:

y(k + 1) ≤ g(k, y(k)), u(k + 1) ≥ g(k, u(k)). (2.4)

If y(k0) ≤ u(k0), then y(k) ≤ u(k) for all k ≥ k0.

Now let us consider the following single species discrete model:

N(k + 1) = N(k)exp{a(k) − b(k)N(k)}, (2.5)

where {a(k)} and {b(k)} are strictly positive sequences of real numbers defined for k ∈ N =
{0, 1, 2, . . .} and 0 < al ≤ au, 0 < bl ≤ bu. Similarly to the proof of [5, Propositions 1 and 3 ], we
can obtain the following.

Lemma 2.3. Any solution of system (2.5) with initial conditionN(0) > 0 satisfies

m ≤ lim
k→+∞

infN(k) ≤ lim
k→+∞

supN(k) ≤ M, (2.6)

where

M =
1
bl
exp

{
au − 1

}
, m =

al

bu
exp

{
al − buM

}
. (2.7)

Lemma 2.4 (see [6]). Let x(n) and b(n) be nonnegative sequences defined on N and c ≥ 0 is a
constant. If

x(n) ≤ c +
n−1∑
s=0

b(s)x(s), for n ∈ N. (2.8)
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Then

x(n) ≤ c
n−1∏
s=0

[1 + b(s)], for n ∈ N. (2.9)

Proposition 2.5. Assume that

−dl +
fu

βl
> 0 (2.10)

holds, then

lim
k→+∞

supx(k) ≤ M1,

lim
k→+∞

supy(k) ≤ M2,

lim
k→+∞

supui(k) ≤ Wi, i = 1, 2,

(2.11)

where

M1 =
1
bl
exp

{
au − 1

}
,

M2 = exp
{
2
(
− dl +

fu

βl

)}
,

Wi =
qui Mi

ηl
i

, i = 1, 2.

(2.12)

Proof. Let s(k) = (x(k), y(k), u1(k), u2(k)) be any positive solution of system (1.2); from (1.2),
we have

x(k + 1) ≤ x(k)exp{a(k) − b(k)x(k)}. (2.13)

By applying Lemmas 2.2 and 2.3, it immediately follows that

lim
k→+∞

supx(k) ≤ 1
bl
exp

{
au − 1

}
:= M1. (2.14)

From the second equation of the system (1.2), we can obtain

y(k + 1) ≤ y(k)exp
{
− d(k) +

f(k)
β(k)

}

≤ y(k)exp

{
− dl +

fu

βl

}
.

(2.15)

Let y(k) = exp{u(k)}, then

u(k + 1) ≤ u(k) +

(
− dl +

fu

βl

)

=
k∑

s=0

b(s)u(s) +

(
− dl +

fu

βl

)
,

(2.16)
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where

b(s) =

{
0, 0 ≤ s ≤ k − 1,

1, s = k.
(2.17)

Condition (2.10) shows that Lemma 2.4 could be applied to (2.16), and so by applying
Lemma 2.4, it immediately follows that

u(k + 1) ≤ 2

(
− dl +

fu

βl

)
. (2.18)

This is

lim
k→+∞

sup y(k) ≤ exp

{
2

(
− dl +

fu

βl

)}
:= M2. (2.19)

For any positive constant ε small enough, it follows from (2.14) and (2.19) that there exists
enough large K0 such that

x(k) ≤ M1 + ε, y(k) ≤ M2 + ε, ∀ k ≥ K0. (2.20)

From the third and fourth equations of the system (1.2) and (2.20), we can obtain

Δu1(k) ≤ −η1(k)u1(k) + q1(k)
(
M1 + ε

)
,

Δu2(k) ≤ −η2(k)u2(k) + q2(k)
(
M2 + ε

)
.

(2.21)

So

u1(k + 1) ≤ (
1 − ηl

1

)
u1(k) + qu1

(
M1 + ε

)
,

u2(k + 1) ≤ (
1 − ηl

2

)
u2(k) + qu2

(
M2 + ε

)
.

(2.22)

By applying Lemmas 2.1 and 2.2, it immediately follows that

lim
k→+∞

supu1(k) ≤
qu1
(
M1 + ε

)
ηl
1

,

lim
k→+∞

supu2(k) ≤
qu2
(
M2 + ε

)
ηl
2

.

(2.23)

Setting ε → 0 in the above inequality leads to

lim
k→+∞

supu1(k) ≤
qu1M1

ηl
1

,

lim
k→+∞

supu2(k) ≤
qu2M2

ηl
2

.

(2.24)

This completes the proof of Proposition 2.5.
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Now we are in the position of stating the permanence of the system (1.2).

Theorem 2.6. In addition to (2.10), assume further that

al − cu

γ l
− eu1W1 > 0,

−du + flm1 − eu2W2 > 0,
(2.25)

then system (1.2) is permanent, where

m1 =
al − cu/γl − eu1W1

bu
exp

{
al − cu

γ l
− eu1W1 − buM1

}
. (2.26)

Proof. By applying Proposition 2.5, we see that to end the proof of Theorem 2.6, it is enough to
show that under the conditions of Theorem 2.6,

lim
k→+∞

inf x(k) ≥ m1,

lim
k→+∞

infy(k) ≥ m2,

lim
k→+∞

infui(k) ≥ wi, i = 1, 2.

(2.27)

From Proposition 2.5, for all ε > 0, there exists a K1 > 0, K1 ∈ N, for all k > K1,

x(k) ≤ M1 + ε, y(k) ≤ M2 + ε; ui(k) ≤ Wi + ε, i = 1, 2. (2.28)

From the first equation of systems (1.2) and (2.28), we have

x(k + 1) ≥ x(k)exp
{
a(k) − b(k)x(k) − c(k)

γ(k)
− e1(k)

(
W1 + ε

)}
,

= x(k)exp
{
a(k) − c(k)

γ(k)
− e1(k)

(
W1 + ε

) − b(k)x(k)
} (2.29)

for all k > K1.
Condition (2.25) shows that Lemmas 2.2 and 2.3 could be applied to (2.29), and so by

applying Lemmas 2.2 and 2.3 to (2.29), it immediately follows that

lim
k→+∞

inf x(k) ≥ al − cu/γl − eu1
(
W1 + ε

)
bu

exp
{
al − cu

γ l
− eu1

(
W1 + ε

) − buM1

}
. (2.30)

Setting ε → 0 in (2.30) leads to

lim
k→+∞

inf x(k) ≥ al − cu/γl − eu1W1

bu
exp

{
al − cu

γ l
− eu1W1 − buM1

}
:= m1. (2.31)

Then, for any positive constant ε small enough, from (2.31)we know that there exists an
enough large K2 > K1 such that

x(k) ≥ m1 − ε, ∀ k ≥ k2. (2.32)
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From the second equation of systems (1.2), (2.28), and (2.32), we have

y(k + 1) ≥ y(k)exp
{
− d(k) +

f(k)
β(k)

− f(k)
β(k)

(
α(k) + γ(k)y(k)

α(k) + β(k)x(k) + γ(k)y(k)

)
− e2(k)u2(k)

}

≥ y(k)exp
{
− d(k) +

f(k)
β(k)

− f(k)
β(k)

(
α(k)

α(k) + β(k)
(
m1 − ε

)
)

− f(k)
β(k)

(
γ(k)y(k)

α(k) + β(k)
(
m1 − ε

)
)
− e2(k)

(
W2 + ε

)}

≥ y(k)exp
{
− d(k) + f(k)

(
m1 − ε

) − e2(k)
(
W2 + ε

) − f(k)γ(k)
β(k)

[
α(k) + β(k)

(
m1−ε

)]y(k)
}

(2.33)

for all k > K2.
Condition (2.25) shows that Lemmas 2.2 and 2.3 could be applied to (2.33), and so by

applying Lemmas 2.2 and 2.3 to (2.33), it immediately follows that

lim
k→+∞

infy(k) ≥ βl
[
αl + βl

(
m1 − ε

)][ − du + fl
(
m1 − ε

) − eu2
(
W2 + ε

)]
fuγu

× exp
{
− du + fl(m1 − ε

) − eu2
(
W2 + ε

) − fuγu

βl
[
αl + βl

(
m1 − ε

)]M2

}
.

(2.34)

Setting ε → 0 in (2.34) leads to

lim
k→+∞

infy(k) ≥ βl
(
αl + βlm1

)( − du + flm1 − eu2W2
)

fuγu

× exp
{
− du + flm1 − eu2W2 −

fuγu

βl
(
αl + βlm1

)M2

}
:= m2.

(2.35)

Without loss of generality, we may assume that ε < (1/2)min{m1, m2}. For any positive con-
stant ε small enough, it follows from (2.31) and (2.35) that there exists enough large K3 > K2

such that

x(k) ≥ m1 − ε, y(k) ≥ m2 − ε, ∀ k ≥ K3. (2.36)

From the third and fourth equations of the system, (1.2) and (2.36), we can obtain that

Δu1(k) ≥ −η1(k)u1(k) + q1(k)
(
m1 − ε

)
,

Δu2(k) ≥ −η2(k)u2(k) + q2(k)
(
m2 − ε

)
.

(2.37)

So

u1(k + 1) ≥ (
1 − ηu

1

)
u1(k) + ql1

(
m1 − ε

)
,

u2(k + 1) ≥ (
1 − ηu

2

)
u2(k) + ql2

(
m2 − ε

)
.

(2.38)
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By applying Lemmas 2.1 and 2.2, it immediately follows that

lim
k→+∞

infu1(k) ≥
ql1
(
m1 − ε

)
ηu
1

,

lim
k→+∞

infu2(k) ≥
ql2
(
m2 − ε

)
ηu
2

.

(2.39)

Setting ε → 0 in the above inequality leads to

lim
k→+∞

infu1(k) ≥
ql1m1

ηu
1

:= w1,

lim
k→+∞

infu2(k) ≥
ql2m2

ηu
2

:= w2.

(2.40)

This completes the proof of Theorem 2.6.

To check the conditions of Theorem 2.6, we give an example. We consider the following
discrete predator-prey systems with Beddington-DeAngelis functional response and feedback
controls

x(k + 1) = x(k) exp
{
1 − x(k) − 0.8y(k)

1 + 0.2x(k) + 2y(k)
− 0.001u1(k)

}
,

y(k + 1) = y(k) exp
{
− 0.01 +

0.1x(k)
1 + 0.2x(k) + 2y(k)

− 0.001u2(k)
}
,

Δu1(k) = −0.8u1(k) + x(k),

Δu2(k) = −0.5u2(k) + y(k).

(2.41)

One could easily obtain that the conditions of Theorem 2.6 are satisfied. Hence, by Theorem 2.6,
we see that system (2.41) is permanent.
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